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a b s t r a c t

In this work, we propose a stabilized linear predictor–corrector scheme for the
Swift–Hohenberg equation. More precisely, we apply a stabilized first-order scheme
as the predictor and a stabilized second-order scheme as the corrector. We prove
rigorously that our scheme satisfies the energy dissipation law and is second-order
accurate. Numerical experiments are presented to show the accuracy and energy
stability of our scheme.

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

The Swift–Hohenberg (SH) equation was originally derived by Swift and Hohenberg [1] to describe
Rayleigh–Bénard convection. Related applications can be found in complex pattern formation, complex fluids
and biological tissues. The SH equation is derived from the following free energy functional

E(u) =
∫
Ω

(
1
2(△u)2 − |∇u|2 + F (u)

)
dx,

where Ω is a domain in Rd (d = 1, 2, 3), u is the density field, F (u) = 1
4 u4 + 1−ϵ

2 u2, 0 < ϵ < 1 is a constant
ith physical significance and △ is the Laplacian operator. The SH equation is given by

ut = −δE

δu
= −(△2u + 2△u + f(u)), (1.1)

here δ
δu denotes the variational derivative, f(u) = F ′(u) = u3 + (1 − ϵ)u. The free energy is nonincreasing

n time. Here we study the numerical scheme of SH equation with periodic boundary condition.
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As a nonlinear fourth-order partial differential equation, the SH equation is difficult to be solved
analytically. Hence, various numerical schemes have been proposed in recent years. By applying the Crank–
Nicolson scheme, a semi-implicit second-order method for the SH equation was given in [2], in which the
Newton’s method was used to solve the nonlinear equation at every time marching, but the convergence
analysis for that scheme was not discussed. In [3], based on the operator splitting scheme, the first- and
second-order Fourier spectral methods were presented for the SH equation, but the error analysis was not
given. In [4], a new conservative SH equation was introduced and its first-order and second-order mass
conservative operator splitting schemes were proposed, but the authors did also not discuss the convergence
and error analysis. In [5], the author presented a non-iterative convex splitting scheme for the SH equation
with quadratic-cubic nonlinearity, but the convergence was not given. In [6], A fast explicit high-order
operator splitting scheme was presented for the SH equation with a nonlocal nonlinearity. In [7], we proposed
a second-order energy stable numerical scheme for the SH equation and presented an optimal error estimate
for the scheme. However, to solve the fully discrete nonlinear systems, these methods generally require the
use of an iteration. Hence, the computational costs are often high and the implementations are usually
complicated. There are also various linear schemes that attract the attention of many scholars, such as
invariant energy quadratization (IEQ) scheme [8] and scalar auxiliary variable (SAV) scheme [9].

The main goal of this work is to give the error estimate of a linear predictor–corrector time-stepping
scheme for the SH equation. To improve the stability, stabilized terms are added in the numerical scheme.
Moreover, we prove rigorously that our scheme satisfies the energy dissipation law and is second-order
accurate in time. Numerical results are presented to validate our theoretical analysis and show that the
proposed scheme is easy to implement and is energy stable with different time step size, the energy decay is
robust with respect to the stabilized constant. As a comparison, we also consider the stabilized second-order
Crank–Nicolson scheme with Adam–Bashforth extrapolation for nonlinear terms. We will show that the
stabilized predictor–corrector scheme is much more robust than the stabilized Crank–Nicolson scheme with
Adam–Bashforth extrapolation when large time step is used.

The rest of the paper is organized as follows. In Section 2, we construct the numerical scheme and prove
our scheme satisfies the energy dissipation law. In Section 3, we carry out the error estimate, which shows
our scheme is second-order accurate in time. In Section 4, several numerical experiments are provided to
illustrate the accuracy, robustness and energy stability of the proposed scheme. Finally, some conclusions
are given in Section 5.

2. Stabilized linear predictor–corrector scheme for the SH equation and its energy stability

Let N be any positive integer, T be the final time, τ = T/N be the time step size, tn = nτ , n =
, 1, 2, . . . , N be the time mesh points, un be the numerical approximation of u(tn). The stabilized linear
redictor–corrector scheme is as follows.

cheme (Stabilized Linear Predictor–Corrector Scheme). Given un, we can calculate un+1 via the following
teps:

• Prediction: predict ūn+1/2 via the stabilized linear first-order scheme

ūn+1/2 − un

τ/2 + △2ūn+1/2 + 2△ūn+1/2 + f(un) + S(ūn+1/2 − un) = 0, (2.1)

• Correction: obtain un+1 via the stabilized linear second-order scheme
un+1 − un

τ
+ △2 un+1 + un

2 + 2△un+1 + un

2 + f(ūn+1/2) + S(1
2(un+1 + un) − ūn+1/2) = 0, (2.2)

where S is a given stabilization constant.

2
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We assume that the solution u of Eq. (1.1) exists and satisfies

∥utt∥L∞(0,T ;L2(Ω)) + ∥ut∥L∞(0,T ;H4(Ω)) + ∥uttt∥L∞(0,T ;L2)(Ω)

+ ∥utt∥L∞(0,T ;H4(Ω)) + ∥u∥L∞(0,T ;L2(Ω)) ≤ C∗. (2.3)

Let L = 3C2
∗ + (1 − ϵ)|Ω |, where |Ω | is the measure of the domain Ω . Since

∥f ′(u)∥ ≤ ∥3u2 + 1 − ϵ∥ ≤ ∥3u2∥ + ∥1 − ϵ∥ ≤ 3∥u∥2
L∞(0,T ;L2(Ω)) + (1 − ϵ)|Ω | ≤ L,

we have
∥f(u) − f(v)∥ ≤ ∥f ′(ξ)∥∥u − v∥ ≤ L∥u − v∥, (2.4)

where ξ is a number between u and v.

Theorem 2.1. Provided S ≥ max{L, (L + 1)/2} and

τ ≤ 2B

A(L + S) ,

here
A = max

n
{∥un − ūn+1/2∥2}, B = min

n
{∥un+1 − un∥2}.

he stabilized predictor–corrector scheme satisfies the following energy stability property:

E(un+1) ≤ E(un), ∀ n ≥ 1.

roof. Taking the inner product of (2.1) with ūn+1/2 − un and using Taylor’s theorem with remainder in
he integral form

F (ūn+1/2) − F (un) = f(un)(ūn+1/2 − un) +
∫ ūn+1/2

un
(ūn+1/2 − t)f ′(t)dt,

we have
2
τ

∥ūn+1/2 − un∥2 + 1
2(∥△ūn+1/2∥2 − ∥△un∥2 + ∥△ūn+1/2 − △un∥2) − (∥∇ūn+1/2∥2 − ∥∇un∥2

+ ∥∇ūn+1/2 − ∇un∥2) + (F (ūn+1/2) − F (un), 1) + S∥ūn+1/2 − un∥2

=
(∫ ūn+1/2

un
(ūn+1/2 − t)f ′(t)dt, 1

)
≤L

2 ∥ūn+1/2 − un∥2. (2.5)

ince

∥∇(ūn+1/2 − un)∥2 =(∇(ūn+1/2 − un), ∇(ūn+1/2 − un)
≤|(△(ūn+1/2 − un), ūn+1/2 − un)|

≤1
2∥△(ūn+1/2 − un)∥2 + 1

2∥ūn+1/2 − un∥2,

e obtain from (2.5) that

E(ūn+1/2) − E(un) + 2
τ

∥ūn+1/2 − un∥2 ≤ (L + 1
2 − S)∥ūn+1/2 − un∥2.

f L+1 ≤ S, the predictor scheme satisfies the energy dissipation law.
2
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Similarly, using Taylor’s theorem with remainder in the integral form

F (un+1) − F (ūn+1/2) = f(ūn+1/2)(un+1 − ūn+1/2) +
∫ un+1

ūn+1/2
(un+1 − t)f ′(t)dt, (2.6)

F (un) − F (ūn+1/2) = f(ūn+1/2)(un − ūn+1/2) +
∫ un

ūn+1/2
(un − t)f ′(t)dt, (2.7)

subtracting (2.7) from (2.6), we have

F (un+1) − F (un) = f(ūn+1/2)(un+1 − un) +
∫ un+1

ūn+1/2
(un+1 − t)f ′(t)dt +

∫ ūn+1/2

un
(un − t)f ′(t)dt. (2.8)

aking the inner product of (2.2) with un+1 − un, we get
1
τ

∥un+1 − un∥2 + 1
2(∥△un+1∥2 − ∥△un∥2) − (∥∇un+1∥2 − ∥∇un∥2) + (f(ūn+1/2), un+1 − un)

+ S

2 (un+1 − 2ūn+1/2 + un, un+1 − un) = 0. (2.9)

Since
S

2 (un+1 − 2ūn+1/2 + un, un+1 − un)

= S

2 ((un+1 − ūn+1/2) − (ūn+1/2 − un), (un+1 − ūn+1/2) + (ūn+1/2 − un))

= S

2 (∥un+1 − ūn+1/2∥2 − ∥ūn+1/2 − un∥2),

we obtain from (2.8) and (2.9) that

E(un+1) − E(un) + 1
τ

∥un+1 − un∥2 + S

2 ∥un+1 − ūn+1/2∥2 − S

2 ∥ūn+1/2 − un∥2

≤
∫ un+1

ūn+1/2
(un+1 − t)f ′(t)dt +

∫ ūn+1/2

un
(un − t)f ′(t)dt

≤L

2 ∥un+1 − ūn+1/2∥2 + L

2 ∥ūn+1/2 − un∥2,

That is

E(un+1) − E(un) ≤ L − S

2 ∥un+1 − ūn+1/2∥2 + L + S

2 ∥ūn+1/2 − un∥2 − 1
τ

∥un+1 − un∥2.

et
A = max

n
{∥un − ūn+1/2∥2}, B = min

n
{∥un+1 − un∥2}.

enerally, A ̸= 0. If L ≤ S and L+S
2 A − B

τ ≤ 0, i.e. τ ≤ 2B
A(L+S) , the corrector scheme satisfies the energy

dissipation law. □

3. Error estimate

Denote en = un − u(tn) and ēn+1/2 = ūn+1/2 − u(tn+1/2), where tn+1/2 = (tn + tn+1)/2. We now derive
he error analysis of the proposed scheme, which shows the second-order convergence in time.

heorem 3.1. Assuming the analytical solution of (1.1) satisfies regularity condition (2.3). For S > 5, we
have the following error estimate

∥eN ∥2 ≤ 4 exp(C1T )C2TC2
∗τ4, (3.1)

here
C1 = 5(L2 + S2)

(
4 + L2 + S2

τ

)
, C2 = max

{
5(L2 + S2)

,
5
}

.
2S 3 S 3S 2S

4
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Proof. Firstly, we derive the estimate of ēn+1/2. At time level tn, Eq. (1.1) becomes

ut(tn) + △2u(tn) + 2△u(tn) + f(u(tn)) = 0. (3.2)

Subtracting (3.2) from (2.1), we obtain

ēn+1/2 − en

τ/2 + △2ēn+1/2 + 2△ēn+1/2 + f(un) − f(u(tn)) + S(ēn+1/2 − en) + Ḡn = 0, (3.3)

where the truncation error Ḡn = Ḡn
1 + Ḡn

2 with

Ḡn
1 = u(tn+1/2) − u(tn)

τ/2 − ut(tn),

Ḡn
2 = △2(u(tn+1/2) − u(tn)) + 2△(u(tn+1/2) − u(tn)) + S(u(tn+1/2) − u(tn))

= (△2 + 2△ + S)(u(tn+1/2) − u(tn)).

By Taylor expansion, we have

∥Ḡn
1 ∥2 ≤ 1

16∥utt∥2
L∞(0,T ;L2(Ω))τ

2, ∥Ḡn
2 ∥2 ≤ 1

4∥ut∥2
L∞(0,T ;H4(Ω))τ

2.

Taking the inner product of (3.3) with ēn+1/2, we derive

1
τ

(∥ēn+1/2∥2 − ∥en∥2 + ∥ēn+1/2 − en∥2) + ∥△ēn+1/2∥2 + S∥ēn+1/2∥2

= − 2(△ēn+1/2, ēn+1/2) − (f(un) − f(u(tn)), ēn+1/2) + S(en, ēn+1/2) − (Ḡn, ēn+1/2)

≤ S∥ēn+1/2∥2 + 3
S

∥△ēn+1/2∥2 + 3(L2 + S2)
4S

∥en∥2 + 1
4τ

∥ēn+1/2∥2 + τ∥Ḡn∥2,

that is
3
4τ

∥ēn+1/2∥2 + (1 − 3
S

)∥△ēn+1/2∥2 ≤
(

1
τ

+ 3(L2 + S2)
4S

)
∥en∥2 + τ∥Ḡn∥2.

f S > 3, dropping the nonnegative terms, we have

∥ēn+1/2∥2 ≤
(

4
3 + L2 + S2

S
τ

)
∥en∥2 + 8

3τ2(∥Ḡn
1 ∥2 + ∥Ḡn

2 ∥2)

≤
(

4
3 + L2 + S2

S
τ

)
∥en∥2 + 2

3(∥utt∥2
L∞(0,T ;L2(Ω)) + ∥ut∥2

L∞(0,T ;H4(Ω)))τ
4. (3.4)

We now derive the estimate of en+1. At time level tn+1/2, Eq. (1.1) becomes

ut(tn+1/2) + △2u(tn+1/2) + 2△u(tn+1/2) + f(u(tn+1/2)) = 0. (3.5)

ubtracting (3.5) from (2.2), we have

en+1 − en

τ
+ △2 en+1 + en

2 + 2△en+1 + en

2 + f(ūn+1/2) − f(u(tn+1/2))

+ S(1
2(en+1 + en) − ēn+1/2) + Gn

1 + Gn
2 = 0, (3.6)

where the truncation errors are

Gn
1 =u(tn+1) − u(tn)

τ
− ut(tn+1/2),

Gn
2 =△2

(
u(tn+1) + u(tn) − u(tn+1/2)

)
+ 2△

(
u(tn+1) + u(tn) − u(tn+1/2)

)

2 2

5
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(
u(tn+1) + u(tn)

2 − u(tn+1/2)
)

=(△2 + 2△ + S)
(

u(tn+1) + u(tn)
2 − u(tn+1/2)

)
.

y Taylor expansion, we have

∥Gn
1 ∥2 ≤ 1

576∥uttt∥2
L∞(0,T ;L2(Ω))τ

4, ∥Gn
2 ∥2 ≤ 1

128∥utt∥2
L∞(0,T ;H4(Ω))τ

4.

Taking the inner product of (3.6) with en+1 + en, we obtain

1
τ

(∥en+1∥2 − ∥en∥2) + 1
2∥△(en+1 + en)∥2 + S

2 ∥en+1 + en∥2

= − (△(en+1 + en), en+1 + en) − (f(ūn+1/2) − f(u(tn+1/2)), en+1 + en) + S(ēn+1/2, en+1 + en)
− (Gn

1 , en+1 + en) − (Gn
2 , en+1 + en)

=S

2 ∥en+1 + en∥2 + 5
2S

∥△(en+1 + en)∥2 + 5(L2 + S2)
2S

∥ēn+1/2∥2 + 5
2S

(∥Gn
1 ∥2 + ∥Gn

2 ∥2),

hat is,

1
τ

∥en+1∥2 − 1
τ

∥en∥2 +
(

1
2 − 5

2S

)
∥△(en+1 + en)∥2

≤5(L2 + S2)
2S

∥ēn+1/2∥2 + 5
2S

(∥uttt∥2
L∞(0,T ;L2(Ω)) + ∥utt∥2

L∞(0,T ;H4(Ω)))τ
4.

f S > 5, dropping the nonnegative terms and using (3.4), we have

∥en+1∥2 − ∥en∥2 ≤5(L2 + S2)
2S

τ∥ēn+1/2∥2 + 5
2S

(∥uttt∥2
L∞(0,T ;L2(Ω)) + ∥utt∥2

L∞(0,T ;H4(Ω)))τ
5

≤5(L2 + S2)
2S

(
4
3 + L2 + S2

S
τ

)
τ∥en∥2

+ 5(L2 + S2)
3S

(∥utt∥2
L∞(0,T ;L2(Ω)) + ∥ut∥2

L∞(0,T ;H4(Ω)))τ
5

+ 5
2S

(∥uttt∥2
L∞(0,T ;L2(Ω)) + ∥utt∥2

L∞(0,T ;H4(Ω)))τ
5.

Summing up for n from 0 to N − 1, and noting that e0 = 0, we have

∥eN ∥2 ≤τ

N−1∑
n=1

C1∥en∥2 + C2T (∥utt∥2
L∞(0,T ;L2(Ω)) + ∥ut∥2

L∞(0,T ;H4(Ω)) + ∥uttt∥2
L∞(0,T ;L2(Ω))

+ ∥utt∥2
L∞(0,T ;H4(Ω)))τ

4,

here
C1 = 5(L2 + S2)

2S

(
4
3 + L2 + S2

S
τ

)
, C2 = max

{
5(L2 + S2)

3S
,

5
2S

}
.

Applying the discrete Gronwall’s inequality and the regularity assumption (2.3), we have

∥eN ∥2 ≤ exp(C1T )C2T (∥utt∥2
L∞(0,T ;L2(Ω)) + ∥ut∥2

L∞(0,T ;H4(Ω))

+ ∥uttt∥2
L∞(0,T ;L2(Ω)) + ∥utt∥2

L∞(0,T ;H4(Ω)))τ
4

≤4 exp(C1T )C2TC2
∗τ4,

hich is the desired result. □
6
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Table 1
The errors and rates of convergence at T = 1 for the phase variable
u with different time step size. The physical parameter is ϵ = 0.5
and the stabilized constant is S = 6.

τ L2 error Rate

1/8 4.8788e−02 –
1/16 1.5893e−02 1.62
1/32 4.6234e−03 1.78
1/64 1.2545e−03 1.88
1/128 3.2731e−04 1.94
1/256 8.3618e−05 1.97
1/512 2.1121e−05 1.99
1/1024 5.2940e−06 2.00

4. Numerical experiments

In this section, we give several numerical experiments for the SH equation to verify the accuracy
and energy stability of the proposed scheme. We apply the Fourier pseudo spectral method for spatial
discretization and fast Fourier transform (FFT) is applied for all numerical computations to solve the SH
equation with the periodic boundary condition.

4.1. Accuracy and energy stability

We first test the temporal convergence rate of our scheme with the initial value condition

u(x, y) = sin(πx

16 ) cos(πy

16 )

on the domain Ω = [0, 32] × [0, 32]. We apply 642 Fourier modes so that the spatial discretization errors
are negligible compared with the temporal discretization errors. We take ϵ = 0.5, S = 6. The errors are
alculated by comparison with the reference solution with τ = 2−14. In Table 1, we show the L2 errors of

the phase variable with different time step size at T = 1 and we can observe that our scheme gives desired
rate of accuracy in time. Fig. 1(a) shows that the energy decay is robust with respect to the stabilized
constant S. Fig. 1(b) shows the energy evolution with different time step size τ . Fig. 2 shows the energy
evolution with S = 0 and S = 6. We observe that the scheme quickly blows up if S = 0, which implies the
tabilization terms are necessary. As a comparison, we also consider the following stabilized second-order
rank–Nicolson scheme with Adam–Bashforth extrapolation for nonlinear terms (CN/AB),

un+1 − un

τ
+ △2 un+1 + un

2 + 2△un+1 + un

2 + f(ũn+1/2) + S(un+1 − 2un + un−1) = 0,

here
ũn+1/2 = 3

2un − 1
2un−1.

he initialization step is

u1 − u0

τ
+ △2u1 + 2△u1 + f(u0) + S(u1 − u0) = 0.

Fig. 3 shows the energy evolution of the stabilized CN/AB scheme and our stabilized predictor–corrector
scheme, which implies the stabilized predictor–corrector scheme is much more robust when large time step
is used.
7
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a

Fig. 1. Evolution of the energy with different stabilized constant S and different time step size τ .

Fig. 2. Evolution of the energy with S = 0 and S = 6, the time step size is τ = 2.

Fig. 3. Evolution of the energy of stabilized CN/AB scheme (a) and the stabilized predictor–corrector (b), the time step size is
τ = 20.

4.2. Phase transition behaviors

We apply our scheme to check the evolution from a randomly perturbed nonequilibrium state to a steady
state. With the initial condition u(x, y) = 0.2+rand, where rand is random number between −0.02 and 0.02
t the grid points. We set ϵ = 0.5, S = 6, τ = 1 and T = 400. We use 1282 Fourier modes to discrete the
8
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Fig. 4. The evolution of the phase transition behavior. Snapshots of the numerical approximation of the phase variable u are taken
t t = 0, 40, 80, 120, 160, 240, 320, 400. The computational domain is [−20, 20] × [−20, 20]. The parameters are ϵ = 0.5, S = 6, τ = 1,

= 400. 1282 Fourier modes are used to discrete the space.

omain Ω = [−20, 20] × [−20, 20]. Fig. 4 shows the time evolution of the phase transition behavior, which
alidates that our scheme does lead to the expected states.

. Conclusions

In the work, we design a stabilized linear predictor–corrector scheme for the SH equation. We prove the
cheme satisfies energy dissipation law. Rigorous results about convergence and error estimate are derived,
hich shows the second-order convergence in time of our proposed scheme. Numerical tests show our scheme

s energy stable with large enough time step size and the energy decay is robust with the stabilized constant.
ue to the generality of the theoretical and numerical approach, the results in this work can be easily applied

o construct corresponding second-order schemes for other phase-field models, such as Allen–Cahn model,
ahn–Hilliard model and phase field crystal model.
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