
Supplemental Materials of
Observation of π solitons in oscillating waveguide arrays

Antonina A. Arkhipovaa,b,∗, Yiqi Zhangc,∗, Yaroslav V. Kartashova,∗∗, Sergei A. Zhuravitskiia,d, Nikolay N.
Skryabina,d, Ivan V. Dyakonovd, Alexander A. Kalinkina,d, Sergei P. Kulikd, Victor O. Kompanetsa,

Sergey V. Chekalina, Victor N. Zadkova,b

aInstitute of Spectroscopy, Russian Academy of Sciences, Troitsk, Moscow, 108840, Russia
bFaculty of Physics, Higher School of Economics, Moscow, 105066, Russia

cKey Laboratory for Physical Electronics and Devices, Ministry of Education, School of Electronic Science and Engineering,
Xi’an Jiaotong University, Xi’an, 710049, China

dQuantum Technology Centre, Faculty of Physics, M. V. Lomonosov Moscow State University, Moscow, 119991, Russia

S1. Numerical simulations

For numerical simulations of evolution of 1D and 2D π solitons we used dimensionless nonlinear Schrödinger
equation (1) in the main text, in which the transverse coordinates x, y are normalized to the characteristic
scale r0 = 10 µm, the propagation distance z is scaled to the diffraction length kr20 ≈ 1.14 mm, k = 2πn/λ
is the wavenumber in the medium with the background refractive index n (for fused silica n ≈ 1.45) and
λ = 800 nm is the working wavelength. The dimensionless widths of the waveguides are ax = 0.25 and
ay = 0.75 (corresponding to 2.5 and 7.5µm, respectively), and the array depth p = k2r20δn/n is propor-
tional to the refractive index contrast δn in the structure. In accordance with experiments, for 1D arrays
we set p = 4.5 that corresponds to δn ∼ 5.0 × 10−4 and for 2D array we set p = 5 that corresponds to
δn ∼ 5.6× 10−4.

S2. Fs-laser inscription of oscillating waveguide arrays

SSH-like arrays of oscillating waveguides were inscribed in 10 cm-long fused silica glass samples (JGS1)
using focused (with an aspheric lens with NA = 0.3) under the surface at depth 800µm (in the 1D case)
and at depth range 600 − 1000µm (in the 2D case) femtosecond laser pulses at the wavelength 515 nm for
pulse duration 280 fs, repetition rate 1MHz, pulse energy 290 nJ (in the 1D case) or 320 nJ (in the 2D case).
Translation of the sample during the writing process of each waveguide was performed by the high-precision
air-bearing positioner (Aerotech) with identical for all waveguides velocity of 1mm/s. All such waveguides
are elliptical and single-mode, and they exhibit propagation losses not exceeding 0.3 dB/cm at λ = 800 nm.
In all cases for longitudinal periods considered here radiative losses were negligible for oscillation amplitudes
r < 11 µm, but they become pronounced for r ∼ 13 µm. After the waveguide arrays had been inscribed, the
input/output facets of the sample were optically polished, so the sample length was shortened to 99 mm.
Spacings between waveguides in unperturbed arrays (corresponding to r = 0) were 30µm (in the 1D case)
and 32µm (in the 2D case). In the 1D case the waveguides were oscillating along the x axis only (in the
plane of array), while in the 2D case they were oscillating along the diagonal of each unit cell. Longer axes
of elliptical waveguides in the 2D case were oriented along the diagonal of the entire array to achieve more
uniform coupling between waveguides. Longitudinal period of oscillations in the 1D cases was 33mm (three
periods on sample length), while in the 2D case it was 49.5mm (two periods on sample length). Arrays
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with fractional lengths were inscribed in the same 10 cm-long sample, so they began inside the sample. To
enable excitation the left edge waveguide of the arrays was extended by a straight section at the beginning.

S3. Waveguide arrays excitation

In experiments we employed single-waveguide excitations using 280 fs pulses of variable energy E from
1 kHz fs Ti:sapphire laser at 800 nm central wavelength. The input peak power in the waveguide defined as
a ratio of the pulse energy E to the pulse duration τ taking into account the losses for matching with the
focusing lens is evaluated as 2.5 kW for each 1 nJ.

S4. Topological characterization of the system

Topological characterization of Floquet systems, like our z-periodic waveguide arrays, requires introduc-
tion of special invariants, as shown in [1, 2]. Starting from the periodically varying Hamiltonian H(z) of
the system that offers a “stroboscopic” description of the propagation dynamics over a complete longitu-
dinal period Z (here H can be taken in tight-binding approximation for simplicity), one can introduce the
evolution operator

U(Z) = Ze−i
∫ Z
0

H(z)dz = e−iHeffZ ,

where Z is the time-ordering operator, and Heff is the z-independent effective Hamiltonian of the Floquet
system [3]. The π gap invariant wπ can be calculated as

wπ =
i

2π

∫ π

−π

tr
[
(V+

π )−1∂kV+
π

]
dk,

where V(z) = U(z)eiHeffz and V+
π is obtained from

V(Z/2) =
[
V+
π 0
0 V−

π

]
. (S1)

For the 1D case using tight-binding description of z-periodic array, one finds that when wπ = 1 a
topological π mode appears in the spectrum, while when wπ = 0, there are no such modes and the system
is topologically trivial [2]. Similar approach was used for characterization of the 2D Floquet system using
dimensionality reduction to the 1D case by considering equal Bloch momenta kx = ky = k in the tight-
binding description of 2D lattice (see details in [4] reporting on realization of acoustic higher-order Floquet
insulator).

S5. Linear spectra of arrays with oscillating waveguides

Linear spectrum of the the Floquet structures considered here can be obtained numerically from Eq. (2)
in the main text with omitted nonlinear term using “propagation and projection” method. At the first step
we calculate the eigenvalues bj∈[1,N ] and eigenmodes ψin

j∈[1,N ] of the optical potential R(x, y, z = 0) using

plane-wave expansion method or the finite-difference method (here N is the total number of single-mode
waveguides in the structure). Next, we propagate all such “static” eigenmodes ψin

j∈[1,N ] over one period

Z in the oscillating array R(x, y, z) to obtain output distributions ψout
j∈[1,N ] at z = Z. We calculate the

matrix of projections with elements Pmn = ⟨ψin
m, ψ

out
n ⟩, whose eigenvalues are the Floquet exponents eiZbn

allowing to extract bn – quasi-propagation constants of the n-th mode (all such constants form the spectrum,
that includes π mode). For each bn, we find the index ℓn of the maximum element of the corresponding
eigenvector Vn of Pmn. The Floquet eigenmode of R(x, y, z) with any index n can then be constructed as

ψR
n =

∑N
j=1 ψ

in
j Vj(ℓn).
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S6. Iterative calculation of the π solitons

The π solitons bifurcating from the linear π modes, can be obtained by using modification of the iterative
method proposed in [5]. We first propagate the linear π mode ψin

π with a given power U (that will determine
eventually quasi-propagation constant of the nonlinear Floquet state) according to Eq. (1) in the main text
to obtain the dynamical lattice modified by the nonlinearity, i.e. Rπ(x, y, z) = R(x, y, z) + |ψin

π (x, y, z)|2.
Next, we propagate all linear eigenstates ψin

n∈[1,N ] of R that include ψin
π in the modified dynamical lattice

Rπ for a one period Z and obtain corresponding output distributions ψout
n∈[1,N ]. Then, we again calculate the

projection Pmn = ⟨ψin
m, ψ

out
n ⟩, whose eigenvalues are Floquet exponents eiZbn . For each bn, we seek for the

index ℓn of the maximum element of the corresponding eigenvector Vn of Pmn that allows us to construct
the the Floquet eigenmodes ψre

n∈[1,N ] of modified optical structure Rπ : ψre
n =

∑N
j=1 ψ

in
j Vj(ℓn). Further, one

can pick out the modified π state ψre
π from ψre

n∈[1,N ] and normalize it to the given power U . The iterations

are continued until the difference between ψre
π and ψin

π reduces below the required small level.
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