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1. Design process of type-II Dirac photonic lattices  

We summarize the major steps in building up the photonic lattice with type-II Dirac cones as follows: 

(1) As shown in Fig. S1, we first obtain a dislocated Lieb lattice by doing a translation operation on the 

normal uniform Lieb lattice.  

(2) We introduce a parametric angle 𝜃 in the dislocated Lieb lattice. Clearly, the value of this angle is 

𝜃 = 𝜋 in the dislocated Lieb lattice.  

(3) We decrease the angle gradually by stretching the lattice along 𝑦 axis. Examples of such stretched 

lattices with 𝜃 = 5𝜋/6, 2𝜋/3, 𝜋/2 and 𝜋/3 are displayed in Fig. S1.  

According to our numerical simulations based on both discrete model and continuous model, the 

lattice with 𝜃 = 𝜋/3 possesses type-II Dirac cones, as shown in Figs. 1(e) and 1(f) in the main text. 

There are also Dirac cones in lattices with other angles in Fig. S1, but they are all (tilted) type-I Dirac 

cones.  

 

Fig. S1. Construction of the photonic lattice with type-II Dirac cones. 

 

With the decrease of the angle, one finds that the spatial geometry of the lattice changes even though 

the mirror symmetry along both 𝑥 and 𝑦 axes does not change. The appearance of the type-II Dirac 

cones in the lattice with 𝜃 = 𝜋/3 is mainly due to the anisotropic geometry of the lattice. Under the 

tight-binding model, the left and right sites aside the red dotted site has no mutual coupling for angles 

larger than 𝜋/3, but they are coupled when  𝜃 = 𝜋/3. The advantage of the lattice with 𝜋/3 is that the 

type-II Dirac cone appears naturally without doing extra operations on the lattice or the environment. 
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2. Other type of domain walls 

In the main text, the domain wall is constructed by enhancing the depth of site C of the lattice above 

the domain wall, while enhancing that of the site A below the domain wall.  

Since there are three sites in one unit cell in the lattice with type-II Dirac cones, the domain wall can 

be also constructed in other way, for example we can decrease the depth of site C above the domain 

wall, and decrease that the site A below the domain wall. We show the lattices with such a domain wall 

and corresponding band structure in Fig. S2(a), where a VHE state is found in the second gap. For direct 

comparison, the lattice with a domain wall used in the main text and its corresponding band structure 

are shown in Fig. S2(b) – with the VHE state residing in the first band gap. One can find that the VHE 

state may appear either in the first band gap or in the second band gap, which depends on the way how 

to break the inversion symmetry of the lattice. 

 

 

Fig. S2. (a) A domain wall (indicated by a blue rectangle) is built up in the lattice with the index potential 

of site C decreased above the domain wall and that of site A decreased below the domain wall. The 

corresponding band structure is shown on its right. (b) Setup is as the same as in (a), but with the 

corresponding index potential increased instead, as used in the main text. 

 

3. Robustness of the VHE solitons 

The topological protection of VHE solitons should be demonstrated by propagating them to 

circumvent sharp corners. However, it is impossible for us to construct a domain wall with sharp corners 

without changing the geometry of the lattice, since it is lack of C3𝑣 symmetry. A tiny changing of the 

geometry of the lattice plays a role of defect, which will lead to strong inter-valley scattering of the edge 

state (as well known, the topological valley protection is fragile, which is a drawback of the valley Hall 

topological states). As a result, it is very hard for us to check its topological protection directly in the 

lattice adopted in our manuscript (for the honeycomb lattice, it is not hard to do such checking but we 

cannot find VHE solitons in honeycomb lattices as of yet). Bearing in mind the formation of the VHE 



soliton, we know that it must bifurcate from the linear VHE state and it therefore inherits topological 

protection from the linear VHE state. 

As said, a defect will lead to large inter-valley scattering (reflection) of the VHE solitons, and the 

reason is that the defect is a small-scale disorder. Therefore, we would like to use a large-scale random 

disorder to check the robustness of the VHE soliton. The lattice with a large-scale random disorder can 

be written as ℛ(𝑥, 𝑦) = ∑ {𝑝in + 𝛿𝑝[1 − cos(𝜔𝑥𝑛)]}𝒬(𝑥 − 𝑥𝑛, 𝑦 − 𝑦𝑚)𝑛,𝑚   with 𝛿𝑝 = 0.01  and 

𝜔 = 2𝜋/100𝑥𝑚. Here, the period of the random noise (100𝑥𝑚) is large enough, so that it will not induce 

inter-valley scattering in a quite long propagate distance which indicates the robustness of such VHE 

solitons to structure disorder, as shown in Fig. S3 and discussed in the main text. 

 

 

Fig. S3. Propagation of the quasi-soliton in the lattice with a large-scale random disorder. The curves in 

the bottom panel show the peak amplitude and barycenter of the spot during propagation. 

 

As to the details of the numerical simulation methods adopted in this work including the plane-

wave expansion method, the Newton method and the beam propagation method, one can turn to a text 

book entitled “Nonlinear Waves in Integrable and Nonintegrable Systems” written by Jianke Yang. 

 

4. Numerical simulation corresponding to experimental results 

We numerically simulated the linear and nonlinear beam dynamics described by Eq. (1) in the main 

text using the beam propagation method. The parameters are the same as the ones addressed in the main 

text, i.e. Δ𝑛 ∼ 1.82 × 10−4, spacing between nearest neighbor is 𝑑 = 30 𝜇m, etc.. Results shown in 

Figs. S4(a-c) are corresponding to the experimental results presented in Figs. 4(b-d) of the main text. In 

agreement with experiment results in Fig. 4, the probe beam at the output is localized in vertical direction 

and somewhat extended along the domain wall (Fig. S4). Dashed ovals in Fig. S4 indicate the initial 



positions of the input beam. Take Fig. S4(a) as an example: the linear output shown in Fig. S4(a1) has a 

slight shifting to the left denoted by the white arrow, as the experiment results shown in Figs. 4(b1,e1). 

In the nonlinear condition, the numerical results [Figs. S4(a2,d2)] also agree with experimental 

observation shown in [Figs. 4(b2,e2)] of the main text, with “diminished” portion in the initial beam due 

to nonlinearity-induced transport of the nonlinear VHE state. Similar shifting trend happens to the case 

when the excitation is initially to the right side [Figs. S4(c1,c2,d4)]. Furthermore, the simulated FWHM 

(see right panels) and the 𝑘-space spectra (Figs. S4(a3-c3,a4-c4) all agree well with experiment results 

shown in Fig. 4 in the main text. 

 

 

Fig. S4. Numerical simulations of linear (a1-d1, a3-c3) and nonlinear (a2-c2, a4-c4, d2-d4) topological 

VHE states. The figure layout (a-d) is the same as that for Figs. 4 (b-e) in the main text. 

 

5. Experimental setup and description 

In our experiment, a continuous-wave (cw) laser beam (532nm, 50mW) is used to illuminate a 

programmable phase-only spatial light modulator (SLM). The SLM generates a set of Gaussian beams 

based on uploaded masks as the writing beams. The waist position of the writing beams is set to the 

center of crystal along z-direction (Fig. S5). The transverse position and dwelling time of the writing 

and probe beams are precisely controlled by the SLM. When a bias electric DC field is added along the 

crystalline c-axis of the nonlinear SBN crystal, due to the self-focusing photorefractive nonlinearity and 

the memory effect of the crystal, the Gaussian beams induce waveguides one-by-one, and all waveguides 



remain intact within the experimental data acquisition period. The strength of the nonlinearity can be 

well controlled by the dwelling time of probe beams, while the voltage and intensity of the probe beams 

are fixed. By carefully control the writing time for different sets of the sublattices, we can established 

the photonic lattices and domain walls with desired index potential as used for our experimental studies. 

 

FIG. S5. Experimental setup for point-to-point writing of photonic lattices with a cw-laser (532nm) in a 

nonlinear photorefractive crystal (SBN: strontium barium niobate crystal). SLM: spatial light modulator; 

BS: beam splitter; FM: Fourier mask; Path 1 is for both the writing beam and the probe beam, which are 

launched in sequence.  

 


