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1. Introduction

The Swift-Hohenberg (SH) equation is a widely applied phase-field model and it was originally derived by Swift and
Hohenberg [24] to describe Rayleigh-Bénard convection. Related applications can be found in complex pattern formation
[3,25], complex fluids and biological tissues [9,10,20]. The SH equation is derived from the following free energy functional

E(u) = / (%(Au)z —|Vul* + F(u)) dx,
Q

where © = [0, Ly] x [0, Ly] (Ly and Ly are two positive constants) is a domain in R2, u is the density field. A classic example
for the SH equation is convection of a thin layer of fluid heated from below for which we can think of the scalar quantity
u as representing the temperature of the fluid in the mid plane. F(u) = %u“ + ]%guz, 0 <€ <1 is a constant with physical
significance and A is the Laplacian operator. The SH equation is given by

SE
ut=—5=—(A2u+2Au+f(u)), (11)
where % denotes the variational derivative, f(u) = F'(u) = u? + (1 — €)u, f’(u) = 3u® + 1 — €. The parameter € measures

how far the temperature is above the minimum temperature required for convection: for € < 0, the heating is too small to
cause convection, while for € > 0, convection occurs. The free energy is nonincreasing in time. Here we study the numerical
scheme of SH equation with periodic boundary condition, that is,
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ux+Ly, y,t) =u®,y,t), ux, y+Ly,t)=uxy,t), VX y)€Q, t>0.

As a nonlinear fourth-order partial differential equation, the SH equation is difficult to be solved analytically. Hence,
various numerical schemes have been proposed in recent years. To design a numerical scheme satisfying energy dissipa-
tion law, the linear terms are generally treated implicitly and the nonlinear terms are treated by different approaches. A
very efficient approach is the convex splitting method [4]. Based on the convex splitting method, Lee presented a non-
iterative scheme for the SH equation with quadratic-cubic nonlinearity without convergence analysis in [14]. Zhang and
Ma constructed and analyzed a large time-stepping scheme for the SH equation in [30]. In [18], the authors proposed a
second-order energy-stable numerical scheme for the SH equation and presented an optimal error estimate for the scheme.
By applying the Crank-Nicolson scheme, a semi-implicit second-order method for the SH equation was given in [8]. The
convex splitting method is unconditionally energy stable and uniquely solvable. However, to solve the fully discrete nonlin-
ear systems, these methods generally require the use of a iteration. Hence, the computational costs are often high and the
implementations are usually complicated. Another efficient approach is the stabilization method. By introducing artificial
stabilization terms, one can alleviate the time step restriction and balance the explicit treatment of the nonlinear term, see
[21]. Efficiency and simplicity are the main advantages of the stabilization method. The operator splitting method is also a
very powerful approach for solving the phase-field models. In [12], based on the operator splitting scheme, the first- and
second-order Fourier spectral methods were presented for the SH equation. In [13], a new conservative SH equation was
introduced and its first-order and second-order mass conservative operator splitting schemes were proposed. In [28], a fast
explicit high-order operator splitting scheme was presented for the SH equation with a nonlocal nonlinearity. There are also
various interesting linear approaches that attract the attention of many scholars, such as the invariant energy quadratization
(IEQ) scheme [29] and the scalar auxiliary variable (SAV) scheme [23]. These approaches provide linear numerical schemes
and satisfy unconditional energy stability based on a modified energy functional.

The main goal of this work is to design an unconditionally energy-stable linear second-order Crank-Nicolson scheme
for the SH equation based on the stabilization method. The unconditional energy stability means the numerical scheme
preserves the energy dissipation law at the discrete level without any constraints on the time step size. The stabilization
method has been applied to a variety of gradient flow systems [7,21,27,18,19,15] and two-phase flow problems [1,22].
We treat the nonlinear term explicitly, while two second-order stabilization terms are added to improve the stability of the
scheme. Similar treatment for the Cahn-Hilliard equation has been presented in [26]. Moreover, we prove rigorously that our
scheme is second-order accurate in time. To obtain the fully discrete scheme, we adopt a spectral-Galerkin approximation
for the spacial variables, some applications of spectral methods can be found in reference [5,6,16]. We also establish error
estimates for the fully discrete scheme. Numerical results are presented to validate our theoretical analysis and show that
the proposed scheme is easy to implement and is energy-stable with different time step sizes, the energy decay is robust
with respect to the stabilization constants.

The rest of the paper is organized as follows. In Section 2, we construct the stabilized linear Crank-Nicolson scheme and
prove our scheme is unconditionally energy-stable. In Section 3, we present the convergence analysis for our scheme, which
shows that the proposed scheme is second-order accurate in time. Moreover, we adopt a spectral-Galerkin approximation for
the spacial variables and establish error estimates for the fully discrete linear Crank-Nicolson scheme. In Section 4, several
numerical experiments are provided to illustrate the accuracy, robustness and energy stability of the proposed scheme.
Finally, some conclusions are given in Section 5.

2. The stabilized linear Crank-Nicolson scheme

We first introduce some notations which will be used in the analysis. We use |- ||;;,p to denote the standard norm of the
Sobolev space W™P(S2). In particular, we use || - ||;» to denote the norm of W%P(€2) = LP(Q); || - lm to denote the norm of
Wm-2(Q) = H™(), and | - || to denote the norm of W%2(2) = L%(2). Let (-, -) represent the L? inner product. Let K be any
positive integer, T be the final time, T = T/K be the time step size, t" =nt (n=0,1,2,---,K) be the time mesh points,
u™ be the numerical approximation of u(t"). The stabilized linear Crank-Nicolson scheme is as follows.

Scheme Given u" and u™~!, we can calculate u™! as follows:

un-H —u" un+1 un un—H u”
U TW a2 () o (T
T 2 2

+ f@2y — ArA@Y —u™ 4+ BT —2u" +u" ) =0, (21)

where A and B are given stabilization constants. As we shall see below, the scheme is energy-stable if A >0 and B > L.

a"1/2 = 3y" — lyn=1 which is a second-order approximation to u(t"*1/2).

The existence and uniqueness of solution of the SH equation are beyond the scope of this paper, the reader may refer to
[17,11]. We assume that the solution u of equation (1.1) exists and satisfies

lull oo, ;11 () T+ NUellpooo,1:H2 () T NUetlloco,1:12(2))

+ ueellpoo0,7; H4 () + NUeet 20,1 12(02)) < Cie (2.2)
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Denote L = 3C£ + (1 — €)|R2|, where |2| is the measure of the domain €. Since
I/ @il =13u? +1—€ll < 13u?] + 11— €]l <3ullfx o 1.1 + (1 —OIRA=L,

we have

If@ = FWDI =1 Ellllu = v < Liu—vll, (2.3)

where £ is a number between u and v.
Theorem 2.1. Under the condition B > L, the scheme (2.1) satisfies the following energy dissipation law

- - L
E™<E"+ (L—B)Ju™" —u")? + (5 - B) ™ —u" N2, forn=1,

where
rn+1 n+1 B L n+1 ny2
E™ =E@W™ )+ st32 u™™" —u™”.
Proof. Taking the inner product of (2.1) with u™! —u", we derive
1 1 N
;”urH-l _ un”2 + E(AZ(urH-l +uM), umtl uy + (A(un—H +uM), umt uy + (f(un-H/Z), umt u™)

—AT(A@T — My, u —y™y 4+ B —2u 4+ u™ ™yt =0. (2.4)

Note that

1 1
5(AZ(un—‘y—'l + ul’l)7 ul’l-‘rl _ un) — _ E(VA(un-‘r] + un), V(ul’H—l _ un))
1
— E(A(un+1 +un)’ A(un+1 _ un))
1
= E(Au”H + Au™, Au™TT — Au™)

1 1
= —|[Au™ 2 — 2| Au?, 2.5
2|I I 2|| I (2.5)

(A(un+1 + un)’ unJrl _ un) _ (V(uﬂ+1 + un)’ v(unJrl _ uﬂ))

= — (VU™ 4 vy, vu™! — vyt

= — (IVu" 2 — [ vut?, (2.6)
B(ul’l+1 _ zul’l + unfl’ uﬂJrl _ un) — B((un+l _ ul’l) _ (uﬂ _ ul’l*l)’ un+1 _ un)
B B _ B _
— §||un+1 _un”2_ E”un_un 1”2_’_5”un+1 _2un+un 1”27 (2.7)
_A.L.(A(un+1 _ un)’ uﬂ+] _ uﬂ) — AT(V(un+l _ uﬂ)7 v(un+] _ un))
= AT||[VW™ —u™)|?. (2.8)
To deal with the nonlinear term, we expand F(u™!) and F(u") at 4"t1/2 as
A N N 1 A
F'™h = F@™ %) 4+ f@™ ™! — ") 4 o frEh ! —amti?, (2.9)
N N N 1 N
F(un) — F(un+]/2) + f(uﬂ+1/2)(un _ uﬂJr]/Z) _"_ Ef/(ggl)(ul'l _ un+]/2)2’ (2'10)

where &I' is a number between u™! and 4"*1/2, £l is a number between u" and 4"*1/2, Subtracting (2.10) from (2.9), we
get

F(uﬂ+]) _ F(un) _ f(an+1/2)(un+1 _ un)

1 N N 1 N

= S/ EDI@™T — a2 — @ =A% - (&) - fE -
1 1

= S EH@T —uH @™ = 20" 4 u"h — (&) - fE W —u"h?

L L
< Z(|un+] _ ul’l|2 + |un+1 _ 2un +un71|2) + Z|ul1 _ uﬂ*llz.
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Taking integration, we obtain
(F™1) — F™) — f@™1/2)@™1 —ym, 1)
< %(uu"“ = U = 20" TP -,
Combining (2.4), (2.5), (2.6), (2.7), (2.8) and (2.11), dropping some nonnegative terms, we have

1 1
SIAWTH2 — AU |2 = (VU — VUt ?) + (F@™ = ™), 1)

B B _ L L _
+ §||un+1 _ un”2 _ Enun _ ul’l 1”2 + Z||un<‘r1 _ un”2 _ Zlnun _un l”2

L L B
<= un+1 —u" 2 =z un+] — " un—l 2
=3l I+ 7)1 + [

L n+1 n2 L n+1 n2 n n—1p,2
< Sl =P 5 = B ) (T =P ot — )

L
=(L-B)u™" —u"? + (5 - B) u" —u" 12,

which implies the desired result provided B> L. O

3. Convergence analysis

(2.11)

Denote e" = u™ — u(t") and t"t1/2 = (t" 4 t"*+1)/2. Let u < v denote there is a positive constant C that is independent
on t and n such that u < Cv. We now derive the error analysis of the proposed scheme, which shows the second-order

convergence in time.

Theorem 3.1. Assuming the analytical solution of (1.1) satisfies the regularity condition (2.2), we have the following error estimate

luk —u@)) <%, 0<k<K.

Proof. At time level t"*1/2, the equation (1.1) becomes

Subtracting (3.1) from (2.1), we have

en+1 —et en+1 el en+1 el R
——+A7 (;Jf ) +2A (;Jf ) + @) = fuE™?) — ATAE™ —e™)

2
+ B —2e" +e" )+ G+ GE =0,

2

where
n+1y _ n
Gq — u(t )T u(t™ _ut(tn+1/2)’
uE™ty + u(t")
2
+ B = 2u) +u@ ).

By applying the Taylor expansion and the regularity condition (2.2), we have

Gl = (A2+2A)< —u(t”“ﬂ)) — ATA@E™Y) — ut™))

IGHI? < C2x?, |IGhI? < (A+ B+ 1)2C2t™,
Taking the inner product of (3.2) with e"*! + ", we obtain
1 1
;(He”“ 12— e + §||A(e"“ +eM|?

— _ (A(en+1 + en)’ en+] + eﬂ) _ (f(ﬁﬂ“rl/l) _ f(u(tﬂJrl/Z))’ en+] + eﬂ)
_ B(en-H — 2" 4 en—l, en+1 + en) _ (Gn, en+1 + en) _ (Gn, en+1 + en)

+ AT(A@E™T! — €M), et o).
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We now estimate each terms at the right of (3.3). Using the Young inequality (u,v) < "‘7||u||2 + ﬁl\v”z and setting
o =2v, we have

1 v
_(A(en-H + en), en+1 + en) < ;”A(en+l + en)”2 4 Z||en-‘r1 + el‘l”Z. (34)
_ (f(ﬁn-‘r]/Z) _ f(u(tn+1/2)), eﬂ+1 + en)
< (f@™2) = FuEt )], e + e

< (L|ﬁn+1/2 _ u(tn+]/2)|’ |en+1 + en|)

3 1 3 1
=L(5e" - 5e””|, le" +e") + L(lZu(" - §u<t"—‘) —u(™12)), " M)

2
<Ede_lopy L—ncgnz + 2 lemt e,
v 2 2 v 2

3 1 _
2 2
Similarly, by applying the Taylor expansion and the regularity condition (2.2), we have
G512 < C2e*.

Thus, we have

. 123, 1 v Rles
_(f(un+1/2) _ f(u(tn+1/2)), en+] +eﬂ) < 7”561”! _ Een—1”2 + §||en+] +eﬂ ”2 + T*T4~ (3.5)

_(Gn, en+] _|_e11) S |(Gn, en+] +el1)|

A

1 v
SIGTI + lle™ e

c2 v
=4 e 2. (3.6)
v 4

IA

IA

_(Gg’ en+1 + el‘l) |(Gg! eTH-] 4 eﬂ)|

< %IIGSIIZ ol e
< %(A+B+1)2Cfr4+%||e”+1 +en|. (3.7)
AT(AE™! — ey e 1oty = AT (e — e, A" + €M)
< %ue”+1 —e"|* + ;AzrznA(e"“ +eM]2. (3.8)

_B(en+] _ zeﬂ + el‘l—l, el’l+1 + en) < Bl(en-‘rl _ el’l _ (eﬂ _ en—l), en+l + en)l

< B(lle" 12 — [le"[I®) + Bl(e" — "1, "t 4 &™)
n+1,2 n,2 an n—132 , Y n+1 n2
= B>+ 1M + —-lle” — e 4 e e, (3.9)
Combining (3.3)-(3.9), we have
1 1 1 Vv
—(lle™ M = fe"1H) + (5 — = — = A2 A +eM)2
T 2 v 2
912 + 4B? 12+4B%
<@+ + @+ =———+ B)lle"|? + ———— "' I* + (1 (7, (3.10)

where

241+ (A+B+1)?
= > .
If v>2 and A is set small enough, it holds that

C1

1—2/v
VA2
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Multiplying (3.10) by T and ignoring some nonnegative terms, summing up for n from 1 to N — 1 and noting that e® =0,
we have

N
leV? <7y " 3Clle"* + C1CITT + [l |,

n=1

where

912 4 4B? L2 + 4B2
C2=max{4v+B,4v+ ;} + B, + }

2v

Applying the discrete Gronwall inequality, we obtain the desired result. O

Next, we adopt a spectral-Galerkin approximation for the spacial variables and establish error estimates for the fully
discrete linear Crank-Nicolson scheme. We denote by Vy the space of polynomials of degree < N in each direction, and for
any ¢ € H™(2), we define a projection Iy : H™(2) — Vy by

(VITINg — @), VYN) =0, (TIng —@,1) =0, VN € Vy. (3.11)
It is well known that the following estimates hold [2]:
lo —Tnglls SN "™@llm, s=0,1, Vo e H"(Q), m>1. (312)

Let L2(Q) = {v € L%(Q) : (v, 1) = 0}. The discrete Laplacian Ay : Vy NL3(Q) — Vy N L3(R) is defined as follows: for any
YyNeVNN L%(Q), let ANyn be the unique solution to

(ANYN, XN) =—(V¥N, VXN), ¥ XN € V. (3.13)

n+1 n
Let W'1+1/2 —AN (w) the fully discrete mixed form of (2.1) is

un+1 _u 1/2 un-H + 1

% ANwiT? oAy [ 5 N fant?) — Aray@it —ul) + Bl —2uly +ul =0
n+1 n

n+1/2 +uy

w =—Ay [N TN

The spectral-Galerkin method for the linear Crank-Nicolson scheme (2.1) reads: Given u?, = Ilnug, find u']\,“ € Vy such
that

utt _yn uttln .
(—” — + (VW2 vy —2 (VTN SV ) + (@ A%y, vvy)

+ ATV —ul), Vvn) + By — 20l +ul vn) =0, Yyy e Vy (3.14)
n+1+
(w n+]/2 N = < . N,VWN), Vi eVy (3.15)

Let us denote

on = Hyut™) —u(™), o) =uf — Hyu(t"),
pnw+1/2 I—INW(trH-]/Z) - W(tn+1/2)’ U;lv+1/2 — WrIzV+1/2 _ HNW(tn-H/Z),
thus,

el =ul —u(t")y = p +of, ef P = w2 _ w2y = pit 2 o2, (3.16)

By the definition of the projection Iy,

(VoR, Vyn) =0, (Vol, /2,

We also denote

VI/IN) =0,V I/IN € VN. (3.17)
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u tn-H —u(th u tn-H u(th
er1+1/2 _ ( )T " _ ut(t"Jrl/Z), Rg+1/2 _ ( )2+ ") _ u(tn+l/2),
RO = r(u(t““) - u(t")), RS = u™) — 2u(e™) +u™),

Rn+1/2 u(tn) u(tn—l) _ u(t"“/z).

By using the Taylor expansion, we can easily derive the following estimates

+1/2 +1/2 1
IRYT2) < ﬂnumnmo rzn T IR < Sl o o) T (318)
1
”Rg+ =< ||Ut||L°°(0 T; LZ(Q))": IRZIN < lueell oo, 7, LZ(Q))T (3.19)
1
IREH) < §||un||Loc(o,T;Lz(Q>)r2- (3.20)

Theorem 3.2. Assuming that u € L2(0, T; H™(2)), u; € L0, T; L2(Q)), us € L°(0, T; H2()) and us; € L°(0, T; L2()), then
we have the following error estimate

flu® —ufl SN +12, 0<n<T/t.

Proof. Let w = —Au, the mixed weak form of (1.1) is
U, va) + (Vw, Vvn) = 2(Vu, Vvn) + (f(u), va) =0, Yvy € Vy, (3.21)
W, ¥n) = (Vu, Vyn), VYN e VN, (3.22)

Subtracting (3.21)-(3.22) from (3.14)-(3.15) at t"t1/2 we get
et _ o 9 1/2 eit! +ell 1/2
<% >+(R”+/ vN) + (V2. VVN)—Z( f Vv )—2(VR§+/ ,Vvy)

F (AR = FE™12)), vy) + ATVl —ell), Vvn) + A(VRIT!, Vuy) + B(et! — 2 + e~ vy)

+ B(R},vN) =0,
n+1 el
(€n+l/2 1/[N):( % VwN>+(VR”H/2 Vn).

Using (3.16) and (3.17), we have

On+1 —oh n+1 _ n+l o
(f w) + (@ )+(R“*”2 V) + (Vo % Vuy) —2< you_ o0 VvN>

2
—2(VRYTV2 vy + (f(“"*”2 F™)),vy) + At (V(og ! — o)), V) + AT(VREH, Vvy)
+ Byt =200 + pi ' vn) + Bof T — 207 + 011 vn) + B(RY. vy) =0, (3.23)
1412 n+1/2 ol 4o 1412
w2 ) + (o2 ) = S VU )+ (VR V). (3.24)

Taking ¥y = ANﬁ in (3.24) and using (3.13) and (3.17), we have

oM+l 4o
<Von+1/2 v 0u > L iANGM 4 om)2 ~|—<A Rn+1/2 An

n+1 n
5 w> . (3.25)

2

n+1 n
Taking vy = 2" in (3.23) and using (3.13) and (3.17), multiplying both sides of the resulting equation by 27, we have

1
o 1% — o)1 + Er||AN(a:7+1 +oM? + A2 V(o — o), V(e + o)

n1/2, n+1/2 n+1/2

— (gt =Pl optT o) — TRV oyt ol — T(ANRY T, Aoy
+2r(VR”+”2 V(o + o) — r(f(”'“/z f(u(t”+‘/2>>,o:,’+‘ +al
— ATX(VRITL, V(o[ + o) — BT (pft! —2p" + pi =1, o ol

—Bt(oM! =207 + o1, o 40" — BT(RE, 0 4011

+a)

+ E(V(al’]*l +a), V(e +oh). (3.26)
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First,

AT V(@M — oM, V(oI + o) = AT (|Vel )2 — Vol |12). (3.27)

Next, we estimate each terms at the right of (3.26),

—(ol = PO o) = 5 ||p“+1—p3||2+§||o;‘“+oz}u2
< (||p"+1 1+ 151 + Tlog 12 + llog 1), (3.28)
—t R o ol < SIRTVAR 4 S on !+ ol
sguR"*”zn +lloy P + 7oy ). (3.29)
—t(ANRETY2 ANt + o) < zlznA RYT2)2 +gr||AN(olT+1+olT)||2, (3.30)
20(VRYTV2 V(oM 4o ))<27|(R"“/2 AN@ + o)
r||R"+”2|| F Tl AN+ o2, (331)

—AT2 (VR V(oM + o) < AT |(RETY, An (ol + o))

1
< 5 ARSI 4 Telant + o (332)

n+1

_ Bt _ Bt
=By =20+ ooy o) = ey =20+ op T IR+ oy + oy

_ Bt
a = oD = (op = o HIP+ oy + o

||(p 5

< Brup"+1 pill> + Blpf — pi 12 + BT oy 2 + Brlloy|?

<2Bt|pptt 1> + 4Bt p]|I* + 2Bt o) I + BT llog 1 II* + BT oy |17 (3.33)
—Btr(oM! =207 + 0771, o/ + 01 <3Bt|lot )2 + 5Bt 07|12 + 2Bt |02 (3.34)

1 1
—BT(RY™, o/ + o) < 5anRz+l I+ EJ.f;r||a[]+1 +ol?
1
= 5 BTIRGI + Brlloy™H1” + Brlloy” (335)

1 1
5(V(a{]+1 +oM, Vel +all)) < 5|(or::+1 + o, AN + o))

1 n
< 4—||a:}+1 + oM+ ZHAN(oﬁ“ +oM|?

1 n
< 5 WOl P+ oy I) + Ayt o). (3:36)
Since
IFENT2) = FuE™ V2| < Ly —u@m/2)
3 1 .
= llSuy — Juy ' —u@ )
3 1 . 3 1 _ 3 1 _
= ll5uk — Uy T Ju) + Su(” h+ SuEh — Sud” b —u@t1/2y)
3 1 3 1 _
=l5e - 5‘?3 U IS = SuE ™ —u™ )
<lspp — —pu i+ ||—or — o+ RS2,
2 2
we have
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— T (FANT?) = Fu@™ V), ol + ol < | FART?) = Faa™ ) ot + ol

_ 3 1 1/2

_rn—pz——p{: 1||||a52“+a;"||+r||—o;‘—2 oM 4ol + TRV lo ! + o)

1 3 1 1/2
s—rn—pu——pu N2+ 5 r||—a — o0 P+ 5 r||R”+/ 2+ 2elopt + o1

2 2 2 2

9 12
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Combining (3.26)—(3.37), we derive
1
o 1% — o)1 + ErnAN(a;“ +oM|? + AT (Vo112 — Va2

1 9 1 B
< ( + 28Dl 1P + (2 + T +H4ABDIA I + (5T + 28005
29 1
+ (57 + SBr)IIGJ,‘+l 1% + T+ 7BT) |0 |% + (7 2BD) oI
1 1
||Rn+1/2” ‘E||ANR”+1/2” + nT”Rn+1/2” +%A2T3I|Rg+l ||2+§Bt||Rz+l ”2

n+1/2 2

1 9
+ 2ruR 12+ IrnAN(o[:“ +oM2.

Choosing n = § such that §5 = ; and using (3.12), (3.18)-(3.20), we have

llog 112 = Nl 1% + %rnAN(og“ +ol 1?4+ ATA(I Vo 2 — Vo 1)
Stlog P+ o 12 + log 1% + 7%+ N7, (3.38)
Summing over n (n=0,1,2,---,k—1) and using the Gréonwall’s inequality, we have
logll S T+ N~
In addition, because [[u(t%) — uk || < | okl + o]l and (3.12), we get
lu@) —uf I ST2+NT. O
4. Numerical experiments

In this section, we give several numerical experiments for the SH equation to verify the accuracy and energy stability of
the proposed scheme. We apply the spectral-Galerkin method for spacial discretization to solve the SH equation with the
periodic boundary condition.

To start the second-order scheme, we use the following first-order scheme to calculate u’,

ul —yo

+ A% 280 + WO+ 1 —eul =o0.
4.1. Accuracy and energy stability

We first test the temporal convergence rate of our scheme with the initial condition

Ty
ux,y) = sm(—) cos( )
on the domain Q = [0, 32] x [O, 32], namely, Ly =Ly, = 32. We take N =256 so that the spacial discretization errors are
negligible compared with the temporal discretization errors. We take € = 0.5, A = 0.5, B = 0.5. There’s nothing special
about this set of parameters, we can choose other parameters, such as € =0.01, A=1 and B =1 and it will provide similar
numerical results. The errors are calculated by comparison with the reference solution with T = 214, The notation u;
denotes the numerical approximate solution with the time step size 7, ii denotes the reference solution. The % error can be
defined as

N—1N-1

luy —anlp = | Y D h2uf; —af;2,

i=0 j=0
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Table 1

The errors, rates of convergence and CPU time at T =1
for the phase variable u with different time step sizes.
The physical parameter is € = 0.5 and the stabilized con-
stant is A= B =0.5.

T I2 error Rate CPU-time (s)
1/8 1.9639e-03 - 0.0312
1/16 4.4382e-04 215 0.0780
1/32 1.1348e-04 197 0.1716
1/64 2.9095e-05 1.96 0.2808
1/128 7.3857e-06 198 0.4524
1/256 1.8613e-06 1.99 1.0140
1/512 4.6697e-07 1.99 2.1996

1/1024 1.1665e-07 2.00 4.0560
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0 "'“l"—:'»'.'f 0 .\"‘f%‘i\m:‘:?:
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Time Time
(a) (b)
Fig. 1. Evolution of the energy with different stabilization constants A and B.
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>
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g
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€3}
0 0
-50 -50
0 40 60 80 100 0 20 40 60 80 100
Time Time
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Fig. 2. Evolution of the energy with A=0, B=0.5, 7=1(a)and A=0.5, B=0.5, t =1 (b).

where h=Ly/N =Ly/N. The temporal convergence rate can be computed by the following formula

rate =

log(llur — utllp/llur/2 — ullp)

log(2)

In Table 1, we show the [2 errors of the phase variable with different time step sizes at T =1 and we can observe that our
scheme gives desired rate of accuracy in time. Fig. 1 (a) shows that the energy decay with respect to different stabilization
constant A. Fig. 1 (b) shows that the energy decay with respect to different stabilization constant B. Fig. 2 shows the
energy evolution with A=0, B=0.5, t =1 and A=0.5, B=0.5, T = 1, which implies that the term —At A@"*! —u") is
necessary for the scheme to be energy-stable. Fig. 3 shows the energy evolution with A=—-1, B=—1,7=1and A= —1,
B =1, T =1. We observe that the energy quickly blows up, which implies that parameters A and B can not be less than
zero. If the exact solution is given by

— sin®¥) cos™Y) exp(
u(x,y,t)—sm(lﬁ)cm(16)exp( t),
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Fig. 3. Evolution of the energy with A=—1,B=-1,t=1(a)and A=-1,B=1,t=1 (b).

(a) (b) (c)

Fig. 4. The profiles at T =1 of the exact solution (a) and the numerical solution (b) and the absolute error between the exact solution and the numerical
solution (c). (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)
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Fig. 5. Evolution of the energy with distinct time step sizes T (a) and the spacial 1> errors at T =1 (b).

and we add an artificial, time-dependent forcing term at the right hand side of (1.1). Profiles at T =1 of the exact solution
and the numerical solution are given in Fig. 4 (a) and Fig. 4 (b), respectively. The profile of absolute error between the exact
solution and the numerical solution is plotted in Fig. 4 (c). Evolution of the energy with distinct time step size t is plotted
in Fig. 5 (a) and spatial I? errors at T =1 are plotted in Fig. 5 (b).

4.2. Phase transition behaviors

We apply our scheme to check the evolution from a randomly perturbed nonequilibrium state to a steady state. The
initial condition is u(x, y) = 0.4 4 rand(x, y), where rand(x, y) is the random number between —0.02 and 0.02 at the grid
points. We set € =0.5, A=B=0.5, N=128, t =1 and T = 100. Fig. 6 shows the time evolution of the phase transition
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Fig. 6. The evolution of the phase transition behavior. Snapshots of the numerical approximation of the phase variable u are taken at t =0, 10, 20, 30, 40,
60, 80, 100. The computational domain is [—30, 30] x [—30, 30]. The parameters are € =0.5, A=B=0.5, N=128, t =1, T =100.
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Fig. 7. Evolution of the energy with the random initial condition.

behavior, which validates that our scheme does lead to the expected states. Fig. 7 shows the energy evolution with the
random initial condition.

5. Conclusions

In the work, we design a stabilized linear Crank-Nicolson scheme for the SH equation. Rigorous results about convergence
and error estimates are derived, which show the second-order convergence in time of our proposed scheme. Numerical tests

show our scheme is energy-stable with a large enough time step size and the energy decay is robust with the stabilization
constants.
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