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Bessel beams have garnered significant interest due to their unique diffraction-free properties and extensive poten-
tial applications. In this work, we propose a spatial domain phase modulation theory to achieve diffraction-free
distance enhancement of Bessel beams, overcoming the limitation of the traditional methods due to the inability
to infinitely decrease the wave vector angle. The traditional formula for non-diffraction distance is also modified.
Simulation results demonstrate that our proposed scheme can significantly increase the maximum diffraction-free
distance of zero-order and higher-order Bessel beams by more than two times, while ensuring the self-healing prop-
erty of Bessel beams. Furthermore, our proposed scheme is not restricted to specific systems or limited to the optical
wavelength range. This implies that the results have great applicative potential in long-distance free-space optical
communication and wireless energy transmission. © 2023 Optica Publishing Group
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1. INTRODUCTION

The diffraction-free beam is a unique type of beam that under-
goes no diffraction upon propagation in free space. Among the
earliest known examples of this phenomenon are Bessel beams
[1]. The Bessel beam is a solution to the three-dimensional
Helmholtz equation, whereby its field distribution in the
transverse plane (x, y) is determined by the first kind of Bessel
functions, while the longitudinal coordinate (z) denotes the
direction of propagation. Remarkably, this beam sustains a
constant intensity distribution and possesses a highly localized
intensity profile during propagation. Subsequently, with the
development of laser technology and expansion of its appli-
cation fields, some other non-diffracting beams such as the
Mathieu beam [2] and parabolic beam [3] have been proposed
and extensively researched in recent years. Moreover, by consid-
ering the paraxial approximation for the Helmholtz equation,
which yields the Schrédinger-like equation, Berry and Balazs
found the Airy non-diffracting wavepacket [4]. Based on this,
Christodoulides’ group created finite-energy Airy beams [5,0]
that accelerate along a parabolic trajectory, thereby opening a
new chapter in the history of diffraction-free self-accelerating
beams. Similarly, since an ideal diffraction-free Bessel beam
requires an infinite amount of energy, Bessel beams of finite
transverse size can only remain diffraction-free over a certain
range, so they are strictly defined as quasi-diffraction-free.
Throughout this paper, all the phrases “diffraction-free” refer
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to quasi-diffraction-free. So far, potential applications of Bessel
beams have been demonstrated in optical trapping [7,8], laser
drilling [9], laser precision collimation [10], optical coherence
tomography [11,12], micro-manipulation [13], and wireless
power transmission [14]. In addition to the non-diffracting
characteristics, when part of the beam is blocked by an obstacle,
the Bessel beam can self-reconstruct its field [15,16], which
is known as the self-healing property, thereby providing an
effective solution for long-distance free-space optical communi-
cation [17-19]. In recent years, the self-accelerating property of
the Bessel beam has been inspected seriously [20-22].

In 1987, Durnin employed the ring-slit method to generate
approximate Bessel beams within a finite distance in experi-
ments, which can maintain the propagation of the main lobe
without broadening in the non-diffraction range [1]. The
essence of the formation of Bessel beams lies in that Bessel beams
can be expressed as a superposition of plane waves, where all the
plane waves have the same inclination angle with respect to the
propagation axis but different azimuthal angles ranging from 0
to 27, i.e., the wave vectors are distributed over a cone, which
can be synthesized by an axicon, called the axicon model [23].
Most methods of generating Bessel beams, such as computer-
generated holograms [24], combined axicons [25], volume
holographic axicons [26], metasurfaces [27-29], diffraction
gratings [30], toroidal (annular) lenses, [31] and spatial light
modulators [32-35], are regarded to be equivalent to the axicon
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Fig. 1. (a) Equivalent axicon model. (b) Schematic diagram of
phase modulation. R is the radius of the axicon, ¢ is the base angle of
the axicon, 6 is the wave vector angle, 6, is the modulated wave vector
angle, 2, is the maximum diffraction-free distance (red lines), and
Z, may 18 the corrected maximum diffraction-free distance (purple lines).
The blue axicon is an equivalent model to the Bessel generator, and the
purple axicon is the equivalent virtual axicon model for spatial phase
modulation.

model [see Fig. 1(a)]. Therefore, we adopt the axicon model to
replace the Bessel beam generator. Figure 1(b) shows a Gaussian
beam vertically incident on an axicon with a base angle of ¢
and an aperture radius of R. The axicon converts the incident
beam into a diffraction field on the right-hand side, and the
interference of the diffracted waves generates a diffraction-free
Bessel beam with a wave vector angle of 0. Bessel beams exhibit
diffraction-free and self-healing properties within a maximum
non-diffracting distance zpa. From the geometric relationship
in Fig. 1, we obtain [23]

R

tan6’

Zmax U]
with @ = (n — 1)@, where 7 is the refractive index of the axicon.
Asaresult, the z,,,, increases with the increase in R and decrease
in 0. However, R cannot infinitely increase to its ideal value,
and 0 cannot infinitely reduce due to technological and mate-
rial limitations. Consequently, the utilization of Bessel beams
in engineering applications is impeded by their limitation of
only maintaining non-diffracting characteristics within a short
propagation distance. Therefore, it is imperative to investigate
and devise methods that can augment the non-diffracting range
beyond the existing constraints. Efforts in this direction demand
a comprehensive exploration of the key factors that determine
the non-diffracting range of Bessel beams while maintaining
compatibility with existing systems.

In this study, we propose a novel theory of spatial domain
phase modulation that offers a promising solution for improv-
ing the non-diffracting distance of both zero-order and
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higher-order Bessel beams. Our approach involves manipu-
lating the angular spectrum of Bessel beams in the frequency
domain by applying spatial domain phase modulation, which
effectively circumvents the limitations imposed by mate-
rial or technological constraints on the wave vector angles.
Importantly, our approach is not restricted by wavelength
requirements and can be implemented using readily available
spatial light modulators or metamaterials [36,37], which is
expected to significantly enhance the practicality and accessibil-
ity of our technique. By integrating our method with existing
approaches, we aim to achieve improved performance in various
applications, such as long-distance wireless energy transfer, free-
space optical communication, remote sensing, and more. Our
work demonstrates the versatility and efficacy of spatial domain
phase modulation as a means of optimizing the performance
of non-diffracting beams. We anticipate that our findings will
inspire further research in this area and lead to the development
of advanced optical systems that can exploit the full potential of
Bessel beams.

2. RESULTS AND DISCUSSION
A. Spatial Domain Phase Modulation Theory

As shown in Fig. 2, the frequency domain distribution of the
spatial domain distribution f(7) is defined as F(p), which is
the Fourier transform of f(r), where r is the spatial domain
position and p is the corresponding frequency domain posi-
tion. The spatial domain after phase modulation is given by
F(r)e?™"  where ¢ is referred to as the modulation factor in
m~! and 7 is an imaginary unit. Then the distribution of the
frequency domain after phase modulation is F{ f(r)e27"},
where F is the Fourier transform operator. According to the
property of Fourier transform, the spatial domain product is
equivalent to the convolution in the frequency domain, so one
can obtain

FUf)e™™ Yy = F{f(n)}8(p + ), 2
where * is the convolution operator. Let
[ = Jolar), (3)

where /j represents the zero-order Bessel function. o« = £sin 6,
with £ = 2 /A being wavenumber, A is the wavelength, and 6 is
the wave vector angle. Substituting Eq. (3) into Eq. (2), one gets

2mwery 1 _
F{f(r)e }——27”)08(,0 0c), (4)

where 8 is the impulse function that is expressed as an angular
spectrum ring in the frequency domain, py = «/27 is the radius
of the Bessel angular spectrum ring, and p, = pg — ¢ =« /27
is the radius of the Bessel angular spectrum ring after spatial
domain phase modulation. As illustrated in Fig. 2, the radius of
the Bessel angle spectrum decreases by exerting phase modula-
tion in the spatial domain. The wave vector angle without phase
modulation is @ = arcsin(a/ k), and the wave vector angle after
applying phase modulation in the spatial domain is given by

0. = arcsin(%) = arcsin(sin @ — Ac). (5)



2908 Vol. 40, No. 11/ November 2023 / Journal of the Optical Society of America B

Fig. 2.
the radius of the Bessel angular spectrum ring in the frequency domain
is achieved by implementing phase modulation in the spatial domain.

Thus, Eq. (1) is corrected to
R R

tan 0, - tan[arcsin(sin @ — Ac)]’

(6)

ZL‘ max =

2, max 18 the corrected maximum diffraction-free distance. If 6 is
asmall angle, Eq. (6) can be written as

R
0 —Xic’

2 max = (@)
Consequently, the diffraction-free distance will increase signifi-
cantly, as illustrated in Fig. 1(b), where the red lines represent
no phase modulation and the purple lines represent applied
phase modulation. The essence of spatial phase modulation
is to transform the angular spectrum ring by applying phase
modulation, which benefits from the fact that the modulation
function ¢27°" behaves as a sampling impulse function § in
the frequency domain. Since the axicon has an equal effect on
Gaussian beams, spatial phase modulation applied on a spatial
light modulator or metasurface can be equivalent to a virtual
axicon, as shown by the purple axicon in Fig. 1(b), from the
perspective of the resulting transformation. From Egs. (5) and
(7), we can notice that 0 and 2,y are only special cases of 6, and
Ze max 10 the case ¢ = 0. Therefore, we uniformly express the
maximum diffraction-free distance as 2, and the wave vector
angleas 6 in the following text.

B. Diffraction-Free Distance Enhancement

Next, we consider Bessel beams generated from axicon model.
The parameters are as follows: A =632.8 nm, R =2.5 mm,
n=1.5, ¢ =0.2°, 6 =0.1°. Note that this wave vector angle
is highly demanding for material processing. The intensity
and phase distributions of the original unmodulated zero-order
Bessel beams are shown in Fig. 3(a), where the phase distribution
has only two discrete values of 0 and 7. Figure 3(b) presents the
phase masks at different values of ¢, which can be loaded onto a
spatial light modulator or metasurface to conveniently manipu-
late the phase of the original Bessel beams. Figure 3(c) depicts
the phase distribution obtained after spatial domain phase
modulation, which does not exhibit any readily discernible
regularities. Therefore, a frequency domain analysis is essential

Space domain phase modulation theory. The reduction of
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Fig. 3. (a) Transverse intensity and phase distributions of the origi-
nal zero-order Bessel beam. (b) Modulation phase mask with different
modulation factor ¢. (c) Phase distributions after phase modulation.
Panels in each column in (b) and (c) have the same ¢. All panels are
shown in the window —2.5 mm < x, y < 2.5 mm.
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Fig. 4.  Frequency domain distributions of the Bessel beams,
which has been modulated by spatial phase in the respective cases of
(@c=0,b)c=400m", (c) c=800m~", (d) c =1200 m~!, and
(e) ¢ = 1600 m~"'. As the modulation factor ¢ increases, the width of
the Bessel angular spectrum ring in the frequency domain decreases.
Note that, for the convenience of displaying the spectral ring variation,
we did not label the symmetric parts of each ring in the figure. In
fact, the frequency domain components are always symmetrically
distributed.

for uncovering any underlying structures. Figures 4(a)—4(e)
depict the frequency domain distributions for ¢ = 0, 400 m™?,
800m™"', 1200 m~!, and 1600 m~!, respectively. As antici-
pated, the Bessel beam is observed to form an angular spectrum
ring, and the width of the ring linearly decreases from 5600/m to
2400/m as ¢ increases. This implies that we have achieved a scal-
ing transformation of the Bessel beam’s angular spectrum ring
through spatial domain phase modulation. Since the width of
the Bessel angular spectrum ring is proportional to o = £ sin 6
(ring width = a/27), the reduction of the wave vector angle 6
leads to asignificant improvement in its diffraction-free ability.
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We have implemented the simulation of Bessel beam propa-
gation based on the angular spectrum propagation theory [25].
The field distribution at z in the real space is

Yy =F H{F{Wp00e, ) - Hike, kys 2)}, )

where F and F ! are the Fourier transform operator and its
inverse, respectively, and v, is the initial field distribution.
We refer to H as the spatial frequency transfer function at the
position z to which the light has traveled in the medium. # is
given by

H = ¢ exp[—iﬂ)»z(fx2 + fyz)] , ()

where 4 is the wavenumber. A is the wavelength, where
k=2m /A, with A being the wavelength in the medium, and
Jfx =ky/2m and f, =k, /27 are the coordinate variables in the
frequency domain.

In Fig. 5(a), the intensity distribution of the beam propaga-
tion in the (x0z) plane is shown for modulation factors ¢ =0
(no modulation), c =400 m™!, ¢ =800m™', ¢ = 1200 m~!,
and ¢ = 1600 m™!, where the red triangle marks the maximum
diffraction-free distance. It can be observed that, as the modu-
lation factor ¢ increases, the maximum diffraction-free distance
significantly increases and exhibits an accelerating growth trend.
The evolution of the axial intensity of the zero-order Bessel
beam is shown in Fig. 5(b), which further verifies this achieve-
ment. The maximum diffraction-free distance is defined as
the propagation distance where the axial intensity decreases to
half of its original value. As indicated by the horizontal brown
dashed line, it can be clearly found that, the larger the value of
¢ is, the larger the 2, is. The theoretical and simulated values
of the diffraction-free distance are listed in the second and third
columns of Table 1, respectively, revealing a good agreement
between the theoretical calculations and simulations. The
fourth column lists the percentage of the distance improvement,
and when ¢ = 1600 m™!, the distance increases by more than
twice. As ¢ continues to increase, this value will further escalate.
Accordingly, the diffraction-free distance will increase by a fac-
tor of two or more for different Bessel beam generation systems
with the appropriate modulation factor ¢. However, it is crucial
to note that an excessively large value of ¢ will lead to a degrada-
tion in beam quality. Hence, it is recommended to restrict the
value of ¢ to be less than 20 /3. When ¢ is set to 1200 m ™!, the
intensity distribution of the zero-order Bessel beam in the (x0y)
plane at different distances is presented in Fig. 5(e). It is evident
that, within the 2, the main lobe width remains unchanged
during propagation. However, when the distance z exceeds zmaxs
the energy of the main lobe starts to extend into the side lobes,
and the side lobes gradually become visible. Figure 5(c) illus-
trates the variation of the main lobe width w of a Bessel beam
during propagation under different modulation factors c. It is
worth noting that the main lobe width after phase modulation
is not the same. This can be easily explained by the fact that the
main lobe width can be calculated using 2.405/«. Therefore,
as the modulation factor ¢ increases, 6 and o decrease, and the
main lobe width increases accordingly. Correspondingly, as
illustrated in Fig. 5(d), the percentage of the main lobe power of
the zeroth-order Bessel beam also increases, indicating that, as
the parameter “c” increases, the percentage of power within the
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¢=1600m -1

Fig. 5. (a) Propagation intensity of the zero-order Bessel beam at
different modulation factors ¢, with the maximum diffraction-free
distance 2, marked by red triangles. (b) Peak intensity; the crossing
point with the brown dashed line is z.x. () Main lobe width of Bessel
beams during propagation with different modulation factors ¢. The
red dashed line divides the formation process from the diffraction-free
process. (d) The main lobe power percentage of the Bessel beam at dif-
ferent modulation factors ¢. E is the main lobe power percentage (%).
(e) Intensity distributions at different distances with ¢ = 1200 m™"
and 2z, =2.53 m. (b)—(d) have the same legend. Panels in (a) are
shown in —2.5 mm < x <2.5mm, 0 m < z <5 m. Panels in (e) are
shownin —2.5mm < x, y <2.5 mm.

Table 1. Comparison between Theoretical Results
and Simulations on the Maximum Diffraction-Free
Distance’

c(m™) Theory (m) Simulation (m) Dis
0 1.4331 1.4174 0
400 1.6764 1.6959 19.6%
800 2.0191 2.0503 44.7%
1200 2.5379 2.5312 78.6%
1600 3.4155 3.3918 139.3%

“Dis is the distance improvement percentage.

main lobe proportionally rises. To be more precise, the imple-
mentation of phase modulation involves a process of formation,
graphically denoted by the red dashed line on Fig. 5(c), whereby
the left side represents the formative stage and the right side
indicates the lack of diffraction. However, this does not affect
the ability of the Bessel beam to remain diffraction-free over a
relatively long propagation distance along the z direction.
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Fig. 6. (a) Setup is as Fig. 5(a), but for the high-order Bessel
beam (/= 3). (b) Phase distribution of the high-order Bessel beam
with ¢ = 1200 m™" at different distances. Panels in (a) are shown in
—2.5mm < x <2.5mm, 0 m < z <5 m. Panels in (b) are shown in
—25mm=<x,y <2.5mm.

As a result, the implementation of phase modulation allows
for an increase in the maximum diffraction-free distance of the
Bessel beam. Furthermore, this approach is not limited to the
specific generation method of the Bessel beam nor is it restricted
solely to the optical frequency range. Therefore, this method
represents a promising solution for long-range wireless energy
transfer using either laser or microwave radiation.

Now, we demonstrate that this method is also feasible to
higher-order Bessel beams, which are a class of vortex waves
whose expressions are J J(ar)e®, where [ is referred to as the
topological charge (i.e., the order of the Bessel beam) and
¢ as the azimuthal angle [38,39]. Although our theoretical
derivation is based on zero-order Bessel beams, this method
also exhibits similar results in high-order Bessel beams. As
shown in Fig. 6(a), we present the intensity distribution of a
third-order Bessel beam propagation [(x0z) plane]. Similar
to the conclusion of the zero-order Bessel beam, as the value of
¢ increases, its maximum diffraction-free distance gradually
increases, and the difference in z,,,; with the zero-order Bessel
beam is not significant. Moreover, the higher-order Bessel beam
also expands within an extremely short distance and then main-
tains a constant main lobe width over a long range. Given that
higher-order Bessel beams carry orbital angular momentum,
they can be employed for free-space optical communication.
Hence, it is crucial to investigate the phase distribution. Taking
¢ =1200m™!, the phase evolution during its propagation is
shown in Fig. 6(b). As the propagation distance increases, the
phase distribution becomes more ordered. It is noteworthy that
the topological charge carried by a Bessel beam represents the
phase variation occurring within one azimuthal period around
the beam axis. For instance, a Bessel beam of the third order
carries a topological charge of 3, indicating three 27 phase
variations happening in one azimuthal period. As a result, it can
be observed from Fig. 6(b) that the information conveyed by
the Bessel beam can still be decoded even if the distance exceeds
the maximum diffraction-free distance of 2.43 m. To conclude,
the spatial domain phase modulation scheme can effectively
enhance the diffraction-free distance of zero-order and higher-
order Bessel beams. The idea underlying this scheme is to apply
phase modulation in the spatial domain, which can be achieved
quite simply by spatial light modulators [40,41] or metasurfaces
[42—-46], and is experimentally achievable with little difficulty.

N7/ N7 N\ /

Fig. 7.  (a) Intensity distribution of the zero-order Bessel beam
in the xoz plane with the main lobe removed when ¢ = 1200 m™".
(b) Propagation intensity distributions at different propagation dis-
tances. (c), (d) Setup is as (a), (b) but for the high-order Bessel beam
(/ =3). (e) Phase distribution corresponding to (d). Panels in (a),
(c) are shown in —2.5mm < x <2.5mm, 0 m < z < 3 m. Panels in
(b), (d), (e) are shown in —2.5 mm < x, y <2.5 mm. The recovered
main lobe is indicated by the white dotted circles.

C. Self-Healing Property

One of the noteworthy characteristics exhibited by diffraction-
free beams is their self-healing capability [47], which can also
be observed in Bessel beams created based on spatial domain
phase modulation. Figures 7(a) and 7(c) illustrate the trans-
verse intensity distributions of the zero-order Bessel beam and
third-order Bessel beam, respectively, propagating along the
z axis when ¢ = 1200 m™~'. Figures 7(b) and 7(d) depict the
corresponding intensity distributions in the (xo0y) plane at
z=0m, z=1m, 2=2m, and z=3m, respectively. The
Bessel beams after removing the main lobe are shown in the
panels with z = 0. After propagating to z = 1 m, the main lobe
appears to be restored by the energy from the side lobes; the
white dashed circles represent the reconstructed main lobe.
Furthermore, the main lobe is still present when it propagates to
2 m. The phase of the higher-order Bessel beams is also restored
during propagation, which can be observed in Fig. 7(e).

As illustrated in Fig. 8, the blue and brown curves correspond
to the normalized energy distribution within the primary lobe
region of the zeroth-order and third-order Bessel beams, respec-
tively, following the removing of the main lobe. E is the main
lobe energy after normalization. It is evident that, during the
initial period following the removal of the main lobe in a Bessel
beam, the energy within the main lobe demonstrates a nearly
linear growth trend as the beam propagates. This supports the
notion that the Bessel beam is undergoing a rapid self-recovery
process. Subsequently, the energy within the Bessel beam’s main
lobe remains above 0.5 for a defined duration, characterizing
the “remain” phase of the Bessel beam. Ultimately, due to the
influence of diffraction effects and surpassing the maximum
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Fig. 8. Normalized main lobe energy of zero-order Bessel beams

(brown line) and third-order Bessel beams (blue line) after obsta-
cle occlusion when ¢ =1200 m™". E is the main lobe energy after
normalization.

non-diffracting distance, the energy within the Bessel beam’s
main lobe diminishes, marking the onset of the “diffract” phase.
Moreover, it is worth mentioning that the self-healing rates of
the zeroth-order and third-order Bessel beams are essentially
equivalent. For enhanced visualization, we have provided
Visualization 1 and Visualization 2 that features animated
depictions of the self-healing processes of the aforementioned
beams [as the beam propagates, the main lobe (red) reappears].

3. CONCLUSION

In summary, we proposed a spatial domain phase modulation
theory to generate long-range non-diffracting Bessel beams
and provided a modified expression for the maximum diffrac-
tion distance. Furthermore, this method is applicable to both
zero-order and higher-order Bessel beams. Simulation results
show that, as the modulation factor increases and the wave
vector angle decreases, the non-diffracting distance of the Bessel
beam is correspondingly increased. Based on the parameter
settings in this work, the diffraction-free distance of the Bessel
beam can be up to 2.39 times the diffraction-free distance
of the original Bessel beam after applying phase modulation
in the spatial domain. In addition, we have also observed a
reduction in the width of the Bessel angle spectrum ring in the
frequency domain. The self-healing property of the Bessel beam
is demonstrated by observing the reconstruction of the main
lobe after removing the main lobe. Our method improves upon
existing methods and is compatible with existing Bessel beam
generation systems, making it highly versatile. Moreover, it is
not limited to the optical waveband, suggesting that our work
may serve as a reliable solution for long-distance wireless optical
communication or energy transmission.
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