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1. 𝝅-mode soliton family at 𝑟 = 0.3 

 
The soliton family presented in Fig. 5 corresponds to 𝑟 = 0.25 in the main text is completely inside a gap [see 

the spectrum in Fig. 4(d)] and does not overlap with bulk states. In Fig. S1, we present the results obtained for 

𝑟 = 0.3. As shown in Fig. S1(a), the linear 𝜋-modes that are indicated by red dots overlap with the bulk states, 

which is different from the case with 𝑟 = 0.25. We find that even in this case the 𝜋-mode state does not show 

notable coupling with bulk states, but light appears in adjacent corners of the structure. Continuous soliton 

families can still be found in both focusing and defocusing media [see Fig. S1(b)]. Typical 𝜋-mode solitons are 

displayed in Fig. S1(c). The left panel in Fig. S1(c) is for the focusing nonlinearity condition and corresponds to 

dot 1 in Fig. S1(b), while the right panel in Fig. S1(c) is for the defocusing nonlinearity condition and corresponds 

to dot 2 in Fig. S1(b). We also find the solutions are stable during propagation over a long distance up to 𝑧 =

4000. Peak amplitudes 𝐴 versus propagation distance 𝑧 corresponding to dots 1 and 2 in Fig. S1(b) are exhibited 

in Fig. S1(d), which do not decay and behave periodically. 

 

 
Fig. S1. (a) Linear quasi-propagation constant spectrum at 𝑟 = 0.3, in which red dots correspond to linear 𝜋-modes. (b) 

Nonlinear 𝜋-mode family bifurcating from the linear 𝜋-mode. (c) Examples of the nonlinear 𝜋-mode states corresponding 

to dots 1 and 2 in (b). (d) Peak amplitude of these states versus distance 𝑧 in the presence of small perturbations. 

 

2. 𝝅-mode solitons survive from defects 

 
We introduce the defect into the modulated lattice by increasing the refractive index change of the second 

waveguide 10%, and the other parameters are same as those adopted in Fig. 1(d). In Fig. S2(a), defects are 

highlighted by using thicker waveguides. The corresponding quasi-spectrum of the lattice is shown in Fig. S2(b); 

in the bandgap there are two pairs of degenerated defect modes in addition to two degenerated 𝜋-modes. The 
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modulo profiles of the 𝜋-modes and defect modes are shown in Fig. S2(c). The 𝜋-mode soliton family in the 

defocusing condition is shown in Fig. S2(d), in which the dashed region represents unstable 𝜋-mode solitons. In 

Fig. S2(e), we show the modulo profiles of the selected 𝜋-mode solitons indicated by green dots in Fig. S2(d). 

Clearly, the 𝜋-mode soliton exists even though the lattice is perturbed.  

 

 
Fig. S2. (a) The Floquet lattice with defect that is highlighted with thicker waveguides. (b) The corresponding quasi-

spectrum, in which 𝜋-modes are indicated by red dots (numbered 3 and 4) and defect modes by blue dots (numbered 1, 2, 

5 and 6). The grey region1 shows the first Brillouin zone of the longitudinal periodic modulation. (c) Modulo profiles of the 

𝜋-modes and defect modes. (d) 𝜋-mode soliton family bifurcating from the linear 𝜋-mode numbered 3 in (b) under the 

defocusing condition. Solid and dashed curves represent stable and unstable solitons. Horizontal dashed lines mark the 

energy of the linear defect-modes. (e) Modulo profiles of the 6 selected 𝜋-mode solitons in (d). 

 

3. Numerical method on the quasi-spectrum 

 
The beam propagation equation in the Floquet modulated wave guide array in our system can be written as: 
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𝜕𝑦2) 𝜓 − ℛ(𝑥, 𝑦, 𝑧)𝜓 − 𝛿|𝜓|2𝜓.                                                      (1) 

To calculate for its quasi-spectrum, one takes the following procedures: 

(1) By dropping the nonlinear term in Eq. (1), we firstly calculate for the spectrum of the straight array with the 

transverse distribution same at the dynamic lattice at 𝑧 = 0, i.e., ℛ(𝑥, 𝑦, 𝑧 = 0). The corresponding solution 

can be written as 

𝜓 = 𝑢(𝑥, 𝑦)𝑒𝑖𝑏𝑧.                                                                                       (2) 

Plug solution (2) into Eq. (1), then we can get 
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Which is an eigenvalue problem that can be solved by using the plane-wave expansion method or the finite-

difference method. One obtains 𝑏𝑗∈[1,𝑁] and 𝜓𝑗∈[1,𝑁]
in  for ℛ(𝑥, 𝑦, 𝑧 = 0) with 𝑁 being the lattice number. 

(2) Propagate 𝑢 over one period 𝑍 in the modulated array ℛ(𝑥, 𝑦, 𝑧) successively, and one obtains 𝜓𝑗∈[1,𝑁]
out  at 𝑧 =

𝑍. 

(3) Calculate for the projection: 

𝑈𝑚𝑛 = ⟨𝜓𝑚
in, 𝜓𝑛

out⟩,                                                                                         (4) 

whose eigenvalues are Floquet exponents 𝑒𝑖𝑍𝑏𝑛. Here 𝑏𝑛 is the quasi-spectrum. 

(4) For each 𝑏𝑛, one finds the index ℓ𝑛 of the maximum element of the corresponding eigenvector 𝑉𝑛 of 𝑈𝑚𝑛. The 

eigenstate of ℛ(𝑥, 𝑦, 𝑧) can be constructed as: 𝜓𝑛
ℛ = ∑ 𝜓𝑗

in𝑁
𝑗=1 𝑉𝑗(ℓ𝑛), which includes the 𝜋 mode. 

 

4. Numerical method on 𝝅 state solitons 

 
Now, as shown in Section 3 in this Supplemental Materials, one obtains linear states 𝜓𝑗∈[1,𝑁]

in  (i.e. 𝜓𝑗∈[1,𝑁]
ℛ  in 

Section 3) of ℛ(𝑥, 𝑦, 𝑧), and here we label the 𝜋 state as 𝜓𝜋
in. The procedure of calculation of the 𝜋 state soliton 

can be divided into several steps:  

(1) We propagate the linear 𝜋 state 𝜓𝜋
in with a given power 𝑃 (that will determine eventually quasi-propagation 

constant of the nonlinear Floquet state) according to Eq. (1) to obtain the dynamical lattice modified by the 

nonlinearity, i.e. ℛ𝜋 = ℛ + |𝜓𝜋
in|2.  

(2) After this we propagate all linear eigenstates 𝜓𝑛∈[1,𝑁]
in  of ℛ that include 𝜓𝜋

in in the modified dynamical lattice 

ℛ𝜋 for a whole period 𝑍 and obtain corresponding output distributions 𝜓𝑛∈[1,𝑁]
out . 

(3) One calculates the projection 𝑈𝑚𝑛 = ⟨𝜓𝑚
in, 𝜓𝑛

out⟩, whose eigenvalues are Floquet exponents 𝑒𝑖𝑍𝑏𝑛.  

(4) For each 𝑏𝑛, one finds the index ℓ𝑛 of the maximum element of the corresponding eigenvector 𝑉𝑛 of 𝑈𝑚𝑛. The 

eigenstate 𝜓𝑛∈[1,𝑁]
re  of ℛ𝜋 can be constructed as: 𝜓𝑛

re = ∑ 𝜓𝑗
in𝑁

𝑗=1 𝑉𝑗(ℓ𝑛). 

(5) One picks out the modified 𝜋 state 𝜓𝜋
re from 𝜓𝑛∈[1,𝑁]

re  and normalizes it to the given power 𝑃. 

(6) The steps (1)-(5) are repeated until the difference between 𝜓𝜋
re and 𝜓𝜋

in reduces below required small level. 


