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schemes satisfy the energy dissipation property. We also derive the error analysis for our schemes. Moreover,
we adopt a spectral-Galerkin approximation for the spatial variables and establish error estimates for the
fully discrete second-order Crank-Nicolson scheme. Numerical results are presented to validate our theoretical
analysis.

1. Introduction

The Swift-Hohenberg (SH) equation is a widely applied phase-field model and it was originally derived by Swift and Hohenberg [20] to describe
Rayleigh-Bénard convection. Related applications can be found in complex pattern formation [2,21], complex fluids and biological tissues [6,7,17].
The SH equation is derived from the following free energy functional

E(u):/<%u(1+A)2u+§u2+F(u)> dx, a1
Q

where Q is a domain in R? (d = 1,2,3), u is the density field, F(u) = i"4 - #uz’ 0 < e <1 is a constant with physical significance and A is the Laplace
operator. The SH equation is given by

_5_5 =—((1 4 A)2u+ pu+ fw)), 42

u =
with the periodic boundary conditions and initial conditions u|,_, = u’, where % denotes the variational derivative, u, = %, fw)=F ) =1’ —(e+pPu.
A classic example for the SH equation is convection of a thin layer of fluid heated from below for which we can think of the scalar quantity u as
representing the temperature of the fluid in the mid plane. The parameter ¢ measures how far the temperature is above the minimum temperature
required for convection: for e <0, the heating is too small to cause convection, while for ¢ > 0, convection occurs. The free energy is nonincreasing
in time:

d—E:/‘S—E@dx:—/(u,)zdxso.
dr oéu ot
Q Q

Here we study the numerical scheme of SH equation with periodic boundary conditions since that is used very frequently in numerical or analytical
works of SH equation. If we choose other physical boundary conditions like Neumann type, the analysis is also true.

As a nonlinear fourth-order partial differential equation, the SH equation is difficult to be solved analytically. Hence, various numerical schemes
have been proposed in recent years. To design a numerical scheme satisfying energy dissipation law, the linear terms are generally treated implicitly
and the nonlinear terms are treated by different approaches. A very efficient approach is the convex splitting method [3]. Based on the convex
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splitting method, Lee presented a non-iterative scheme for the SH equation with quadratic-cubic nonlinearity without convergence analysis in [10].
Zhang and Ma constructed and analyzed a large time-stepping scheme for the SH equation in [29]. In [13], the authors proposed a second-order
energy-stable numerical scheme for the SH equation and presented an optimal error estimate for the scheme. By applying the Crank-Nicolson
scheme, a semi-implicit second-order method for the SH equation was given in [4]. The convex splitting method is unconditionally energy stable
and uniquely solvable. However, to solve the fully discrete nonlinear systems, these methods generally require the use of a iteration. Hence,
the computational costs are often high and the implementations are usually complicated. Another efficient approach is the stabilization method. By
introducing artificial stabilization terms, one can alleviate the time step restriction and balance the explicit treatment of the nonlinear term, see [18].
Efficiency and simplicity are the main advantages of the stabilization method. In [15], the authors proposed a stabilized linear predictor-corrector
scheme for the SH equation, they also proved rigorously that the scheme satisfies the energy dissipation law and is second-order accurate. In [14],
a stabilized linear Crank-Nicolson scheme for the SH equation was proposed and analyzed. The operator splitting method is also a very powerful
approach for solving the phase-field models. In [9], based on the operator splitting scheme, the first- and second-order Fourier spectral methods
were presented for the SH equation. In [5], a new conservative SH equation was introduced and its first-order and second-order mass conservative
operator splitting schemes were proposed. In [23], a fast explicit high-order operator splitting scheme was presented for the SH equation with a
nonlocal nonlinearity. There are also various interesting linear approaches that attract the attention of many scholars, such as invariant energy
quadratization (IEQ) scheme [25] and scalar auxiliary variable (SAV) scheme [19]. These approaches provide linear numerical schemes and satisfy
unconditional energy stability based on a modified energy functional and related applications can be found in [16,28,27,8,22].

In this work, we design and analyze first- and second-order unconditionally energy-stable linear schemes combined with IEQ approach for the
SH equation. Although there exist some works about IEQ type schemes for the SH equation, such as [11,12,24], almost all works only focus on
the unconditional energy stability. In view of the absence of error analysis, the main goal of this paper is to derive the error analysis for the first-
and second-order IEQ schemes for the SH equation. In [26], Yang and Zhang gave the convergence analysis for the IEQ schemes for solving the
Cahn-Hilliard and Allen-Cahn equations with general nonlinear potential, but the authors considered only time discrete schemes in their study and
Remark 4.1 was given in their article to indicate, for the fully discrete IEQ scheme of the Cahn-Hilliard equations, their were not clear on how to
derive the corresponding error analysis using Galerkin type approximations and this was a challenging work. In this work, we adopt a spectral-
Galerkin approximation for the spatial variables and establish error estimates for the fully discrete IEQ scheme, which is not studied in [26]. In
order to get optimal error estimates, some reasonable conditions about continuity and boundedness for the nonlinear terms are given. Unconditional
energy stability and unique solvability are also rigorously proved. Numerical tests are presented to support our theoretical results.

The rest of the paper is organized as follows. In Section 2, we design the first-order linear energy-stable scheme and prove the scheme satisfies the
energy dissipation property. Then we derive the error estimate. In Section 3, we construct the second-order linear energy-stable scheme and prove
the scheme satisfies the energy dissipation property. Then the error estimate is derived. In Section 4, we adopt a spectral-Galerkin approximation
for the spatial variables and establish error estimates for the fully discrete second-order Crank-Nicolson scheme. In Section 5, numerical tests are
provided to illustrate the accuracy and energy stability of the proposed schemes. In the end, some conclusions are presented in Section 6.

We introduce some notations which will be used in the analysis. We denote the spaces L?(Q2) associated with the L? norm |u|l;, :=
( fQ lu(x)|Pdx)!/?. We also introduce the space L®(Q) with [|0]| ;e = sup,cq |v(x)|. W5P(Q) stands for the standard Sobolev spaces equipped with
the standard Sobolev norms || - ||, ,- For p=2, we write H k() for W*2(Q) and the corresponding norm is || - ||;. The space L?(0,T; V) represents the
L? space on the interval (0,T) with values in the function space V. We denote by (-,-) the inner product in L? and || - || the norm in L?. Let x Sy
denote there is a positive constant C that is independent on time step size  and » such that x < Cy. Let K > 0 be any positive integer, T be the final
time and set

t=T/K, t,=nt, for n<K,
let " be the numerical approximation of u(z,).

2. The first-order semi-discrete linear energy-stable scheme

In this section, we develop a first-order semi-discrete time-stepping numerical scheme to solve the SH equation based on the IEQ method. For
this purpose, we introduce following auxiliary variable

W =+/F)+ D,
D is a positive constant to make F(u) + D > 0 and ensure W = v/ F(u) + D is well-defined for any u € R. Since

La_etbo, €+ =<1u2_ﬂ)220

4 2 4 2 2
and F(u) = L _etbpy —%, F(u) is bounded from below. We are able to choose a positive constant D such that D > %. Thus, the energy
functional (1.1) becomes
E(u,W)=/ <%u(1 + A u+ §u2+W2—D> dx. (2.1)
Q
_od __Jw . . .
We denote H(u) =2 = W (u) Jr@iD and we have the following equivalent PDE system:
u, +(1+ A)%u+ pu+ HwW =0, (2.2)
1
W, = 3 H(u)u,, (2.3)

with the periodic boundary conditions and initial conditions

Ulcg =1, Wl—o=VFud)+D.
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The equivalent PDE system still satisfies the unconditional energy stability. By taking the L? inner product of (2.2) with u, and taking the L?
inner product of (2.3) with 2W, summing up the resulting equations, we have the following unconditional energy stability of the equivalent PDE
system (2.2)-(2.3) as

d -
5 W) =—|lul* <0.

We design the first-order semi-discrete scheme based on the backward Euler method as follows,

un+1 _

f”n +(1+ A2 4 ! + Huhw ™! =0, 2.4
wrl_wn = %H(u")(u”“ —u™. (2.5)
Because we tackle the nonlinear coefficient H (u) of the variable W explicitly, we can write the equation (2.5) as follows:
W = GO e, 2.6)
with el=w"- %H (u"yu". In turn, (2.4) can be written as a linear system:

Yt = -G + ef —el, 2.7)

with y* = %, G (" = %H(u")H(u")u"+1 + (1 + A2yt 4 gyt ey = %u", ¢} = H(u")e". Hence, we can get the solution u"t! directly from (2.7). After
we obtain ™!, W"*! is naturally obtained from (2.6). Moreover, we note that

(G(w),v) = %(H(u")u, H@u")v)+ (1 + Au, (1 + A)o) + g(u, v), (2.8)
provided v satisfies the identical boundary conditions as u. Hence, the linear operator G,(-) is symmetric. Furthermore, for each u, we notice that
1
(G1@,w = SIH@ul + 11+ Aull® + guun2 >0, 29

where “=" is valid if and only if u=0.
We now prove the well-posedness of the system (2.4)-(2.5) (or (2.7)) as follows.

Theorem 2.1. The linear system (2.7) can be solved uniquely, and the linear operator is a symmetric positive definite operator.

Proof. From (2.7), it is obvious that «"*! solves the following system with unknown u,

y*u+Gl(u)=eg —ej. (2.10)

Let us denote the above linear system (2.10) by Tu = y.
1. For each u; and u, in H*(Q), applying integration by parts, we obtain

(T(uy),up) = 7" (uy, uy) + (G (uy), up)
S Cilug Mup L + NV NIV |l + [ Aug [ Ausy 1)
S Cyllugllzlluall;- (2.11)

Hence, the boundedness of the bilinear form (T(-),-) is proved.
2. For each u in H%(Q), it is not hard to obtain that

1
(T,wy =y lull® + SIH @l + 11+ Al + gllull2 > Cylull3. (2.12)
Consequently, the coercivity of bilinear form (T(-),-) is proved. Here, C, and C, are positive constants.

In this way, the well-posedness of the system Tu =y is obtained from the Lax-Milgram theorem, that is, the linear system (2.10) has a unique
solution in H?(Q). Moreover, we can easily obtain

(T(uy),up) = (uy, T(uy)). (2.13)

From this, T is symmetric. At the same time, the positive definiteness of T comes from coercivity in (2.12). Hence, T is a symmetric positive definite
operator. []

Theorem 2.2. The scheme (2.4)-(2.5) (or (2.7)) satisfies the discrete energy dissipation law as follows

B _pn S—%Ilu"ﬂ — W2 <0, (2.14)
where
1
EL =W+ 0+ a1 + S - pia. 2.15)
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Proof. First of all, by taking the L? inner product of «"*! — u" with (2.4) and using the following identities

2(x = y,x) = [IxI? = IIylI> + I1x = Il (2.16)
we derive

—% lla™* = |1 =(H @YW —ut) + %(Il(l + AP =1+ A"

+IA+ 2@ =) + §<||u"+1 I = a7 + fla™*t =), (2.17)
Secondly, by taking the L? inner product of 2W"*! with (2.5), we get
w W=+ (W =W =(HW@)W@"™ —u"), W" ). .

” n+1 ”2 ” n”2 ” n+1 n||2 nye, ntl n n+1 (2 18)
n the end, combining (2.17) and (2.18) together, we derive
In th d bining (2.17) and (2.18) h deri

1
W2 = I+ S (1 + 2P = 10+ A )?) + §<||u"+1 112 = 1l 11%)
FIW =W I+ @ =P+ S = =Lt (219)

after deleting some positive terms, we conclude the result (2.14). []

We now give the error analysis for the first-order scheme (2.4)-(2.5). First, we formulate a truncation form for the SH system (2.4)-(2.5) as
follows:

Sl ) 00D | (1t AV ultyy1)+ Pty )+ e )W 1y = G2 (220

W (1) = W () = 3 (0, ) ulty) = ult,) + TG 2.21)
where

G = M () = H@ e DWW (1) + H@E )W (1),

gt W) 2 W)y %H(u(tnﬂ))u,(tnﬂ) - %H(u(tn))wl

To derive the error estimate, we assume that the analytic solution of the system (2.2)-(2.3) satisfies the following regularity conditions
u€ L*®0,T,; H4(Q)), W e L*®(0,T; L*(Q)), (2.22)
u, € L®0,T; L®(Q)), W,,u, € L*(0,T; L*(Q)). (2.23)
We define the error functions for n=0,1,2,---,K as
e =u(t,) —u", " = H(u(t,) — Hu"), e, =W(t,)—W".

Subtracting (2.4)-(2.5) from (2.20)-(2.21), respectively, we get the following error equations for n > 0,

en+l _en

S (L AP 4 pe e W ) + HOE = G (2.24)
1 1

eh! = ey = Seh Uty ) —ut) + S HWHE — e+ 76, (2:25)

Before further investigation, we introduce the following lemma.

Lemma 2.1. [26] Suppose (i) F(x) is uniformly bounded from below: F(x)> —D for any x € R; (ii) F(x) € C3(R); and (iii) there exists a positive constant
D, such that

OgéXM(llu(tn)lle, [IVu@ )l 3, 4"l o) < Dy,
then we have
| H (u(t,)) = Hu"| < Colluc,) —u"|l,
IV H (u(t,)) = VH "I < Do(llut,) = u" | + IV (u(t,) = uM]]),

for n < M, where C, and D, are positive constants dependent on , D, and D.
Using Lemma 2.1, we can easily derive the following estimate for the truncation errors.

Lemma 2.2. Under the regularity conditions (2.22)-(2.23), the truncation errors satisfy

K-1
Y UG P+ D s 7
n=0
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Proof. Since the proof is rather straight forward, we omit the details. []
Let v =max 7 ||u(?)||;» + 1, we now prove the L* stability of solution u".

Lemma 2.3. Under the regularity conditions (2.22)-(2.23), there exists a positive constant r (which is given in the proof), such that when t < r, the numerical
solution u" of (2.20)-(2.21) satisfies the following uniformly boundedness

l"llpo <v, n=0,1,2,--,K.

Proof. We prove this lemma by mathematical induction. Because u® = u(t;), ||u°|| .~ < v holds naturally. Assuming that ||u"||;e < v is true for
0<n< M, we derive ||uM*!||,« <v is also true by the following two steps.
(i) Taking the L?-inner product of (2.24) with et I e, we get

1 1 B
;lle"*l —e"*+ S+ A2 = (1 + A |2 + [I(1 + A)e™ ! —eM|?) + 5(||e3“||2 A

u

Fllert =l 1P) + (€ Wty et — ) + (H@hel! el — ey = (G, el —el). (2.26)

u

Taking the L?-inner product of (2.25) with Ze’lﬂ; ! we have

llefr 17 = Nl I + llef! = e 17 = (e ultyg) = ut,)). €3

—(H@"(e[t —el), ety =22 (Gt et (2.27)
Taking the L?-inner product of (2.24) with 2ze*!, we get

e 1% = llepll” + et — enll> + 27l (1 + At II> + 2plle)™ |17

+20(Ef W (t,p) ™) + 20(H " et = 20(GEF et (2.28)

Combining (2.26)-(2.28), we derive

B
(1+E
1

1 2 B 1 2 1 2,1 1 2 12
+;||€ZJr —eyll +(1+§)||€$Jr —elll? +llefyr ! — e |l +§||(1+A)(€Tr —eMI> + 27l |

1
eI = Nlegll?) + S A+ A)er 12 = 111+ A)eI?) + e 17 = Nl 112 + 221(1 + A)e 12

= — (€ Wty et — e + (et ) — ult,). ) = 22(ey W t,p ). el
—20(H el &™) +20(GIH &) + 20(GF ) + (G e — o). (2.29)

Using Lemma 2.1, 2.2 and regularity conditions (2.22)-(2.23), we estimate each terms on the right hand side of (2.29).

1 1
e W @D ey™ = el < llef W @)l lley™ = el

1
S lleflllleg™ = eyl
1

S 5ol = el + zlle, I
S ol = el + el 2.30)
Since
[IVerll* = |(Vel, Ve)| = |(el Ael)| S llel 1> + [l el >
= Jlell® + (1 + Ael — e[|* < [l + (N1 + Ael || + [le?]])
S el + 11+ A)el 1%,
we have

(el (ty 1) — u(t,)). €D < NIl pallutt,y ) — ue, )l lle |

S zllef Izl

Selle 1 + 7l 12,

S zllefit 117 + 2 (llef, 117 + Ve, 1)

S el P + 2 (et + [ VeIl

S el 1P + z(llelll* + 111+ A1) (2.31)
22)(&y W () €D < 22l W (g D oo Nl

1
Szl eyl

2 12
Sllel I +zlie

S zllegll® +zlleg 1. (2.32)
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2e|(H el e < 27| H@") o e Nl
S zllep et
S zllep 1P + 2l 1% (2.33)
2@ et + (Gt e < 22 (IGE et T+ G ey 1
<t(IGH P+ NG 1+ et 1% + el 1), (2.34)

1 1 1 1 1 1 2 12
(Gt et — e < IGIH |lel*! — el < 2—T||€:,'Jr -+ G (2.35)

Combining (2.30)-(2.35) with (2.29) and dropping some positive terms, we obtain

B 1
(1 e I = el + S A+ e 17 = 11+ A)egl) + Nl 17 = llef, I

2 12 2 2 12 1
S tllegll” + lle 1% + 1L+ A)eyl1* + lleg, 11 + NG + 1GED.
w

Summing up for n from 0 to m (m < M) and using Lemma 2.2, we have

m+1
12, 1 12 12 2 2 2y, 2
el +§||(1+A)€uer 1° + lleg i STZ(lleﬁll + I+ Aey I + llefy, II7) + 2=
n=0

B

1+2
(+2

Applying Gronwall’s inequality, there exist two positive constants r; and r, such that when 7 <r,

e 12 + 1L+ A)e™ |12 + el 1% < rpr. (2.36)
(ii) Since
M+12 M+1)2 M+1 12
e 12 = M+ )12 + [ VeM+ |
M+1)2 M+112
S eMF2 4 aeM+
S eMH2 4111+ A2

< rz'rz,

2

M41)2 — |, M+1 )2 M+1)2 M+1p2
ey I3 = lley ™ HIZ + 11V 1% + laey |
M+12 M2

S lley HIE + llAey ™ |

3

[eMHI2 +]I(1 + A)eM+!12
s "2T2,
we have
M+1 M+1
Nl peo < Hley™ M oo + Nt pre )l po
1 1
M+1y2 ) ,M+1}2
< Colle 12 1M+ 12 + flut pg )l o

< Co/rat+ lutprp Dl peo < v,

1

Ca\/r2

ifr< . Thus the proof is completed by setting r = min{r,

el O
Theorem 2.3. Under the regularity conditions (2.22)-(2.23), the numerical solution u" of (2.4)-(2.5) satisfies the following estimate:

e I+ 11+ &) 1P + e 1P S 2% 0<m< K~ 1. (2:37)
Proof. If z <r, we have ||u"||;~ <v for 0 <n < K. Hence, following the proof of Lemma 2.3, we get the result (2.37). [

3. The second-order semi-discrete linear energy-stable scheme

In this section, we design the second-order linear energy-stable scheme based on the Crank-Nicolson scheme, which reads as follows

n+l _ n n+l n n+1 n n+1 n
Yol A g ey AW 3.1
T 2 2 2
Wrt+1 W' = %H(an+l/2)(un+l _un)’ (3.2)

where it1/2 = %u" - %u"". Thus we can write the equation (3.2) as follows,
Wn+1 — %H(an+l/2)un+l +Ciz’ (3.3)
with ¢ = W”" - %H (@*'/2yu". In this way, (3.1) can be written as linear system as follows

197
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ylumt! = -Gy + ) —cj, 3.9

s 1 [ - 1 - [ 1
with y© = % o =ut, Gy = ZH(u"+I/Z)H(u"+1/2)u"+1 +50+ Ayt 4 fziunﬂ, = %H(u"“ﬂ)c? + EH(M"'H/Z)W" +5(0+ AYu" + gu". Thus, u"+!
can be solved directly from (3.4). After we get u"+!, W"*! is naturally obtained in (3.3). Moreover, we note that

(63,00 = FCHG Py, H@20)+ 201+ 2 1+ 200+ S o),
if v satisfies the identical boundary conditions as u. Hence, the linear operator G;(-) is symmetric. Furthermore, for each u, we note that
(G300 = TNH@ 2P + 211+ Ayl + P 2 0,

where “=" is valid if and only if u=0.

Remark 3.1. The second-order scheme (3.1)-(3.2) involves three time levels and (u"*', W"*!) can be updated after we obtain the initial values (u°, W°) and
(', W), Obviously, u®, W?) is given by the initial conditions. To get the second-order time accuracy of the scheme, we can calculate (', W) by using the
first-order scheme (3.5)-(3.6)

ﬁn+l —u" ~
+(+ A)Zan+1 +ﬂﬁ"+1 +H(un)WVl+1 =0, (3.5)
T
Wn+1 —_Wh= %H(un)(anH _ un)’ (3.6)

then apply the following corrector scheme to get (u', W),

1_,0 1 0 1 0 1 0
o g@ )W At et 3.7)
z 2 2 2
Wl w0 = %H(ﬁl)(u' —), 3.8)
with
H@) = @

VF@HY+D

Theorem 3.1. The linear system (3.4) can be solved uniquely, and the linear operator is a symmetric positive definite operator.
Proof. The proof is available in the same manner as the proof of Theorem 2.1 and for brevity, we omit the details. []

Theorem 3.2. The scheme (3.1)-(3.2) (or (3.4)) satisfies the discrete energy dissipation law as follows
n n 1 n Hn
EY —Egy ==l H_w? <o, (3.9
where

1 B
Egy =W + S+ A2 + S|u”|? - DI.

Proof. First of all, taking the L? inner product of u"+! — " with (3.1), we derive
_%”ur&l _ un”2 — <H(ﬁn+1/2)w’un+l _ un) + % (”(1 + A)urH-l ”2 —lla+ A)unllz)
2 - e, (3.10)
Secondly, taking the L? inner product of W”+! + W" with (3.2), we derive
W2 = w = <%H(ﬁn+l/2)(un+] i Wn) ) (3.11)
In the end, combining (3.10) and (3.11), we derive
W2 = WP + % (L + A 12 = L+ A7) + g(llu"“ I? = "I = —% ™ = w12,
which implies that the desired result (3.9) is hold. This completes the proof. []

We now give the error analysis for the second-order scheme (3.1)-(3.2). We first formulate a truncation form for the SH system (3.1)-(3.2) as
follows:

M) ) 1 (1 M2 MBI g D g, (3.12)
W (1) = W () = 3 H @ty ) ultyr) = ult,) + 76, (3.13)

where
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Gy M M) e a0 s,

+ ﬂw = Pultyyipn) + H(“(tn+1/2))w = H( 41 p2))W W41 /2)5
G2 H ) 2D oyt Lttt

L H Gty o

We also define

1/2 3 1
RVt ) - (514(1") - Eu(t,,_l)).

To derive the error estimate, we assume that the analytic solution of the system (2.2)-(2.3) satisfies the following regularity conditions

u€ L®0,T; HH(Q)), W € L*(0,T; L¥(Q)), u, € L¥(0,T; L¥(RQ)),
W, € L*(0,T; L*(Q)), u, € L*(0,T; HY(Q)), u,,, W,, € L*(0,T; L*(Q)).

Using Lemma 2.1, we can easily derive the following estimate for the truncation errors.

Lemma 3.1. Under the regularity conditions (3.14)-(3.15), the truncation errors satisfy

K-1
1/2 1/2 1/2 1/2
© Y AG IR+ 1G IR+ IR + VR 5 24,
n=0

Proof. Since the proof is rather straight forward, we omit the details. [

We define the error function for n=0,1,2,---,K —1 as

& = Hultyy ) — H@12),

Subtracting (3.1)-(3.2) from (3.12)-(3.13), respectively, we get the following error equations for n > 0,

en+1 —en €"+1 + el €"+1 + et W(I )+ W(I ) e"+1 + "
u u +(1 +A)2 u u +ﬂ u u +e~rll;—1/2 n+1 n +H(an+l/2) w w — Gs+1/2’

T 2 2 2 2

n+1/2

w

1 nt1/2
el _on __e~"+/

1., .
Wy =58y ) —u) + S H@ e — o) + 76

Let v =maxy<r |lu(?)||;~ + 1, we now prove the L* stability of solution u".

(3.14)
(3.15)

(3.16)

(3.17)

Lemma 3.2. Under the regularity conditions (3.14)-(3.15), there exists a positive constant # (which is given in the proof), such that when t < ?, the numerical

solution u" of (3.1)-(3.2) satisfies the following uniformly boundedness

lu"llpo <v, n=0,1,2,--,K.

Proof. We prove this lemma by mathematical induction. Because u® = u(t;), ||u’|| .~ < v holds naturally. Assuming that ||u"||;« < v is true for

0<n< M, we derive |[uM*!||,;« < v is also true by the following two steps.
(i) Taking the L?-inner product of (3.16) with e;’“ —ell, we get

I I w12 Wt ) + W)
~llel = fIP + S I0+ Mel I = I+ AP + (eﬁj‘/ ——at e

u

u u

en+1 +en ﬁ
~ w w +1/2
+ (H(u"“”)T,e"+1 —e") + 5(||ez+l 12 = llel11?) = (G /7 et — o).

Taking the L?-inner product of (3.17) with e'V’;; Ly e’;V, we have

12 2 1 w412 1
e 1P = ey, 12 = 5@ 2 tty ) = ut, . +py)

n+1/2

- %(H(a”*lﬂ)(e;“ —el) et e, =Gy T et + el

Taking the L?-inner product of (3.16) with (el + "), we get

Wi +Wit,)
el I = e+ St + A)elH + eI +7 (5'31”7"“) SR +e">

2 u u

en+l e
~n+1/2\ W W n+l n 1 n+1 nn2 _ n+1/2 p4l n
+‘r<H(u /)?,eu +eu>+§rﬂlleu +e,|I” =7(G, e +ey).
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Combining (3.18)-(3.20) and dropping some positive terms, we derive

~n+1/2 W(tn+l) + W(tn) ntl _
=-|ey T—————1¢,

B 1
(1+ 5)(||e3“ 1% = lle™1*) + S+ A2 =11+ A)e[1?)
1
+ et 1P = llep, 117 + lley*! —eP L r/f||e"+1+e||2

5 >+(G"+l/2 el et = (é”“/z(u(z,,+1)—u(z,,)),e;;‘—e';V)

W)+ W(t el 4ot
i (Gn+l/2’ ;;1 e’v'V)_f<ér1'1+l/2 (n+12 ("),e"j+' —eﬁ)—‘r(H(ﬁ"H/z) w 5 W’EZH —e

n+l/2 +1
+7(G, ey

—e). (3.21)

Using Lemma 2.1 and regularity conditions (3.14)-(3.15), we estimate each terms on the right hand side of (3.21).

<

<

N

N

A

N

A

N

IA

A

~

N

N

N

A I/\

Z/\

N

N

<

/40 + Wit
'<é;;—l/2 ( r1+l)2 ( ’l)’e2+l _ es)

||~n+1/2||(I|W(tn+1)IILm FIW )l — e
”~n+1/2””ez+1 — e

Sl = el + el R

% ||ez+l _ eZ||2 + Uty ) - @22

1 3 1
o lert = el lluttyg o) = Gu(t,) = Sutt,_)

3 1 3 n 1 n—1y112
+(§u(tn)—§u(tn,1))—(§u ¢ Ol

1 12,3 1 .
soller™ =il + 2l Ry 4 Sen - e

1 1/2
et = el + 20l R 4 20 S - Zet

Sl = el + 26l R 4 9l + el (3.22)

1 ~1 - n
S 1@ Wl —utt ).+ )

~n+1 2 1
152 palluty ) — ut) |l + el |

n+1/2 1
2N pallel + ey

1 2 ~n+1/2 2
el + e 12 + e

112 2 ~n+1/2 2 +1/2
lle 12 +2liel, 17 + 2 2 + ves 2%

1112 n+1/2,,2 n+1/2 2 2
2l 12 + e, 12+ IR 212 + VR 12 + et

e
+l1eM R+ Ve + (Ve %)

w1 2 + 11, 12+ IR + VR 4 et

e+ 1+ A)e |2 + (1 + A)e 2. (3.23)

Wit + Wit
- <é.nH+1/2 (n+l)2 (")’es+l+es>

1/2
N2 AW )l s + IW @) ) el + el

~n+1/2 1
e et + e

s1+1/2)2 n+l o n)2
rlley, IT +Tlle, T +eyll

1/2 —
eI R+ (el I + Nl + e~ 1), 3.24)
n+1 n
+eh)
(lq(a"“ﬂ)i2 ol + eg>

~n+1/2 1 1
Tl H@ )l + e llllest + el

rlleft! + e, 117 + zllel! + el

2
ol

(el 17 + llefy, 117 + et 117 + lle? 1) (3.25)

2
wll
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(G P e el )+ (G et 4 e
n+1/2 1 n+1/2 1
<SG e + e L+ 1GE 2 e+ + el

+1/2,2 +1/2,,2 1 2 1 2
STUGE IR+ 16T 1P + et + e, 12 + ller*! + el

1/2 1/2
STUGE IR+ 1G22 + 1 12 + Nlef, 17 + e 1% + 11l 1. (3.26)
1/2 1/2 1 1/2
Gy 2 = el <G e =il s S-llep™! = enllP + 26y P, (3.27)
Combining (3.22)-(3.27) with (3.21), we obtain
B 1
(1 e 2 = el + S A+ e 17 =11+ A)eglI) + Nl 17 = llef, I

n+1/2 2 n+1/2 2 n+1/2,2 n+1/2 2 12 2 —12
SR HIVRT PG, IR+ 16T 71 + ey 12 + Nl + e~
12 2 2 -1)12
+ eyt 1%+ llep 17 + 1A+ A)el I + (1 + A)e ™ [I%).
Summing up » from 0 to m (m < M) and using Lemma 3.1, we have
ﬂ 1 m+1
12 12 12 2 2 2 4
(1+§)|Ieu’"Jr [ +§|I(1+A)e;"+ I° + 1l STZ(IIeﬁII + 1A+ Ae 17+ llef, 119 + 27
n=0
Applying Gronwall’s inequality, there exist two positive constants #; and 7, such that when r <7,
12 12 12 <p 4
el 1% + 11+ el 1% + llept I1* 5 Ay7.
(ii) Since
M+1)2 M+1)2 M+12
ey 1T =lley 1% + Ve, i
Slel 117 + llae) 12
M+12 M+1)2
Slle, 7+ I+ Ae, |
§f2T4,
M+12 M+12 M+12 M+12
ey IS =lley 11 + 1Ve, ™ HI1% + lae) |
M+1)2 M+12
Slle 17+ lae, |l
Slley™ 1P+ 11+ A)ey 12
Sf2T4,
we have
M+1 M+1
Nl peo <lley ™l poo + Mt pr DIl oo
1 1
M+1) 2 ,M+1 2
<ColleM 12 leM 1|2 + flu(t gyl oo

<Co VAt + llult yry )l oo < v,

1

. Thus the proof is completed by setting r = min{#?,,
Co Vi CaVi,

Theorem 3.3. Under the regularity conditions (3.14)-(3.15), the numerical solution u" of (3.1)-(3.2) satisfies the following estimate:
e 112 + 111+ Meg* 1P + llep 17 S 72, 0<m<K - 1. (3.28)
Proof. If r <7, we have ||u"||;~ <v for 0 <n < K. Hence, following the proof of Lemma 3.2, we get the result (3.28). []

4. The fully discrete scheme and its error analysis

In this section, we adopt a spectral-Galerkin approximation for the spatial variables and establish error estimates for the fully discrete scheme.
Since the proof for the first-order scheme is essentially the same as for the second-order scheme, for the sake of brevity, we shall provide the details
only for the second-order Crank-Nicolson scheme. Let & = (1 + A)u, the system (2.2)-(2.3) can be rewritten as

U+ (1+ A+ pu+ Hu)W =0, 4.1)
E=(1+A)u, (4.2)
W, =2 G, “.3)

with u(ty) = u0, &(t) = &% := (1 + A)u® and W (zp) = WO := v/ F(®) + D. The weak form of the above system (4.1)-(4.3) is
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(W) + (Ew) = (VE YY) + fuy) + (HWwW ,y)=0, Vy € H'(Q) (4.4)
(& v)=w,v)—(Vu, Vo), Vve H'(Q) (4.5)
0.0 = %(H(u)u,,C), V¢ e LX(Q). (4.6)

We denote by V the space of polynomials of degree < N in each direction, and for any ¢ € H¥(Q), we define a projection [Ty, : H¥(Q) - V by

IIye—@,1)=0, (VIye — ), Vy)=0, Vy € Vy. 4.7)
It is well known that the following estimate holds [1]:
lo—Txoll, S N*¥lloll s=0.1, Vo€ H*Q), k> 1. (4.8)

Let L3(Q) = {v e LA(Q) : (v,1)=0}. The discrete Laplacian Ay : Vy N Ly = Vyy n L2 is defined as follows: for any yy € Vy n L, let Ayyy be the
unique solution to

Anwn. ) =—(Vyn. Vi), YV y €Vy. (4.9)
The fully discrete form of (4.1)-(4.3) is

n+l _ n n+1 n n+1 n n+1 n
u u &V ey 'l +u Wi+ Wy

N N N N ~n+1/2 N

_ 1+A H — =0, 4.10
. +(1+Ay) +p 2 +H(iy ) ) ( )
Ev =0+ ANy, (4.11)

Wn+1 —_wn W
v TN Ly TN (4.12)

2 N T

where ﬁ'l'\;'l/ 2_ % N~ %u’]v‘l. The spectral-Galerkin method for the scheme (4.10)-(4.12) reads: given ”(1)\/ =TIyuf, E% =TIy¢&% and W]S =TI, WY, find

'l € V) such that

Wit — el en Vet +ven Wit
R A R U A U

Wn+l + W
+<H(ﬁ';l/2)¥,w =0, VyeVy (4.13)
(&> 0) =Wy, v) = (Vuly, Vo), Vv eVy, (4.14)
Wn+l —Wwnr 1 un+1 —
<%7§>=§ H(ﬁ';\;rl/z)%,é’ , V{eVy. (4.15)

Remark 4.1. Since the above scheme involves three time levels, we need to apply the spectral-Galerkin method to the initialization step (3.5)-(3.8) to calculate
(u}y. €\ W) and then start the above scheme.

We now give the following energy decreasing property of the fully discrete scheme.

Theorem 4.1. The fully scheme (4.10)-(4.12) satisfies the discrete energy dissipation law as follows
- n 1 ﬂ n
€CJ;J—5CN=—;IIuN“ —u"|I* <0, (4.16)

where

! p
Ebn = IWRIE+ S UK+ 5ty 12 - DI,

Proof. Let y = u'J'\;'l —u% in (4.13), we have

Lot 2, 1 +1 1 +1 +1
;||u" —uyll +§(.§” + & uy —u'}v)—z(Vf'& + VEL, VUl = vuy)

N N
1,

+ g(uu;*\;f' 112 = N, 1) + 5(H(u;’v“ﬂ)(w[g+1 + WU — ) = 0. (4.17)
From (4.14), we naturally have

@ —gn v =i =y v) — (Vi = Vil Vo). (4.18)
Taking v = (§"N+1 +&R)/2 in (4.18), we obtain

1 1 1

SUERTIZ = NER I = S =y a1+ E3) = S (Vury ! =V, VER 4+ V). (4.19)

Taking ¢ = T(WJG-H + W) in (4.15), we have
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1 _n+1/2
WP = IWR 1P = SCH @ =) Wi + W),
Combining (4.17), (4.19) and (4.20), we get
1 1 B
. gt = un 1%+ E(IIéf\,“ I = llen 1% + E(Ilu'ﬁ'1 17 = g 1%) + AW > = w13 = 0,
which implies the desired result. []
In this work, we assume that the initial data satisfies the following stability:
1 B
o =IWRIP+ SIE I + Sy 1P = Dle| < €.

We define the discrete H2-norm as

o Nz = NN+ IVEL I+ AN DL V & EViy.

To derive the error estimate, we first give the H2-boundedness for the numerical solution.
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(4.20)

(4.21)

Lemma 4.1. Assuming that “rz’v is the solution of the scheme (4.10)-(4.12), there is a constant C > 0 such that

Iyl < C.
Proof. From Theorem 4.1 and (4.21), we know that there is constant C > 0 such that
L+ e + L p < 0<nsk
2 TNE g ReN T Ty BN 2 B e
hence, we have
iyl <C, ligyll<C.
By applying (4.14), we have
(Vuly, Vuly) = (W, uy) — (G iy,
(Vuy,, VANuY) = Wy, Ayuy) — (s Aniy).
Hence, it holds that
2 2
IVa 117 < Ml 117 + Ny IER T < Cs
AN U < Ny Ayt I+ 1E Ay iy
lAyuyll < Wy T+ 11T < C.

From (4.23), (4.24) and (4.25), we can deduce (4.22). []

Let us denote
o, 1=uy —Tyu(t,), py=Tyu,)—u,),

of i=&n —Ty&,), ol =TIyE,) - &),

ol =W —TNW(,), oy =TIyW(t,) - W),

thus,
ey t=uy —u(t,) =uy — Myu(t,) +Tyu,) —ut,) = o, + p,

e; 1=E&y — 80, =&y — N E@,) +INEQ,) — £@,) = 07 + 0}

ey =Wy —Wt,)=Wy -TIyW,)+TIyW,) -W,) =0y, +py,.
By the definition of the projection ITy,, we have

(Vo V)= (VoL Vy) =0, Yy eVy.

We also denote

u(t,y ) —u(t,) S +E@,)

T e e ) T = T ),
u(t,, ) +ut,) W) -W@,)

T;+1/2 = % —u(ty12), T4n+1/2 = % —Wiltyi1/2)
W, .)+Wi(,) 3 1

T5n+1/2 _ % — W (tpy12): T6n+1/2 = Zu(t”) - Eu(tn_l) = U(tyy1/2)-
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By using the Taylor expansion, we can easily derive the following estimates:

+1/2 +1/2 1
Iy 2 < Sl orizan® 113771 < 16w ia ™ (4.26)
1/2 1 1/2
;" 2l < lully2sori2@) e 1T P 4”W”VV3’°°(0,T;L2(Q))TZ’ (4.27)
n+1/2 9 2 (4.28)

T2 < L I

8 IW w2 o.1:22(0) 75 < glullw2e0r 297"

Theorem 4.2. Assuming that u € W3*(0,T; H*(Q)), £ € W>*(0,T; H***(Q)) and W € W3*(0,T; H*(Q)), then we have the following error estimate
0<n<K.

—k 2
[lu(z,) — u’]’\/“ SN+ (”unwlm(o,T;Hk(g)) + ||§”W2v°°((),T;H"+2(Q)) + ||W||W3.eo(0,T;Hk(Q)))T s

Proof. Subtracting (4.4)-(4.6) from (4.13)-(4.15) at 7, /2> We get

o.nJrl —o" pn+l pn O-'l+| + 6" pn+1 +pn
( u - u’w>+< u - +(Tn+l/2’w)+ ¢ 5 f’w + ¢ 5 f’w

Vot + Vol o™l 4 o"
+ (Tn+l/2 W) — ( £ 5 f ) (VTn+l/2 VW)“’ﬂ( 5 u ’II/)

pz+l +ﬂ , . Wn+1 + W
+ <f > + B ) + <H<a N = H Oty )W (g 2)ow | =0, (4.29)
(@2,0) = (op, ) + (Vall, Vo) = (], v) = (L, ), (4.30)
£n+1 —en 1 n+l _ u
<% c) + @20 = L H@D 2 H i il . ). (4.31)
Arranging (4.29), we have
o™l — gn o‘?“ +o VO'Z;H'I + Vt)"f ol 45"
. oy )+ -y |-\ —F +p —,l//
T 2 2 2
n+1
p::+1 - pn - p " + p n n
= - (f ) @y - <% - @)+ (VT vy
pg+1 +/? R } Wn+1 +Wn
-p <T"’> AT ) — (H(u”; B~ Hulty 1 )W s ). - (4.32)

From (4.30), we have

ot _oh ot _ gn Vo'tl — yeh
<§ f’v>_<u u’v>+ u “ gy
T T T
+1 n
pn+1 —p" p” —p
:< A %) (4.33)
T T

Taking y = (¢"*! — 6")/7 in (4.32), we get

(e et oy (Ve £ VoL Voytt - Vo,
2 ’ T 2 ’ T
ﬂ
+5 —lle™ 1> = lIs" 1%
1 1 n+1 n 1
Puon —on\ T2 o, o, pe TP o -0,
T 1 ’ T 2 T
o B (g SV (B o e
S B T2 0

n+1 n

u ot — gn u wrtl L wn ot —o!
iy <T +1/2 %) _ (H(ﬁ;l/z)% = H(utyy )W (1) - (4.34)

n+l _ -n
%y Oy

3 B

Taking v = (ag*l +0})/2 in (4.33), we have

n+l _ _n _ntl n 1 n+1 n n+l1 n
o; o 0, to; ~ ol —gh 0.7 to; N Vo's+l - Vo' VO'g +V<ré
T ’ 2 T ’ 2 T ’ 2

+1 +1 +1
pzﬂ o O'g + 0' p; pg ag +ol
_ T _ = . (4.35)
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Taking ¢ = (5;';1 +¢€};,)/2 in (4.31), we obtain

Sl P = e 1) = - <T4"“/2, @)

" % < (~n+1/2)¥ — H(Wtyy1 )yt 2)- M) (4.36)

Combining (4.34), (4.35) and (4.36), we have

2
B i nr1y2 a2y o L ontl 2 n2y o Lt )2 n o2
+§(||6,, 1= =1e; 1) + Z(llﬂf " =llez 115 + E(Hew 1= = llep, 119

+ oy
- _ ot oy oyt — oy _ 12 oyt —op pg +0; opt! —op
T ’ T 1 ? T 2 ’ T
1 1 1
_{ 12 out —‘73 VTn+l/2 Vo, = Vo, ) P+ ot —oy

2 ’ T 2 7 T
ﬂ
M

n+l _ Wﬂ+] + W n+l _ -n

172 % _n+1/2 9 9

-p <T3"+ /2 Tu  Tu ) <H(u']’\‘;' / )u _ H(u(tn+l/2))W(tn+1/2)’ %
n
%

n+l _ -n
%y Oy

2

+1 n+l n+1 n n+1 n n+1 n
(e %t Pe TP % T\ ([ Lanp fw tew
T ’ 2 T ? 2 4 ’ 2

1 n n+l
1 y wt — el e
+3 (H(u';;“ Y 2)% = Huty1 )ty (U1 2)- % . (4.37)

Now, we estimate each term at the right hand side of (4.37).

ntl _ on gntl _ on PSR 2
(B T o) oy L2 o -
" - 16 T
O.n+1 —o" O.n+1 —o" 2
~ Tanrl/z’u S4||T]n+l/2”2_|_i u u
; 16 T
n+l1 n %
4 1 O-u _O-“
| | 4.39
=< 144” ”W}oo(OTHk(Q)) 16‘ T ( |
pn+l pﬂ ot —gn ol —gn 2
u’u < CN_2k+ i u u , (440)
3 z 16 T
2
oM+l —gn 1 o
Y S aVE S R IPT/ MtV I I et )
< . el B R
n+l1 n |2
Ap L% "%
Ilillwom(ormﬂ(g)) " 16 T ’ -
1 1
(vrgon o5 >S (srn. %)
- T
1_n|?
1 6"+ —0
<4AT P = et
= ” 2 ” 16 T
1 o_n+1 — o 2
P e “
IIEIIsz(OTHM(Q)) * 16 T ’ -
n+1 n n+1 n n+l n %
+p, 0,7 —o A
p( BTl T T ) g oy LY T o
2 Z 16 T
125"‘“—6" 12 1 ol _gn 2
—p( 2 o) capyr ey L 2 0
y - 16 T
n+l 2
Ay L)% T %
||u”W2°°(OTH"(Q)) * 16 T ’ -
1 ntl | I 2 ntl , n|?
Al men % TN LA men) 0% o
T 2 8 ’ 2
SCNT 4 [lof 1P + et o
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n+l _ n 2
Pe P

T

n+1 n
[75 + 6g

2
* 2

IA
| —

n+1 n n+1 n
Pe —Pe 0 tO;
T ’ 2

—2k 12 2
SCNTF o 17 + llof I,

1 1
(12 ey tey <Ly g L ey tey
4 ? 2 - 274 2 2
1 12 2
< mll ”wm(()THk(g)) + Z(HE';';,' 1<+ lley, 119).

; e+’ 5 2
Since F(u) > -, wecan choose D > 1€+ H) such that \/F(u) + D > ¢ + f. Thus, we have

S
VFw)+D

—(II IILm(OT 2@)

| H @]l = H |Iu —(e+ Pull

+(e+ ﬂ)”“”Lw(o,T;LZ(Q))) <C.
Using (4.22), we have

2 _ —1

—n+1/2 3 1
iy 21 = |30t = 3o | < S+ Ja < .

we also have
IH@ ) < —— o ||<‘"+”2 e+ Pyl < - (||~”+‘/2||*+<e+ﬂ)|r”+'/2||)sc.
Applying Lemma 2.1, we have

IH@) ~ Huty o)

Ollun+l/

3, 1.4 (3 1 3 1
Suly - suly! - (zu(t,,) - 5u(z,,,l)) + (Eu(t,,) - §u(z,,,l)) — Uty 2)

—ultyy12)ll

|
o

n+1/2

Co

2 u’I'v—u(t,,)) E(u';\;l —u(t, )+ T

172
Collu —u)ll + 5 Collu" -, 1)||+C0||T"+/ Il

< Ao+ A0+ o~ I+ 1122~ 1)+ Cllelly2en o.7,20) 7
Since
+1
Wit + Wy
2
+1
(~n+|/2)Wﬂ + Wy —H@? W, )+ W,

2 N 2

W(t,,+1)2+ wit,) — Hulty12) W(t,,+1)2+ wit,)

w = H(u(tyy1 )W (111 12)

wr1jp EFL €D, . Wt,)+W(t,)
T (@) B o) )

H@y =2 = H@lt 1 )W (1 2)
H@')
+ H(ultyy1 )

+ H(u(t, )T,

we have

2

il 1
<H(~n+l/2) ;’5 "’f+ 1-_ "3)

n Wty + W(t,) o't —o" i ol —gn
+((H(aN+ )~ H(u(ty0)) Co) + Wa) - ) (H(u(t,,+./2>>T e T)

Wn+1 + n n+1 _ o'
(H(’Z;;\;rl/z)u = H(utyy1 )W (t12)- %

2
= L+ L+

Using (4.49)-(4.52), we have the following estimates:

(4.46)

(4.47)

(4.48)

(4.49)

(4.50)

(4.51)

(4.52)

(4.53)
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2
+1+ €y +i 0'"“—0'2
2 16

u

1 < 8IH@ )P -

n+l _ -n 2
u Oy

1
< Clleg 1P+ llefy 1) + ¢

2
o’"+] —o"
u u

1
16

Wi

T

L <8IHGE@) - Hu

n+l

UM

T

< Cllegll+ A0+ 1loy™ 1||+||ﬂn 1||+||u||W2°o(0TL2(Q))T) + 16
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Combining (4.53)-(4.56), we get
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Using (4.49)-(4.52), we have the following estimates:
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Combining (4.58)-(4.62), we get
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Substituting (4.38)-(4.47), (4.57) and (4.63) into (4.37), we get
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Multiplying (4.64) by 7, dropping some nonnegative terms, summing » from 0 to / (0 </< K — 1), we get
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Applying the same approach to the initialization step (3.5)-(3.8) and noting that ¢ = ag = o%, =0, we have
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Combining (4.65) and (4.66) and using the discrete Gronwall’s inequality, we obtain
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In addition, because [lu}, — u(t)|| < |lo’ || + || o]l and (4.8), we get the desired result. []

5. Numerical experiments

(4.60)

(4.61)

(4.62)

(4.63)

(4.64)

(4.65)

(4.66)

In this section, we give several numerical experiments for the SH equation to verify the accuracy and energy stability of the proposed schemes.

5.1. Temporal accuracy test

We first test the convergence rates of the two proposed schemes. The parameter is ¢ = 0.025, f§ =1, D = 50. Because it is difficult to obtain the

analytical solution for SH equation, we add a suitable source term such that the exact solution is

. 2r 2r
u(x, y,1) = cos(t) sin( o x) cos( o 9).

Set the computational domain to be Q = [0, 128] x [0, 128]. We set N =256 so that the spatial discretization errors are negligible compared with the
time discretization errors. In Table 1, we show the L? errors of the phase variable between the analytical solution and numerical solution with
different time step sizes at T = 10. From Table 1, we can observe that the two schemes give desired orders of accuracy in time. The spatial L? errors

are plotted in Fig. 1.
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Table 1
The errors and order of convergence at T = 10 for the phase variable u that are computed by the first-order
scheme and Crank-Nicolson scheme, using different time step sizes and N =256. The physical parameter is

e =0.025.
T L? error order T L? error order
first-order scheme 1/2 9.9620e-01 - Crank-Nicolson scheme 1/2 1.8092e-01 -
1/4 8.4500e-01 0.24 1/4 2.6606e-02 2.77
1/8 3.6103e-01 1.23 1/8 4.3496e-03 2.61
1/16 1.6450e-01 1.13 1/16 7.5820e-04 2.52
1/32 7.8230e-02 1.07 1/32 1.5349e-04 2.30
1/64 3.8117e-02 1.04 1/64 3.4175e-05 2.17
1/128 1.8810e-02 1.02 1/128 8.0541e-06 2.09
1/256 9.3434e-03 1.01 1/256 1.9550e-06 2.04
1/512 4.6563e-03 1.00 1/512 4.8163e-07 2.02
1/1024 2.3243e-03 1.00 1/1024 1.1953e-07 2.01

107° i

' 10° 10°

N

Fig. 1. The spatial L? error.

10

5.2. Energy stability test

In this subsection, we consider the smooth initial condition (5.1) to verify the energy stability of our schemes.

u(x, y,0) =0.07 — 0.02 cos(”(xl_ 12), sin<”(yl ; Dy _o01 sinz(%)sinz(@)
+0.02c0s2(FEF l0))cosz(”(y3;L 3. 5.1

The parameters are ¢ = 0.025, f =1, D =50, T =100, N = 64 and Q = [0,32]%. In Fig. 2, we present the evolution of the discrete energy with different
time step sizes of = = 0.01, 0.1, 1, 2, 5, 10, 20, 25 using the first-order and Crank-Nicolson schemes, respectively. We see that the energy is
nonincreasing, which validates that our schemes satisfy the unconditional energy stability. We can also find that the first-order scheme is more
stable than the Crank-Nicolson scheme since its energy is much lower than the Crank-Nicolson scheme.

5.3. Phase transition behaviors

In this subsection, we apply the Crank-Nicolson scheme to check the evolution from a non-equilibrium state to a steady state. Since the first-order
scheme provides similar numerical result, for simplicity, we only consider the Crank-Nicolson scheme in the following simulations.

5.3.1. 2D case with random initial condition

With the initial condition «° = u+rand, where u = —0.2 and rand is a randomly chosen number between -0.4 and 0.4 at the grid points, we set
N =128 and the 2D computational domain is [-30,30] x [-30,30]. Let the time step be r = 1 and the parameter be ¢ =0.025, § =1, D =50. Fig. 3
shows the time evolution of the phase transition behavior, which validates that our scheme does lead to the expected states. Fig. 4 displays the
results at 1 = 100 with respect to four different values of ¢, i.e., ¢ = 0.05, 0.1, 0.25 and 0.5. We can find that a large value of ¢ accelerates the
formation of regular laminar pattern.

5.3.2. 3D case with random initial condition

With the initial condition u° = u+rand, where = —0.5 and rand is a randomly chosen number between -1 and 1 at the grid points, Q = [-10, 101,
N =40. Let the time step be 7 =1 and the parameter be ¢ =0.35, § =1, D =50. Fig. 5 shows the time evolution of the phase transition behavior,
which validates that our scheme does lead to the expected states. Fig. 7 (a) shows the energy evolution with the random initial condition in 3D.
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Fig. 2. Evolution of the energy with different time step size of r=0.01, 0.1, 1, 2, 5, 10, 20, 25 using the first-order and Crank-Nicolson schemes, respectively, where

€ =0.025.
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Fig. 5. The evolution of the phase transition behavior in 3D with u = —0.5. Snapshots of the numerical approximation of the density field u are taken at t =0, 12, 60,
240, 360, 600, 720, 1200. The computational domain is [-10, 10]3. The parameters are e = 0.35, T = 1200, N =40. The time step is 7 = 1.

(f) t=28 A h('g)A t:;lOV A (h) t=100

Fig. 6. Temporal evolution of 2D polycrystal growth in a supercooled liquid.

5.3.3. 2D polycrystal growth in a supercooled liquid
The polycrystal growth in a supercooled liquid was considered as an important benchmark test in two-dimensional space. Here, we consider the
growth of four crystal nucleuses with the following initial condition:

u(x,y,0) =0.14 + arand(x, y),

where « takes the values of a =1 for four crystal nucleuses locating at (40,40), (140,40), (140,40), (140, 140), respectively. The diameter of each
nucleus is 4. The computational domain is Q =[0,1801%2. N =512, t=1/2, €=0.5, f=1, D =50 and T = 100. Fig. 6 shows the growth of the four
nuclei in time and formation of the obvious grain boundaries. Fig. 7 (b) shows the energy evolution of the 2D polycrystal growth in a supercooled
liquid.

6. Conclusions

In this paper, we propose and analyze first- and second-order linear energy-stable schemes for the SH equation. We prove rigorously that the
schemes satisfy the energy dissipation property and derive the error estimate. Numerical tests are given to show the accuracy and energy stability
of the proposed schemes.
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Fig. 7. Evolution of the energy with the random initial condition in 3D and polycrystal growth in a supercooled liquid in 2D.
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