
Computers and Mathematics with Applications 113 (2022) 45–51

Contents lists available at ScienceDirect

Computers and Mathematics with Applications

www.elsevier.com/locate/camwa

Numerical analysis of two-grid decoupling finite element scheme for 

Navier-Stokes/Darcy model ✩

Yanren Hou a,∗, Dandan Xue b

a School of Mathematics and Statistics, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
b College of Mathematics and Physics, Chengdu University of Technology, Chengdu, Sichuan 610059, China

A R T I C L E I N F O A B S T R A C T

Dataset link: https://

codeocean .com /capsule /6782045 /tree /v1

Keywords:

Navier-Stokes/Darcy model

Two-grid finite element

Decoupling scheme

Error estimation

In this paper, for a two-grid decoupling finite element scheme for the mixed Navier-Stokes/Darcy model with 
Beavers-Joseph-Saffman’s interface condition, we establish the optimal error estimate for the approximate 
solution. Our analysis shows that the fine grid decoupled problems, that is the Navier-Stokes equations and 
the Darcy equation, can be solved simultaneously and achieve the optimal convergence order.
1. Introduction

Because of the important applications in real world applications, 
the mixed Stokes/Darcy and Navier-Stokes/Darcy model received much 
attention in both theoretical and numerical aspect in last decades.

Many numerical methods have been studied for such mixed mod-

els, including coupled finite element methods [2,6,8,22], discontin-

uous Galerkin methods [12,17,21], domain decomposition methods 
[7,9,10,14] and Lagrange multiplier methods [13,18]. Besides these nu-

merical methods, the authors in [20] proposed a decoupling scheme for 
the Stokes/Darcy model with Beavers-Joesph-Saffman’s interface con-

dition (BJS) based on two-grid finite element, which can decouple the 
coupled model in fine mesh level and the two decoupled problems can 
be numerically solved in parallel. Although the numerical experiments 
do suggest an optimal error order of the approximation in 𝐻1 norm in 
this pioneer work, the numerical analysis only gets a half order lower 
error order with respect to the fluid velocity and the pressure. Later 
on, the authors of [5] extend such decoupling scheme to the Navier-

Stokes/Darcy equations. Although their numerical experiments show 
the scheme can reach the optimal convergence order, the error esti-

mation of the fluid velocity and the pressure is still half order lower 
than expectation. In [24], we got the optimal error order of a modified 
two-level decoupling scheme for the Stokes/Darcy model with BJS in-
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terface condition at the cost of changing the parallel implementation 
in fine mesh level to a serial implementation. In [16], by using a spe-

cial auxiliary elliptic problem, the author got an optimal 𝐻1 norm error 
estimation for the fluid velocity in the two-grid decoupling scheme pro-

posed in [20] for the Stokes/Darcy model with BJS interface condition.

In this paper, we will propose a two-grid parallel decoupling scheme 
with coarse mesh correction for the coupled Navier-Stokes/Darcy model 
with BJS interface condition and try to show the optimal error order of 
the approximation in 𝐿2 and 𝐻1 norm, which has been confirmed by 
numerous numerical experiments.

The rest of this paper is arranged as follows. In section 2, we give a 
brief introduction to the Navier-Stokes/Darcy model with BJS interface 
condition. In section 3, we present the two-grid decoupling scheme. 
In section 4, we try to establish the optimal error estimations for the 
scheme.

2. Mixed Navier-Stokes/Darcy model with BJS interface condition

Let us consider the following mixed model of the Navier-Stokes 
equations and the Darcy equation for coupling a fluid flow and a 
porous media flow in a bounded smooth domain Ω ⊂ 𝐑𝑑 , 𝑑 = 2, 3. Here 
Ω = Ω𝑓 ∪ Γ ∪ Ω𝑝, where Ω𝑓 and Ω𝑝 are two disjoint, connected and 
smooth domains occupied by fluid flow and porous media flow and 
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Fig. 1. A global domain Ω consisting of a fluid flow region Ω𝑓 and a porous 
media flow region Ω𝑝 separated by an interface Γ.

Γ =Ω𝑓 ∩Ω𝑝 is the interface. We denote Γ𝑓 = 𝜕Ω𝑓∖Γ, Γ𝑝 = 𝜕Ω𝑝∖Γ and we 
also denote by 𝒏𝑝 and 𝒏𝑓 the unit outward normal vectors on 𝜕Ω𝑝 and 
𝜕Ω𝑓 , respectively. Furthermore, Γ𝑝 consists of two disjoint parts Γ𝑝𝑑 and 
Γ𝑝𝑛. We assume |Γ𝑓 |, |Γ𝑝𝑑 | > 0. See Fig. 1 for a sketch.

Let us denote by [𝒖𝑓 , 𝑝𝑓 ] the velocity field and the pressure of the 
fluid flow in Ω𝑓 and 𝜙𝑝 the piezometric head in Ω𝑝. The partial dif-

ferential equations modeling the fluid flow and the porous media flow 
are

⎧⎪⎨⎪⎩
−∇ ⋅ (T𝜈 (𝒖𝑓 , 𝑝𝑓 )) + 𝒖𝑓 ⋅∇𝒖𝑓 = 𝒈𝑓 , in Ω𝑓 ,

∇ ⋅ 𝒖𝑓 = 0, in Ω𝑓 ,

−∇ ⋅K∇𝜙𝑝 = 𝑔𝑝, in Ω𝑝,

(2.1)

where

T𝜈(𝒖𝑓 , 𝑝𝑓 ) = −𝑝𝑓 I+ 2𝜈D(𝒖𝑓 ), D(𝒖𝑓 ) =
1
2
(∇𝒖𝑓 +∇𝑇 𝒖𝑓 ),

are the stress tensor and the deformation rate tensor, 𝜈 > 0 is the kinetic 
viscosity and K is the permeability in Ω𝑝, which is a positive definite 
symmetric tensor that is allowed to vary in space. The third equation 
of (2.1) that describes the porous media flow motion is the Darcy’s law 
for the piezometric head 𝜙𝑝. For more details of these equations, we 
refer readers to [12] and [20]. In the rest of this paper, we always 
use boldface characters to denote vector valued functions or spaces of 
vector valued functions.

The above equations (2.1) are completed and coupled together by 
the following boundary conditions:

𝒖𝑓 = 0 on Γ𝑓 , K∇𝜙𝑝 ⋅ 𝒏𝑝 = 0 on Γ𝑝𝑛, 𝜙𝑝 = 0 on Γ𝑝𝑑 , (2.2)

and the interface conditions on Γ:

⎧⎪⎨⎪⎩
𝒖𝑓 ⋅ 𝒏𝑓 −K∇𝜙𝑝 ⋅ 𝒏𝑝 = 0,
−[T𝜈 (𝒖𝑓 , 𝑝𝑓 ) ⋅ 𝒏𝑓 ] ⋅ 𝒏𝑓 = 𝜙𝑝,

−[T𝜈 (𝒖𝑓 , 𝑝𝑓 ) ⋅ 𝒏𝑓 ] ⋅ 𝝉 𝑖 =𝐺𝑖𝒖𝑓 ⋅ 𝝉 𝑖, 𝑖 = 1,⋯ , 𝑑 − 1.
(2.3)

Here 𝐺𝑖 > 0, 𝑖 = 1, ⋯ , 𝑑 − 1, are constants depending on the nature 
of the porous medium and determined from experimental data, 𝝉 𝑖, 
𝑖 = 1, ⋯ , 𝑑 − 1, are the orthonormal tangential unit vectors along Γ. The 
first condition is the mass conservation, the second one is the balance 
of normal force and the third one means the tangential components of 
the normal stress force is proportional to the tangential components of 
the fluid velocity, which is called the Beavers-Joseph-Saffman’s (BJS) 
interface condition (see [3] and [23]).

Let us introduce the following Hilbert spaces

𝑿𝑓 = {𝒗𝑓 ∈𝑯1(Ω𝑓 ) ∶ 𝒗𝑓 |Γ𝑓
= 0}, 𝑄𝑓 =𝐿2(Ω𝑓 ),

𝑋𝑝 = {𝜓𝑝 ∈𝐻1(Ω𝑝) ∶ 𝜓𝑝|Γ = 0},

𝑝𝑑
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where [𝑿𝑓 , 𝑄𝑓 ] is the space pair for the velocity and the pressure in the 
fluid flow region Ω𝑓 and 𝑋𝑝 is the space for the piezometric head in the 
porous medium region Ω𝑝. Furthermore, we assume

𝒈𝑓 ∈𝑿′
𝑓
, 𝑔𝑝 ∈𝑋′

𝑝
. (2.4)

Here 𝑿′
𝑓

and 𝑋′
𝑝

are the dual spaces of 𝑿𝑓 and 𝑋𝑝, respectively.

For simplicity, we always use (⋅, ⋅)𝐷 and ‖ ⋅‖𝐷 to denote the 𝐿2 inner 
product and the corresponding norm on any given domain 𝐷. Since |Γ𝑓 |, |Γ𝑝𝑑 | > 0, we know that ‖D(⋅)‖Ω𝑓

and ‖K 1
2 ∇ ⋅ ‖Ω𝑝

are equivalent 
norms of the usual Sobolev norms in 𝑿𝑓 and 𝑋𝑝 due to the Korn’s and 
the Poincaré inequalities.

For any [𝒖𝑓 , 𝑝𝑓 , 𝜙𝑝], [𝒗𝑓 , 𝑞𝑓 , 𝜓𝑝] ∈𝑿𝑓 ×𝑄𝑓 ×𝑋𝑝, let us introduce:

𝐵([𝒖𝑓 , 𝑝𝑓 ,𝜙𝑝], [𝒗𝑓 , 𝑞𝑓 ,𝜓𝑝]) = 𝑎([𝒖𝑓 ,𝜙𝑝], [𝒗𝑓 ,𝜓𝑝]) + 𝑏𝑓 (𝒖𝑓 ,𝒖𝑓 ,𝒗𝑓 )

+𝑑𝑓 (𝑝𝑓 ,𝒗𝑓 ) − 𝑑𝑓 (𝑞𝑓 ,𝒖𝑓 ) + 𝑎Γ([𝒖𝑓 ,𝜙𝑝], [𝒗𝑓 ,𝜓𝑝]),

where

𝑎([𝒖𝑓 ,𝜙𝑝], [𝒗𝑓 ,𝜓𝑝]) = 𝑎𝑓 (𝒖𝑓 ,𝒗𝑓 ) + 𝑎𝑝(𝜙𝑝,𝜓𝑝),

= [2𝜈(D(𝒖𝑓 ),D(𝒗𝑓 ))Ω𝑓
+

𝑑−1∑
𝑖=1

𝐺𝑖(𝒖𝑓 ⋅ 𝝉 𝑖,𝒗𝑓 ⋅ 𝝉 𝑖)Γ] + (K∇𝜙𝑝,∇𝜓𝑝)Ω𝑝
,

𝑏𝑓 (𝒖𝑓 ,𝒘𝑓 ,𝒗𝑓 ) = ((𝒖𝑓 ⋅∇)𝒘𝑓 ,𝒗𝑓 )Ω𝑓
,

𝑑𝑓 (𝑝𝑓 ,𝒗𝑓 ) = (𝑝𝑓 ,∇ ⋅ 𝒗𝑓 )Ω𝑓
, �̃�Γ(𝜙𝑝,𝒗𝑓 ) = (𝜙𝑝,𝒗𝑓 ⋅ 𝒏𝑓 )Γ,

𝑎Γ([𝒖𝑓 ,𝜙𝑝], [𝒗𝑓 ,𝜓𝑝]) = �̃�Γ(𝜙𝑝,𝒗𝑓 ) − �̃�Γ(𝜓𝑝,𝒖𝑓 ).

Now the weak formulation of the mixed Navier-Stokes/Darcy model 
with BJS interface condition reads as follows (see [5], [12], [18] and 
[20] for details): for 𝒈𝑓 ∈𝑿′

𝑓
, 𝑔𝑝 ∈𝑋′

𝑝
, find [𝒖𝑓 , 𝑝𝑓 , 𝜙𝑝] ∈𝑿𝑓 ×𝑄𝑓 ×𝑋𝑝

such that ∀[𝒗𝑓 , 𝑞𝑓 , 𝜓𝑝] ∈𝑿𝑓 ×𝑄𝑓 ×𝑋𝑝

(𝑄) 𝐵([𝒖𝑓 , 𝑝𝑓 ,𝜙𝑝], [𝒗𝑓 , 𝑞𝑓 ,𝜓𝑝]) = (𝒈𝑓 ,𝒗𝑓 )Ω𝑓
+ (𝑔𝑝,𝜓𝑝)Ω𝑝

.

Thanks to [12], we know that there exists a positive constant 𝛽 > 0
such that the following Ladyzhenskaya-Babuška-Brezzi (LBB) condition 
holds:

inf
𝑞𝑓∈𝑄𝑓

sup
𝒗𝑓∈𝑿𝑓

𝑑𝑓 (𝑞𝑓 ,𝒗𝑓 )‖𝑞𝑓‖Ω𝑓
‖D(𝒗𝑓 )‖Ω𝑓

≥ 𝛽. (2.5)

For the purpose of later analysis, for any bounded domain 𝐷 ∈ 𝐑𝑑 , 
we recall some inequalities and identity:

‖𝑣‖𝐿2(𝜕𝐷) ≤ 𝑐‖𝑣‖ 1
2
𝐿2(𝐷)

‖𝑣‖ 1
2
𝐻1(𝐷)

≤ 𝑐‖𝑣‖𝐻1(𝐷) ∀𝑣 ∈𝐻1(𝐷), (2.6)

‖𝑣‖𝐿4(𝜕𝐷) ≤ 𝑐‖𝑣‖𝐻1(𝐷) ∀𝑣 ∈𝐻1(𝐷), (2.7)

|((𝒘 ⋅∇)𝒖,𝒗)𝐷| (2.8)

≤ 𝑐‖𝒘‖ 1
2
𝐿2(𝐷)

‖𝒘‖ 1
2
𝐻1(𝐷)

‖𝒖‖𝐻1(𝐷)‖𝒗‖𝐻1(𝐷), ∀𝒘,𝒖,𝒗 ∈𝑯1(𝐷).

Here 𝑐 is a positive constant only depending on 𝐷. Indeed, for the in-

equalities (2.6) and (2.7), we refer readers to Theorem 1.6.6 in [4] and 
Theorem 5.22 in [1], respectively.

3. A two-grid decoupling scheme

In the rest, we assume Ω𝑓 and Ω𝑝 are smooth domains and we de-

note

𝑌 =𝑿𝑓 ×𝑄𝑓 ×𝑋𝑝, 𝑊 =𝑿𝑓 ×𝑄𝑓 .

And for any given positive constant 𝜇 > 0, we denote by

𝑌𝜇 =𝑿𝑓𝜇 ×𝑄𝑓𝜇 ×𝑋𝑝𝜇, 𝑊𝜇 =𝑿𝑓𝜇 ×𝑄𝑓𝜇,

the corresponding finite element spaces. In what follows, we assume 
that MINI element and piecewise linear continuous element are applied 
in the fluid and the porous media regions, respectively. We know that 
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such finite element space pair [𝑿𝑓𝜇, 𝑄𝑓𝜇] satisfies the following discrete 
LBB condition: there exists a positive constant independent of 𝜇, which 
we still denote as 𝛽 > 0, such that

inf
𝑞𝑓𝜇∈𝑄𝑓𝜇

sup
𝒗𝑓𝜇∈𝑿𝑓𝜇

𝑑𝑓 (𝑞𝑓𝜇,𝒗𝑓𝜇)‖𝑞𝑓𝜇‖𝑄 ‖D(𝒗𝑓𝜇)‖Ω𝑓

≥ 𝛽. (3.1)

In addition, we assume the following local regularity

𝑢𝑓 ∈𝑯2(Ω𝑓 ), 𝜙𝑝 ∈𝐻2(Ω𝑝), 𝑝𝑓 ∈𝐻1(Ω𝑓 ). (3.2)

In the rest, we use 𝑐 > 0 to denote a mesh sizes independent constant, 
which may depend on certain combination of the norms of 𝒖𝑓 , 𝑝𝑓 and 
𝜙𝑝.

First of all, we present the classical finite element discretiza-

tion of the coupled model (𝑄): find [𝒖𝑓𝜇, 𝑝𝑓𝜇, 𝜙𝑝𝜇] ∈ 𝑌𝜇 such that 
∀[𝒗𝑓𝜇, 𝑞𝑓𝜇, 𝜓𝑝𝜇] ∈ 𝑌𝜇

(𝑄𝜇) 𝐵([𝒖𝑓𝜇, 𝑝𝑓𝜇,𝜙𝑝𝜇], [𝒗𝑓𝜇, 𝑞𝑓𝜇,𝜓𝑝𝜇]) = (𝒈𝑓 ,𝒗𝑓𝜇)Ω𝑓
+ (𝑔𝑝,𝜓𝑝𝜇)Ω𝑝

.

See [11], for a nonsingular solution [𝒖𝑓 , 𝑝𝑓 , 𝜙𝑝] ∈ 𝑌 of the problem 
(𝑄), there is a nonsingular solution [𝒖𝑓𝜇, 𝑝𝑓𝜇, 𝜙𝑝𝜇] ∈ 𝑌𝜇 of (𝑄𝜇) near 
[𝒖𝑓 , 𝑝𝑓 , 𝜙𝑝] when 𝜇 is smaller than some prescribed 𝜇0 > 0. Based on 
this observation, the authors of [5] get the following error estimates of 
the coupled scheme (𝑄𝜇):{ ‖D(𝒖𝑓 − 𝒖𝑓𝜇)‖Ω𝑓

+ ‖K 1
2 ∇(𝜙𝑝 − 𝜙𝑝𝜇)‖Ω𝑝

+ ‖𝑝𝑓 − 𝑝𝑓𝜇‖Ω𝑓
≤ 𝑐𝜇,‖𝒖𝑓 − 𝒖𝑓𝜇‖Ω𝑓

+ ‖𝜙𝑝 − 𝜙𝑝𝜇‖Ω𝑝
≤ 𝑐𝜇2.

(3.3)

For the above mentioned 𝜇0 > 0, 𝜇 < 𝜇0 and the nonsingular solution 
[𝒖𝑓𝜇, 𝑝𝑓𝜇, 𝜙𝑝𝜇] ∈ 𝑌𝜇 , we denote for any [𝒘𝑓𝜇, 𝑟𝑓𝜇, 𝜎𝑝𝜇], [𝒗𝑓𝜇, 𝑞𝑓𝜇, 𝜓𝑝𝜇] ∈ 𝑌𝜇

𝒖𝑓𝜇
([𝒘𝑓𝜇, 𝑟𝑓𝜇, 𝜎𝑝𝜇], [𝒗𝑓𝜇, 𝑞𝑓𝜇,𝜓𝑝𝜇]) = 𝑎𝑓 (𝒘𝑓𝜇,𝒗𝑓𝜇) + 𝑏𝑓 (𝒖𝑓𝜇,𝒘𝑓𝜇,𝒗𝑓𝜇)

+𝑏𝑓 (𝒘𝑓𝜇,𝒖𝑓𝜇,𝒗𝑓𝜇) + 𝑑𝑓 (𝑟𝑓𝜇,𝒗𝑓𝜇) − 𝑑𝑓 (𝑞𝑓𝜇,𝒘𝑓𝜇) + 𝑎𝑝(𝜎𝑝𝜇,𝜓𝑝𝜇)

+𝑎Γ([𝒘𝑓𝜇, 𝜎𝑝𝜇], [𝒗𝑓𝜇,𝜓𝑝𝜇]),

the bilinear form associated with the Frechet derivative of the Navier-

Stokes/Darcy operator corresponding to (𝑄𝜇) at the nonsingular point 
[𝒖𝑓𝜇, 𝑝𝑓𝜇, 𝜙𝑝𝜇] ∈ 𝑌𝜇 in 𝑌𝜇 . We know from [11], the Fredholm alternative 
and the similar procedure in [19] that there exists a 𝜇 independent 
constant 𝛾 > 0 such that

sup
[𝒗𝑓𝜇,𝑞𝑓𝜇 ,𝜓𝑝𝜇 ]∈𝑌𝜇

𝒖𝑓𝜇
([𝒘𝑓𝜇, 𝑟𝑓𝜇, 𝜎𝑝𝜇], [𝒗𝑓𝜇, 𝑞𝑓𝜇,𝜓𝑝𝜇])

‖D(𝒗𝑓𝜇)‖Ω𝑓
+ ‖𝑞𝑓𝜇‖Ω𝑓

+ ‖K 1
2 ∇𝜓𝑝𝜇‖Ω𝑝

(3.4)

≥ 𝛾(‖D(𝒘𝑓𝜇)‖Ω𝑓
+ ‖𝑟𝑓𝜇‖Ω𝑓

+ ‖K 1
2 ∇𝜎𝑝𝜇‖Ω𝑝

),

sup
[𝒗𝑓𝜇,𝑞𝑓𝜇 ,𝜓𝑝𝜇 ]∈𝑌𝜇

𝒖𝑓𝜇
([𝒗𝑓𝜇, 𝑞𝑓𝜇,𝜓𝑝𝜇], [𝒘𝑓𝜇, 𝑟𝑓𝜇, 𝜎𝑝𝜇])

‖D(𝒗𝑓𝜇)‖Ω𝑓
+ ‖𝑞𝑓𝜇‖Ω𝑓

+ ‖K 1
2 ∇𝜓𝑝𝜇‖Ω𝑝

(3.5)

≥ 𝛾(‖D(𝒘𝑓𝜇)‖Ω𝑓
+ ‖𝑟𝑓𝜇‖Ω𝑓

+ ‖K 1
2 ∇𝜎𝑝𝜇‖Ω𝑝

).

Furthermore, for any �̃�𝑓 ∈𝑿𝑓 , we have

�̃�𝑓
([𝒘𝑓𝜇, 𝑟𝑓𝜇, 𝜎𝑝𝜇], [𝒗𝑓𝜇, 𝑞𝑓𝜇,𝜓𝑝𝜇]) (3.6)

= 𝒖𝑓𝜇
([𝒘𝑓𝜇, 𝑟𝑓𝜇, 𝜎𝑝𝜇], [𝒗𝑓𝜇, 𝑞𝑓𝜇,𝜓𝑝𝜇])

+𝑏𝑓 (�̃�𝑓 − 𝒖𝑓𝜇,𝒘𝑓𝜇,𝒗𝑓𝜇) + 𝑏𝑓 (𝒘𝑓𝜇, �̃�𝑓 − 𝒖𝑓𝜇,𝒗𝑓𝜇).

If �̃�𝑓 ∈𝑿𝑓 is closed to 𝒖𝑓𝜇 such that ‖D(𝒖𝑓𝜇 − �̃�𝑓 )‖Ω𝑓
is small enough, 

we can get that there exists a positive constant independent of 𝜇, which 
we still denote as 𝛾 > 0, such that

sup
[𝒗𝑓𝜇,𝑞𝑓𝜇 ,𝜓𝑝𝜇 ]∈𝑌𝜇

�̃�𝑓
([𝒘𝑓𝜇, 𝑟𝑓𝜇, 𝜎𝑝𝜇], [𝒗𝑓𝜇, 𝑞𝑓𝜇,𝜓𝑝𝜇])

‖D(𝒗𝑓𝜇)‖Ω𝑓
+ ‖𝑞𝑓𝜇‖Ω𝑓

+ ‖K 1
2 ∇𝜓𝑝𝜇‖Ω𝑝

(3.7)

≥ 𝛾(‖D(𝒘𝑓𝜇)‖Ω𝑓
+ ‖𝑟𝑓𝜇‖Ω𝑓

+ ‖K 1
2 ∇𝜎𝑝𝜇‖Ω𝑝

),

sup
[𝒗𝑓𝜇,𝑞𝑓𝜇 ,𝜓𝑝𝜇 ]∈𝑌𝜇

�̃�𝑓
([𝒗𝑓𝜇, 𝑞𝑓𝜇,𝜓𝑝𝜇], [𝒘𝑓𝜇, 𝑟𝑓𝜇, 𝜎𝑝𝜇])

‖D(𝒗𝑓𝜇)‖Ω𝑓
+ ‖𝑞𝑓𝜇‖Ω𝑓

+ ‖K 1
2 ∇𝜓𝑝𝜇‖Ω𝑝

(3.8)

≥ 𝛾(‖D(𝒘𝑓𝜇)‖Ω + ‖𝑟𝑓𝜇‖Ω + ‖K 1
2 ∇𝜎𝑝𝜇‖Ω ).
𝑓 𝑓 𝑝
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We refer readers to Lemma 3.3 and Theorem 3.1 in Chapter IV of [11]

for detail proof of (3.7) and (3.8) as long as ‖D(𝒖𝑓𝜇 − �̃�𝑓 )‖Ω𝑓
is small.

From now on, we always assume [𝒖𝑓 , 𝑝𝑓 , 𝜙𝑝] ∈ 𝑌 is a nonsingular 
solution to the problem (𝑄) and 𝜇 < 𝜇0 such that [𝒖𝑓𝜇, 𝑝𝑓𝜇, 𝜙𝑝𝜇] ∈ 𝑌𝜇 is 
a nonsingular solution to (𝑄𝜇) near [𝒖𝑓 , 𝑝𝑓 , 𝜙𝑝] satisfying the estimation 
(3.3).

In the rest, we also denote

𝑁𝑆
𝒖𝑓𝜇

([𝒘𝑓𝜇, 𝑟𝑓𝜇], [𝒗𝑓𝜇, 𝑞𝑓𝜇]) = 𝒖𝑓𝜇
([𝒘𝑓𝜇, 𝑟𝑓𝜇,0], [𝒗𝑓𝜇, 𝑞𝑓𝜇,0]).

Since [𝒖𝑓𝜇, 𝑝𝑓𝜇, 𝜙𝑝𝜇] ∈ 𝑌𝜇 is a nonsingular solution to (𝑄𝜇), [𝒖𝑓𝜇, 𝑝𝑓𝜇] ∈
𝑿𝑓𝜇 ×𝑄𝑓𝜇 is a nonsingular solution to the Navier-Stokes equations in 
(𝑄𝜇) with the given piezometric head 𝜙𝑝𝜇 ∈𝑋𝑝𝜇 . Thus the bilinear form 
𝑁𝑆
𝒖𝑓𝜇

([𝒘𝑓𝜇, 𝑟𝑓𝜇], [𝒗𝑓𝜇, 𝑞𝑓𝜇]) also satisfies the following inf-sup conditions 
like (3.4)-(3.5):

sup
[𝒗𝑓𝜇,𝑞𝑓𝜇 ]∈𝑊𝜇

𝑁𝑆
𝒖𝑓𝜇

([𝒘𝑓𝜇, 𝑟𝑓𝜇], [𝒗𝑓𝜇, 𝑞𝑓𝜇])‖D(𝒗𝑓𝜇)‖Ω𝑓
+ ‖𝑞𝑓𝜇‖Ω𝑓

(3.9)

≥ 𝛾(‖D(𝒘𝑓𝜇)‖Ω𝑓
+ ‖𝑟𝑓𝜇‖Ω𝑓

),

sup
[𝒗𝑓𝜇,𝑞𝑓𝜇 ]∈𝑊𝜇

𝑁𝑆
𝒖𝑓𝜇

([𝒗𝑓𝜇, 𝑞𝑓𝜇], [𝒘𝑓𝜇, 𝑟𝑓𝜇])‖D(𝒗𝑓𝜇)‖Ω𝑓
+ ‖𝑞𝑓𝜇‖Ω𝑓

(3.10)

≥ 𝛾(‖D(𝒘𝑓𝜇)‖Ω𝑓
+ ‖𝑟𝑓𝜇‖Ω𝑓

).

Now we state the following two-grid decoupling algorithm.

Two-grid decoupling algorithm

1. Solve (𝑄𝐻 ) with a coarse mesh size 𝐻 < 𝜇0 to get [𝒖𝑓𝐻 , 𝑝𝑓𝐻 , 𝜙𝑝𝐻 ] ∈
𝑌𝐻 .

2. For ℎ < 𝐻 < 𝜇0, find [𝒖𝑓ℎ, 𝑝𝑓ℎ, 𝜙𝑝ℎ] ∈ 𝑌ℎ such that ∀[𝒗𝑓ℎ, 𝑞𝑓ℎ, 𝜓𝑝ℎ] ∈
𝑌ℎ

𝑁𝑆
𝒖𝑓𝐻

([𝒖𝑓ℎ, 𝑝𝑓ℎ], [𝒗𝑓ℎ, 𝑞𝑓ℎ]) + 𝑎𝑝(𝜙𝑝ℎ,𝜓𝑝ℎ) (3.11)

= 𝑏𝑓 (𝒖𝑓𝐻 ,𝒖𝑓𝐻 ,𝒗𝑓ℎ) − 𝑎Γ([𝒖𝑓𝐻 ,𝜙𝑝𝐻 ], [𝒗𝑓ℎ,𝜓𝑝ℎ])

+(𝒈𝑓 ,𝒗𝑓ℎ)Ω𝑓
+ (𝑔𝑝,𝜓𝑝ℎ)Ω𝑝

.

3. Find [�̂�𝑓𝐻 , �̂�𝑓𝐻 , �̂�𝑝𝐻 ] ∈ 𝑌𝐻 such that ∀[𝒗𝑓𝐻 , 𝑞𝑓𝐻 , 𝜓𝑝𝐻 ] ∈ 𝑌𝐻

𝒖𝑓ℎ ([�̂�𝑓𝐻 , �̂�𝑓𝐻 , �̂�𝑝𝐻 ], [𝒗𝑓𝐻 , 𝑞𝑓𝐻 ,𝜓𝑝𝐻 ] (3.12)

= (𝒈𝑓 ,𝒗𝑓𝐻 )Ω𝑓
+ (𝑔𝑝,𝜓𝑝𝐻 )Ω𝑝

− 𝑎𝑓 (𝒖𝑓ℎ,𝒗𝑓𝐻 )

−𝑏𝑓 (𝒖𝑓ℎ,𝒖𝑓ℎ,𝒗𝑓𝐻 ) − 𝑑𝑓 (𝑝𝑓ℎ,𝒗𝑓𝐻 ) + 𝑑𝑓 (𝑞𝑓𝐻 ,𝒖𝑓ℎ)

−𝑎𝑝(𝜙𝑓ℎ,𝜓𝑝𝐻 ) − 𝑎Γ([𝒖𝑓ℎ,𝜙𝑝ℎ], [𝒗𝑓𝐻 ,𝜓𝑝𝐻 ]).

Update [𝒖𝑓ℎ, 𝑝𝑓ℎ, 𝜙𝑝ℎ] as

[𝒖𝑓ℎ

𝐻
, 𝑝

𝑓ℎ

𝐻
,𝜙

𝑝ℎ

𝐻
] = [𝒖𝑓ℎ, 𝑝𝑓ℎ,𝜙𝑝ℎ] + [�̂�𝑓𝐻 , �̂�𝑓𝐻 , �̂�𝑝𝐻 ].

Remark 1. Thanks to (3.9)-(3.10) and the identity (3.6), we can show 
that ∀[𝒘𝑓ℎ, 𝑟𝑓ℎ] ∈𝑊ℎ

sup
[𝒗𝑓ℎ,𝑞𝑓ℎ]∈𝑊ℎ

𝑁𝑆
𝒖𝑓𝐻

([𝒘𝑓ℎ, 𝑟𝑓ℎ], [𝒗𝑓ℎ, 𝑞𝑓ℎ])‖D(𝒗𝑓ℎ)‖Ω𝑓
+ ‖𝑞𝑓ℎ‖Ω𝑓

(3.13)

≥ 𝛾(‖D(𝒘𝑓ℎ)‖Ω𝑓
+ ‖𝑟𝑓ℎ‖Ω𝑓

),

sup
[𝒗𝑓ℎ,𝑞𝑓ℎ]∈𝑊ℎ

𝑁𝑆
𝒖𝑓𝐻

([𝒗𝑓ℎ, 𝑞𝑓ℎ], [𝒘𝑓ℎ, 𝑟𝑓ℎ])‖D(𝒗𝑓ℎ)‖Ω𝑓
+ ‖𝑞𝑓ℎ‖Ω𝑓

(3.14)

≥ 𝛾(‖D(𝒘𝑓ℎ)‖Ω𝑓
+ ‖𝑟𝑓ℎ‖Ω𝑓

),

by the same procedure in [19]. Now, in the second step, once 
[𝒖𝑓𝐻 , 𝑝𝑓𝐻 , 𝜙𝑝𝐻 ] ∈ 𝑌𝐻 is obtained in the first step, (3.11) is actually 
equivalent to the following two decoupled equations: ∀[𝒗𝑓ℎ, 𝑞𝑓ℎ] ∈
𝑊ℎ, 𝜓𝑝ℎ ∈𝑋𝑝ℎ
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𝑁𝑆
𝒖𝑓𝐻

([𝒖𝑓ℎ, 𝑝𝑓ℎ], [𝒗𝑓ℎ, 𝑞𝑓ℎ])

= (𝒈𝑓 ,𝒗𝑓ℎ)Ω𝑓
+ 𝑏𝑓 (𝒖𝑓𝐻 ,𝒖𝑓𝐻 ,𝒗𝑓ℎ) − �̃�Γ(𝜙𝑝𝐻 ,𝒗𝑓ℎ),

and

𝑎𝑝(𝜙𝑝ℎ,𝜓𝑝ℎ) = (𝑔𝑝,𝜓𝑝𝐻 )Ω𝑝
+ �̃�Γ(𝜓𝑝ℎ,𝒖𝑓𝐻 ).

These two equations are uniquely solvable because of the inf-sup

conditions stated above and 𝑋𝑝ℎ− coercive of 𝑎𝑝(⋅, ⋅). In addition, if ‖D(𝒖𝑓ℎ − 𝒖𝑓𝐻 )‖Ω𝑓
is small enough, the (3.7) is valid if we replace �̃�𝑓

with 𝒖𝑓ℎ. Then (3.12) is uniquely solvable. Therefore, for sufficiently 
small ℎ < 𝐻 < 𝜇0, the above two-grid algorithm admits a unique solu-

tion [𝒖𝑓ℎ

𝐻
, 𝑝𝑓ℎ

𝐻
, 𝜙𝑝ℎ

𝐻
] ∈ 𝑌ℎ.

Remark 2. By the same procedure in [5], if we denote [𝒖𝑓ℎ, 𝑝𝑓ℎ, 𝜙𝑝ℎ] ∈
𝑌ℎ as the nonsingular solution of (𝑄ℎ) near the nonsingular solution 
[𝒖𝑓 , 𝑝𝑓 , 𝜙𝑝] ∈ 𝑌 , one can obtained the following error estimate of 𝜙𝑝ℎ

‖K 1
2 ∇(𝜙𝑝ℎ −𝜙𝑝ℎ)‖Ω𝑝

≤ 𝑐𝐻2. (3.15)

Later on, we call it an optimal error estimation if we configure 𝐻 and ℎ
as ℎ ∼𝐻2 in the choice of the coarse mesh and fine mesh finite element 
subspaces in this paper.

4. Error estimations

Although numerical results in literatures do suggest an optimal error 
order for [𝒖𝑓ℎ, 𝑝𝑓ℎ] ∈𝑿𝑓ℎ×𝑄𝑓ℎ, by the same method in [5], we can only 
get the error estimation of it that is half order lower than the optimal 
order like following

‖D(𝒖𝑓ℎ − 𝒖𝑓ℎ)‖Ω𝑓
+ ‖𝑝𝑓ℎ − 𝑝𝑓ℎ‖Ω𝑓

≤ 𝑐𝐻
3
2 . (4.1)

To get the error estimations of the final approximation [𝒖𝑓ℎ

𝐻
, 𝑝𝑓ℎ

𝐻
, 𝜙𝑝ℎ

𝐻
], 

we first re-consider the error estimations of [𝒖𝑓ℎ, 𝑝𝑓ℎ, 𝜙𝑝ℎ], espe-

cially the error estimation of [𝒖𝑓ℎ, 𝑝𝑓ℎ]. In the follows, we will first 
give some more rigorous estimates on the fine grid approximation 
[𝒖𝑓ℎ, 𝑝𝑓ℎ, 𝜙𝑝ℎ] ∈ 𝑌ℎ, actually a rigorous estimation of ‖D(𝑢𝑓ℎ − 𝑢𝑓ℎ)‖Ω𝑓

and ‖𝑝𝑓ℎ − 𝑝𝑓ℎ‖Ω𝑓
.

Theorem 4.1. Assume Ω𝑓 and Ω𝑝 are smooth domains such that the mixed 
Navier-Stokes/Darcy problem satisfies the local regularity assumption (3.2)

and ℎ < 𝐻 < 𝜇0 is small enough such that (3.4) holds. Let [𝒖𝑓ℎ, 𝑝𝑓ℎ, 𝜙𝑝ℎ] ∈
𝑌ℎ and [𝒖𝑓ℎ, 𝑝𝑓ℎ, 𝜙𝑝ℎ] ∈ 𝑌ℎ be defined by the coupled Galerkin scheme (𝑄ℎ) 
and the two-grid decoupling algorithm. The following error estimate holds:

‖D(𝒖𝑓ℎ−𝒖𝑓ℎ)‖Ω𝑓
+‖𝑝𝑓ℎ−𝑝𝑓ℎ‖Ω𝑓

+‖K 1
2 ∇(𝜙𝑝ℎ−𝜙𝑝ℎ)‖Ω𝑝

≤ 𝑐𝐻2. (4.2)

Proof. In what follows, we will only try to establish the error estimate 
of the velocity and the pressure in (4.2).

First of all, let us denote

𝒆𝒖𝑓 = 𝒖𝑓ℎ − 𝒖𝑓ℎ, 𝑒𝑝𝑓 = 𝑝𝑓ℎ − 𝑝𝑓ℎ, 𝑒𝜙𝑝
= 𝜙𝑝ℎ − 𝜙𝑝ℎ.

The subtraction of (3.11) from (𝑄ℎ) with 𝜓𝑝ℎ = 0 admits

𝑁𝑆
𝒖𝑓𝐻

([𝒆𝒖𝑓 , 𝑒𝑝𝑓 ], [𝒗𝑓ℎ, 𝑞𝑓ℎ]) = (𝜙𝑝ℎ − 𝜙𝑝𝐻 ,𝒗𝑓ℎ ⋅ 𝒏𝑓 )Γ (4.3)

+𝑏𝑓 (𝒖𝑓ℎ − 𝒖𝑓𝐻 ,𝒖𝑓ℎ − 𝒖𝑓𝐻 ,𝒗𝑓ℎ).

Thanks to (2.8) and (4.1), we have

𝑏𝑓 (𝒖𝑓ℎ − 𝒖𝑓𝐻 ,𝒖𝑓ℎ − 𝒖𝑓𝐻 ,𝒗𝑓ℎ) (4.4)

≤ 𝑐‖D(𝒖𝑓ℎ − 𝒖𝑓𝐻 )‖2Ω𝑓
‖D(𝒗𝑓ℎ)‖Ω𝑓

≤ 𝑐𝐻2‖D(𝒗𝑓ℎ)‖Ω𝑓
.

To estimate the first term on the right hand side of (4.3), we intro-

duce an elliptic extension of 𝒗𝑓ℎ ⋅𝒏𝑓 into the porous media region. That 
is to find Φ𝑝 ∈𝐻1(Ω𝑝) satisfying
48
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⎧⎪⎪⎨⎪⎪⎩
−∇ ⋅ (K∇Φ𝑝) = 0 in Ω𝑝,

K∇Φ𝑝 ⋅ 𝒏𝑝 = 𝒗𝑓ℎ ⋅ 𝒏𝑝 on Γ,
K∇Φ𝑝 ⋅ 𝒏𝑝 = 0 on Γ𝑝𝑛,

Φ𝑝 = 0 on Γ𝑝𝑑 .

It is classical that

‖K 1
2 ∇Φ𝑝‖Ω𝑝

≤ 𝑐‖D(𝒗𝑓ℎ)‖Ω𝑓
. (4.5)

Furthermore, if the interface Γ is smooth, for example Γ is smooth such 
that 𝒏𝑝 is continuous along it, we have for 𝒗𝑓ℎ ∈𝑿𝑓 ,

‖K 1
2 ∇Φ𝑝‖𝐻1(Ω𝑝) ≤ 𝑐‖D(𝒗𝑓ℎ)‖Ω𝑓

. (4.6)

Now for the first term on the right hand side of (4.3), we have

|(𝜙𝑝ℎ −𝜙𝑝𝐻 ,𝒗𝑓ℎ ⋅ 𝒏𝑓 )Γ| = |− ∫
Γ

(𝜙𝑝ℎ − 𝜙𝑝𝐻 )K∇Φ𝑝 ⋅ 𝒏𝑝|
= |− ∫

𝜕Ω𝑝

(𝜙𝑝ℎ − 𝜙𝑝𝐻 )K∇Φ𝑝 ⋅ 𝒏𝑝| = |− ∫
Ω𝑝

∇ ⋅ ((𝜙𝑝ℎ − 𝜙𝑝𝐻 )K∇Φ𝑝)|
= |− ∫

Ω𝑝

(𝜙𝑝ℎ − 𝜙𝑝𝐻 )∇ ⋅ (K∇Φ𝑝) − ∫
Ω𝑝

K∇(𝜙𝑝ℎ −𝜙𝑝𝐻 ) ⋅∇Φ𝑝|
= |− ∫

Ω𝑝

K∇(𝜙𝑝ℎ −𝜙𝑝𝐻 ) ⋅∇Φ𝑝 + ∫
Ω𝑝

K∇𝑒𝜙𝑝
⋅∇Φ𝑝|

≤ |∫
Ω𝑝

K∇(𝜙𝑝ℎ − 𝜙𝑝𝐻 ) ⋅∇Φ𝑝|+ ‖K 1
2 ∇𝑒𝜙𝑝

‖Ω𝑝
‖K 1

2 ∇Φ𝑝‖Ω𝑝
.

From the definition of 𝜙𝑝𝐻 in (𝑄𝐻 ) and 𝜙𝑝ℎ in (3.11), we can easily 
verify that

∫
Ω𝑝

K∇(𝜙𝑝ℎ − 𝜙𝑝𝐻 ) ⋅∇Φ𝑝𝐻 = 0 ∀Φ𝑝𝐻 ∈𝑋𝑝𝐻 ,

which means the projection associated with 𝑎𝑝(⋅, ⋅) of 𝜙𝑝ℎ onto 𝑋𝑝𝐻 is 
the coarse mesh approximation 𝜙𝑝𝐻 .

Noticing (4.5), (4.6), (3.15) and (3.3), we have ∀Φ𝑝𝐻 ∈𝑋𝑝𝐻

|∫
Ω𝑝

K∇(𝜙𝑝ℎ −𝜙𝑝𝐻 ) ⋅∇Φ𝑝|
≤ inf

𝜙𝑝𝐻∈𝑋𝑝𝐻

|∫
Ω𝑝

K∇(𝜙𝑝ℎ − 𝜙𝑝𝐻 ) ⋅∇(Φ𝑝 −Φ𝑝𝐻 )|
≤ ‖K 1

2 ∇(𝜙𝑝ℎ − 𝜙𝑝𝐻 )‖Ω𝑝
inf

Φ𝑝𝐻∈𝑋𝑝𝐻

‖K 1
2 ∇(Φ𝑝 −Φ𝑝𝐻 )‖Ω𝑝

≤ 𝑐𝐻(‖K 1
2 ∇𝑒𝜙𝑝

‖Ω𝑝
+ ‖K 1

2 ∇(𝜙𝑝ℎ − 𝜙𝑝𝐻 )‖Ω𝑝
)‖D(𝒗𝑓ℎ)‖Ω𝑓

≤ 𝑐𝐻2‖D(𝒗𝑓ℎ)‖Ω𝑓
.

By using (4.5) and (3.3) and the above estimates, we get

|(𝜙𝑝ℎ −𝜙𝑝𝐻 ,𝒗𝑓ℎ ⋅ 𝒏𝑓 )Γ| ≤ 𝑐𝐻2‖D(𝒗𝑓ℎ)‖Ω𝑓
. (4.7)

Now, combination of (4.4) and (4.7) with (4.3) and the usage of 
(3.13) with [𝒘𝑓ℎ, 𝑟𝑓ℎ] = [𝒆𝒖𝑓 , 𝑒𝑝𝑓 ] lead to

‖D(𝒖𝑓ℎ − 𝒖𝑓ℎ)‖Ω𝑓
+ ‖𝑝𝑓ℎ − 𝑝𝑓ℎ‖Ω𝑓

≤ 𝑐𝐻2.

This concludes the proof of this theorem. □

Now let us turn to the error estimate of the final approximation 
[𝒖𝑓ℎ

𝐻
, 𝑝𝑓ℎ

𝐻
, 𝜙𝑝ℎ

𝐻
].

Thanks to (3.3) and the results in Theorem 4.1, we can check that

‖D(𝒖𝑓ℎ − 𝒖𝑓𝐻 )‖Ω ≤ 𝑐(𝐻 + ℎ).

𝑓
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If 𝐻 > 0 is small enough, from (3.6), we have

sup
[𝒗𝑓𝐻 ,𝑞𝑓𝐻 ,𝜓𝑝𝐻 ]∈𝑌𝐻

𝒖𝑓ℎ ([𝒗𝑓𝐻 , 𝑞𝑓𝐻 ,𝜓𝑝𝐻 ], [𝒘𝑓𝐻 , 𝑟𝑓𝐻 ,𝜎𝑝𝐻 ])

‖D(𝒗𝑓𝐻 )‖Ω𝑓
+ ‖𝑞𝑓𝐻‖Ω𝑓

+ ‖K 1
2 ∇𝜓𝑝𝐻‖Ω𝑝

≥ 𝛾(‖D(𝒘𝑓𝐻 )‖Ω𝑓
+ ‖𝑟𝑓𝐻‖Ω𝑓

+ ‖K 1
2 ∇𝜎𝑝𝐻‖Ω𝑝

).

Due to the above inequality, we can introduce the following projection 
from 𝑌ℎ onto 𝑌𝐻 : for given 𝜒ℎ = [𝒗𝑓ℎ, 𝑞𝑓ℎ, 𝜓𝑝ℎ] ∈ 𝑌ℎ, find

𝑃𝐻𝜒ℎ = [𝑃 𝒖
𝐻
(𝜒ℎ)𝒗𝑓ℎ,𝑃

𝑝

𝐻
(𝜒ℎ)𝑞𝑓ℎ,𝑃

𝜙

𝐻
(𝜒ℎ)𝜓𝑝ℎ] ∈ 𝑌𝐻 ,

which we simply denote as 𝑃𝐻𝜒ℎ = [𝑃 𝒖
𝐻
𝒗𝑓ℎ, 𝑃

𝑝

𝐻
𝑞𝑓ℎ, 𝑃

𝜙

𝐻
𝜓𝑝ℎ] ∈ 𝑌𝐻 and 

𝑄𝐻𝜒ℎ = (𝐼ℎ − 𝑃𝐻 )𝜒ℎ = [𝑄𝒖
𝐻
𝒗𝑓ℎ, 𝑄

𝑝

𝐻
𝑞𝑓ℎ, 𝑄

𝜙

𝐻
𝜓𝑓ℎ], such that ∀[𝒘𝑓𝐻 , 𝑟𝑓𝐻 ,

𝜎𝑝𝐻 ] ∈ 𝑌𝐻

𝒖𝑓ℎ ([𝒘𝑓𝐻 , 𝑟𝑓𝐻 ,𝜎𝑝𝐻 ], [𝑄𝒖
𝐻
𝒗𝑓ℎ,𝑄

𝑝

𝐻
𝑞𝑓ℎ,𝑄

𝜙

𝐻
𝜓𝑝ℎ]) = 0. (4.8)

Then we can rewrite (3.12) as

𝒖𝑓ℎ ([�̂�𝑓𝐻 , �̂�𝑓𝐻 , �̂�𝑝𝐻 ], [𝒗𝑓ℎ, 𝑞𝑓ℎ,𝜓𝑝ℎ])

= (𝒈𝑓 ,𝑃
𝒖
𝐻
𝒗𝑓ℎ)Ω𝑓

+ (𝑔𝑝,𝑃
𝜙

𝐻
𝜓𝑝ℎ)Ω𝑝

− 𝑎𝑓 (𝒖𝑓ℎ,𝑃 𝒖
𝐻
𝒗𝑓ℎ)

−𝑏𝑓 (𝒖𝑓ℎ,𝒖𝑓ℎ,𝑃 𝒖
𝐻
𝒗𝑓ℎ) − 𝑑𝑓 (𝑝𝑓ℎ,𝑃 𝒖

𝐻
𝒗𝑓ℎ) + 𝑑𝑓 (𝑃

𝑝

𝐻
𝑞𝑓ℎ,𝒖

𝑓ℎ)

−𝑎𝑝(𝜙𝑝ℎ,𝑃
𝜙

𝐻
𝜓𝑝ℎ) − 𝑎Γ([𝒖𝑓ℎ,𝜙𝑝ℎ], [𝑃 𝒖

𝐻
𝒗𝑓ℎ,𝑃

𝜙

𝐻
𝜓𝑝ℎ]).

Notice that

𝑎𝑓 (𝒖𝑓ℎ,𝒗𝑓ℎ) + 𝑏𝑓 (𝒖𝑓ℎ,𝒖𝑓ℎ,𝒗𝑓ℎ) + 𝑑𝑓 (𝑝𝑓ℎ,𝒗𝑓ℎ) − 𝑑𝑓 (𝑞𝑓ℎ,𝒖
𝑓ℎ)

+𝑎𝑝(𝜙𝑝ℎ,𝜓𝑝ℎ) + 𝑎Γ([𝒖𝑓ℎ,𝜙𝑝ℎ], [𝒗𝑓ℎ,𝜓𝑝ℎ])

= 𝒖𝑓ℎ ([𝒖𝑓ℎ, 𝑝𝑝ℎ,𝜙𝑝ℎ], [𝒗𝑓ℎ, 𝑞𝑓ℎ,𝜓𝑝ℎ]) − 𝑏𝑓 (𝒖𝑓ℎ,𝒖𝑓ℎ,𝒗𝑓ℎ),

we have the final approximation [𝒖𝑓ℎ

𝐻
, 𝑝𝑓ℎ

𝐻
, 𝜙𝑝ℎ

𝐻
] ∈ 𝑌ℎ satisfies

𝒖𝑓ℎ ([𝒖𝑓ℎ

𝐻
, 𝑝

𝑓ℎ

𝐻
,𝜙

𝑝ℎ

𝐻
], [𝒗𝑓ℎ, 𝑞𝑓ℎ,𝜓𝑝ℎ]) (4.9)

= (𝒈𝑓 ,𝑃
𝒖
𝐻
𝒗𝑓ℎ)Ω𝑓

+ (𝑔𝑝,𝑃
𝜙

𝐻
𝜓𝑝ℎ)Ω𝑝

+ 𝑏𝑓 (𝒖𝑓ℎ,𝒖𝑓ℎ,𝑃 𝒖
𝐻
𝒗𝑓ℎ)

+𝒖𝑓ℎ ([𝒖𝑓ℎ, 𝑝𝑓ℎ,𝜙𝑝ℎ], [𝑄𝒖
𝐻
𝒗𝑓ℎ,𝑄

𝑝

𝐻
𝑞𝑓ℎ,𝑄

𝜙

𝐻
𝜓𝑝ℎ]).

Now let us consider the following linearized approximation of the 
problem (𝑄ℎ): find [�̄�𝑓ℎ, �̄�𝑓ℎ, �̄�𝑝ℎ] ∈ 𝑌ℎ such that ∀[𝒗𝑓ℎ, 𝑞𝑓ℎ, 𝜓𝑝ℎ] ∈ 𝑌ℎ

𝒖𝑓ℎ ([�̄�𝑓ℎ, �̄�𝑓ℎ, �̄�𝑝ℎ], [𝒗𝑓ℎ, 𝑞𝑓ℎ,𝜓𝑝ℎ]) (4.10)

= (𝒈𝑓 ,𝒗𝑓ℎ)Ω𝑓
+ (𝑔𝑝,𝜓𝑝ℎ)Ω𝑝

+ 𝑏𝑓 (𝒖𝑓ℎ,𝒖𝑓ℎ,𝒗𝑓ℎ).

With the same definition of 𝒆𝒖𝑓 as defined in the proof of Theorem 4.1, 
the problem (𝑄ℎ) can be rewritten as

𝒖𝑓ℎ ([𝒖𝑓ℎ, 𝑝𝑓ℎ,𝜙𝑝ℎ], [𝒗𝑓ℎ, 𝑞𝑓ℎ,𝜓𝑝ℎ]) (4.11)

= (𝒈𝑓 ,𝒗𝑓ℎ)Ω𝑓
+ (𝑔𝑝,𝜓𝑝ℎ)Ω𝑝

+ 𝑏𝑓 (𝒖𝑓ℎ,𝒖𝑓ℎ,𝒗𝑓ℎ) − 𝑏𝑓 (𝒆𝒖𝑓 ,𝒆𝒖𝑓 ,𝒗𝑓ℎ).

By using (2.8) and the error estimate of 𝒆𝒖𝑓 in Theorem 4.1, we have

|𝑏𝑓 (𝒆𝒖𝑓 ,𝒆𝒖𝑓 ,𝒗𝑓ℎ)| ≤ 𝑐‖D(𝒆𝒖𝑓 )‖2Ω𝑓
‖D(𝒗𝑓ℎ)‖Ω𝑓

≤ 𝑐𝐻4‖D(𝒗𝑓ℎ)‖Ω𝑓
.

Comparing the above two equations (4.11) and (4.10) and using (3.7), 
we can easily get

‖D(𝒖𝑓ℎ− �̄�𝑓ℎ)‖Ω𝑓
+‖𝑝𝑓ℎ− �̄�𝑓ℎ‖Ω𝑓

+‖K 1
2 ∇(𝜙𝑝ℎ− �̄�𝑝ℎ‖Ω𝑝

≤ 𝑐𝐻4. (4.12)

Based on this estimation, we try to compare the final approximation 
[𝒖𝑓ℎ

𝐻
, 𝑝𝑓ℎ

𝐻
, 𝜙𝑝ℎ

𝐻
] with [�̄�𝑓ℎ, �̄�𝑓ℎ, �̄�𝑝ℎ] rather than [𝒖𝑓ℎ, 𝑝𝑓ℎ, 𝜙𝑝ℎ].

Let us denote

�̄�𝒖𝑓 = �̄�𝑓ℎ − 𝒖𝑓ℎ, 𝑒𝑝𝑓 = �̄�𝑓ℎ − 𝑝𝑓ℎ, 𝑒𝜙𝑝
= �̄�𝑝ℎ − 𝜙𝑝ℎ.

By using (4.2), (4.12) and the triangle inequality, we have

‖D(�̄�𝒖 )‖Ω + ‖𝑒𝑝 ‖Ω + ‖K 1
2 ∇𝑒𝜙 ‖Ω ≤ 𝑐𝐻2. (4.13)
𝑓 𝑓 𝑓 𝑓 𝑝 𝑝

49
Due to (4.10), we have

𝒖𝑓ℎ ([𝒖𝑓ℎ, 𝑝𝑓ℎ,𝜙𝑝ℎ], [𝑄𝒖
𝐻
𝒗𝑓ℎ,𝑄

𝑝

𝐻
𝑞𝑓ℎ,𝑄

𝜙

𝐻
𝜓𝑝ℎ])

= 𝒖𝑓ℎ ([�̄�𝑓ℎ, �̄�𝑓ℎ, �̄�𝑝ℎ], [𝑄𝒖
𝐻
𝒗𝑓ℎ,𝑄

𝑝

𝐻
𝑞𝑓ℎ,𝑄

𝜙

𝐻
𝜓𝑝ℎ])

−𝒖𝑓ℎ ([�̄�𝒖𝑓 , 𝑒𝑝𝑓 , 𝑒𝜙𝑝
], [𝑄𝒖

𝐻
𝒗𝑓ℎ,𝑄

𝑝

𝐻
𝑞𝑓ℎ,𝑄

𝜙

𝐻
𝜓𝑝ℎ])

= (𝒈𝑓 ,𝑄
𝒖
𝐻
𝒗𝑓ℎ)Ω𝑓

+ (𝑔𝑝,𝑄
𝜙

𝐻
𝜓𝑝ℎ)Ω𝑝

+ 𝑏𝑓 (𝒖𝑓ℎ,𝒖𝑓ℎ,𝑄𝒖
𝐻
𝒗𝑓ℎ)

−𝒖𝑓ℎ ([�̄�𝒖𝑓 , 𝑒𝑝𝑓 , 𝑒𝜙𝑝
], [𝑄𝒖

𝐻
𝒗𝑓ℎ,𝑄

𝑝

𝐻
𝑞𝑓ℎ,𝑄

𝜙

𝐻
𝜓𝑝ℎ]).

Therefore we can rewrite (4.9) as

𝒖𝑓ℎ ([𝒖𝑓ℎ

𝐻
, 𝑝

𝑓ℎ

𝐻
,𝜙

𝑝ℎ

𝐻
], [𝒗𝑓ℎ, 𝑞𝑓ℎ,𝜓𝑝ℎ]) (4.14)

= (𝒈𝑓 ,𝒗𝑓ℎ)Ω𝑓
+ (𝑔𝑝,𝜓𝑝ℎ)Ω𝑝

+ 𝑏𝑓 (𝒖𝑓ℎ,𝒖𝑓ℎ,𝒗𝑓ℎ)

−𝒖𝑓ℎ ([�̄�𝒖𝑓 , 𝑒𝑝𝑓 , 𝑒𝜙𝑝
], [𝑄𝒖

𝐻
𝒗𝑓ℎ,𝑄

𝑝

𝐻
𝑞𝑓ℎ,𝑄

𝜙

𝐻
𝜓𝑝ℎ]).

Then we have

𝒖𝑓ℎ ([�̄�𝑓ℎ − 𝒖
𝑓ℎ

𝐻
, �̄�𝑓ℎ − 𝑝

𝑓ℎ

𝐻
, �̄�𝑝ℎ − 𝜙

𝑝ℎ

𝐻
], [𝒗𝑓ℎ, 𝑞𝑓ℎ,𝜓𝑝ℎ]) (4.15)

= 𝒖𝑓ℎ ([�̄�𝒖𝑓 , 𝑒𝑝𝑓 , 𝑒𝜙𝑝
], [𝑄𝒖

𝐻
𝒗𝑓ℎ,𝑄

𝑝

𝐻
𝑞𝑓ℎ,𝑄

𝜙

𝐻
𝜓𝑝ℎ]),

and it is obvious that ∀[𝒗𝑓𝐻 , 𝑞𝑓𝐻 , 𝜓𝑝𝐻 ] ∈ 𝑌𝐻

𝒖𝑓ℎ ([�̄�𝑓ℎ − 𝒖
𝑓ℎ

𝐻
, �̄�𝑓ℎ − 𝑝

𝑓ℎ

𝐻
, �̄�𝑝ℎ −𝜙

𝑝ℎ

𝐻
], [𝒗𝑓𝐻 , 𝑞𝑓𝐻 ,𝜓𝑝𝐻 ]) = 0. (4.16)

Thanks to (3.7) and (4.13), we can easily get

‖D(�̄�𝑓ℎ − 𝒖
𝑓ℎ

𝐻
)‖Ω𝑓

+ ‖�̄�𝑓ℎ − 𝑝
𝑓ℎ

𝐻
‖Ω𝑓

+ ‖K 1
2 ∇(�̄�𝑝ℎ − 𝜙

𝑝ℎ

𝐻
)‖Ω𝑝

≤ 𝑐𝐻2.

(4.17)

To give the 𝐿2 error estimations of �̄�𝑓ℎ − 𝒖
𝑓ℎ

𝐻
and �̄�𝑝ℎ − 𝜙

𝑝ℎ

𝐻
, we 

will use the Aubin-Nitche technique. We first make the following usual 
assumption:

(A) for any given 𝒇𝑓 ∈ 𝑳2(Ω𝑓 ) and 𝑓𝑝 ∈ 𝐿2(Ω𝑝), the solution of the 
following problem

𝒖𝑓ℎ ([𝒗𝑓ℎ, 𝑞𝑓ℎ,𝜓𝑝ℎ], [𝒘𝑓ℎ, 𝑟𝑓ℎ, 𝜎𝑝ℎ]) = (𝒇 𝑝,𝒗𝑓ℎ)Ω𝑓
+ (𝑓𝑝,𝜓𝑝ℎ)Ω𝑝

,

∀[𝒗𝑓ℎ, 𝑞𝑓ℎ,𝜓𝑝ℎ] ∈ 𝑌ℎ,

satisfies

‖𝒘𝑓ℎ‖𝐻2(Ω𝑓 ) + ‖𝑟𝑓ℎ‖𝐻1(Ω𝑓 ) + ‖𝜎𝑓ℎ‖𝐻2(Ω𝑝) ≤ 𝑐(‖𝒇𝑓‖Ω𝑓
+ ‖𝑓𝑝‖Ω𝑝

).

Here the 𝐻2 norm is in the piecewise sense.

Now by taking 𝒇 𝑝 = 𝒗𝑓ℎ = �̄�𝑓ℎ − 𝒖
𝑓ℎ

𝐻
, 𝑓𝑝 = 𝜓𝑝ℎ = �̄�𝑝ℎ − 𝜙

𝑝ℎ

𝐻
and 𝑞𝑓ℎ =

�̄�𝑓ℎ − 𝑝
𝑓ℎ

𝐻
and being aware of (4.16), we get ∀[𝒘𝑓𝐻 , 𝑟𝑓𝐻 , 𝜎𝑝𝐻 ] ∈ 𝑌𝐻

‖�̄�𝑓ℎ − 𝒖
𝑓ℎ

𝐻
‖2Ω𝑓

+ ‖�̄�𝑝ℎ − 𝜙
𝑝ℎ

𝐻
‖2Ω𝑝

= 𝒖𝑓ℎ ([�̄�𝑓ℎ − 𝒖
𝑓ℎ

𝐻
, �̄�𝑓ℎ − 𝑝

𝑓ℎ

𝐻
, �̄�𝑝ℎ − 𝜙

𝑝ℎ

𝐻
], [𝒘𝑓ℎ, 𝑟𝑓ℎ, 𝜎𝑝ℎ])

= 𝒖𝑓ℎ ([�̄�𝑓ℎ − 𝒖
𝑓ℎ

𝐻
, �̄�𝑓ℎ − 𝑝

𝑓ℎ

𝐻
, �̄�𝑝ℎ − 𝜙

𝑝ℎ

𝐻
],

[𝒘𝑓ℎ −𝒘𝑓𝐻 , 𝑟𝑓ℎ − 𝑟𝑓𝐻 ,𝜎𝑝ℎ − 𝜎𝑝𝐻 ])

≤ 𝑐‖D(�̄�𝑓ℎ − 𝒖
𝑓ℎ

𝐻
)‖Ω𝑓

‖D(𝒘𝑓ℎ −𝒘𝑓𝐻 )‖Ω𝑓

+𝑐‖�̄�𝑓ℎ − 𝑝
𝑓ℎ

𝐻
‖Ω𝑓

‖D(𝒘𝑓ℎ −𝒘𝑓𝐻 )‖Ω𝑓

+𝑐‖K 1
2 ∇(�̄�𝑝ℎ −𝜙

𝑝ℎ

𝐻
)‖Ω𝑝

‖K 1
2 ∇(𝜎𝑝ℎ − 𝜎𝑝𝐻 )‖Ω𝑝

+𝑐‖D(�̄�𝑓ℎ − 𝒖
𝑓ℎ

𝐻
)‖Ω𝑓

‖K 1
2 ∇(𝜎𝑝ℎ − 𝜎𝑝𝐻 )‖Ω𝑝

+𝑐‖K 1
2 ∇(�̄�𝑝ℎ −𝜙

𝑝ℎ

𝐻
)‖Ω𝑝

‖D(𝒘𝑓ℎ −𝒘𝑓𝐻 )‖Ω𝑓

≤ 𝑐(‖D(�̄�𝑓ℎ − 𝒖
𝑓ℎ

𝐻
)‖Ω𝑓

+ ‖�̄�𝑓ℎ − 𝑝
𝑓ℎ

𝐻
‖Ω𝑓

+ ‖K 1
2 ∇(�̄�𝑝ℎ − 𝜙

𝑝ℎ

𝐻
)‖Ω𝑝

)

×( inf
𝒘 ∈𝑿

‖D(𝒘𝑓ℎ −𝒘𝑓𝐻 )‖Ω𝑓
+ inf

𝜎 ∈𝑋
‖K 1

2 ∇(𝜎𝑝ℎ − 𝜎𝑝𝐻 )‖Ω𝑝
)

𝑓𝐻 𝑓𝐻 𝑝𝐻 𝑝𝐻
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Table 1

Numerical results of the two-grid decoupling scheme with ℎ =𝐻2 .

𝐻 ℎ ‖D𝒆𝒖‖Ω𝑓
𝑅1

𝒖
‖𝑒𝑝‖Ω𝑓

𝑅0
𝑝

‖K 1
2 ∇𝑒𝜙‖Ω𝑝

𝑅1
𝜙

1
4

1
16

8.4856e-2 ∖ 2.4733e-2 ∖ 3.8090e-2 ∖
1
8

1
64

2.0649e-2 1.0195 2.8405e-3 1.5611 9.5124e-3 1.0008

1
16

1
256

5.1691e-3 0.9990 3.5333e-4 1.5035 2.3745e-3 1.0011
≤ 𝑐𝐻(‖D(�̄�𝑓ℎ − 𝒖
𝑓ℎ

𝐻
)‖Ω𝑓

+ ‖�̄�𝑓ℎ − 𝑝
𝑓ℎ

𝐻
‖Ω𝑓

+ ‖K 1
2 ∇(�̄�𝑝ℎ − 𝜙

𝑝ℎ

𝐻
)‖Ω𝑝

)

×(‖�̄�𝑓ℎ − 𝒖
𝑓ℎ

𝐻
‖Ω𝑓

+ ‖�̄�𝑝ℎ −𝜙
𝑝ℎ

𝐻
‖Ω𝑝

).

Then by applying (4.17), we get

‖�̄�𝑓ℎ − 𝒖
𝑓ℎ

𝐻
‖Ω𝑓

+ ‖�̄�𝑝ℎ − 𝜙
𝑝ℎ

𝐻
‖Ω𝑝

≤ 𝑐𝐻(‖D(�̄�𝑓ℎ − 𝒖
𝑓ℎ

𝐻
)‖Ω𝑓

+ ‖�̄�𝑓ℎ − 𝑝
𝑓ℎ

𝐻
‖Ω𝑓

+ ‖K 1
2 ∇(�̄�𝑝ℎ − 𝜙

𝑝ℎ

𝐻
)‖Ω𝑝

)

≤ 𝑐𝐻3.

Finally, combination of the above estimate with (4.12) yields

‖𝒖𝑓ℎ − 𝒖
𝑓ℎ

𝐻
‖Ω𝑓

+ ‖𝜙𝑝ℎ −𝜙
𝑝ℎ

𝐻
‖Ω𝑝

≤ 𝑐𝐻3. (4.18)

Then we obtain the following theorem by means of triangle inequal-

ity and the classical results in (3.3).

Theorem 4.2. Under the assumptions in Theorem 4.1, there hold the fol-

lowing error estimates:

‖D(𝒖𝑓 − 𝒖
𝑓ℎ

𝐻
)‖Ω𝑓

+ ‖𝑝𝑓 − 𝑝
𝑓ℎ

𝐻
‖Ω𝑓

+ ‖K 1
2 ∇(𝜙𝑝 −𝜙

𝑝ℎ

𝐻
)‖Ω𝑝

(4.19)

≤ 𝑐(ℎ+𝐻2),

‖𝒖𝑓 − 𝒖
𝑓ℎ

𝐻
‖Ω𝑓

+ ‖𝜙𝑝 − 𝜙
𝑝ℎ

𝐻
‖Ω𝑝

≤ 𝑐(ℎ2 +𝐻3). (4.20)

Remark 3. To balance the two error terms in (4.19), we need to choose

ℎ ∼𝐻2,

and we actually get

‖D(𝒖𝑓 − 𝒖
𝑓ℎ

𝐻
)‖Ω𝑓

+ ‖𝑝𝑓 − 𝑝
𝑓ℎ

𝐻
‖Ω𝑓

+ ‖K 1
2 ∇(𝜙𝑝 − 𝜙

𝑝ℎ

𝐻
)‖Ω𝑝

≤ 𝑐ℎ.

On the other hand, to balance the two error terms in (4.20), we take

ℎ ∼𝐻
3
2 .

Thus we have

‖𝒖𝑓 − 𝒖
𝑓ℎ

𝐻
‖Ω𝑓

+ ‖𝜙𝑝 −𝜙
𝑝ℎ

𝐻
‖Ω𝑝

≤ 𝑐ℎ2.

In such sense, we say that we get the optimal error estimations for the 
two-grid decoupling scheme.

5. Numerical experiments

In this section, we present some numerical experiments to verify 
the theoretical results of the proposed two-grid decoupling scheme. Let 
the computational domain Ω be composed of Ω𝑓 = (0, 1) × (1, 2) and 
Ω𝑝 = (0, 1) × (0, 1) with the interface Γ = (0, 1) × {1}. For simplicity, all 
the physical parameters are set to 1 and K = 𝐈. We choose the following 
exact solution to the mixed Navier-Stokes/Darcy model, which satisfies 
the three interface conditions (see [5]).

⎧⎪⎪⎨⎪⎪⎩

𝒖𝑓 =
(
cos( 𝜋2 𝑦)

2 sin( 𝜋2 𝑥),−cos( 𝜋2 𝑥)(
1
4 sin(𝜋𝑦) +

𝜋

4 𝑦)
)
, (𝑥, 𝑦) ∈ Ω𝑓 ,

𝑝𝑓 = 𝜋

4 cos(
𝜋

2 𝑥)(𝑦− 1 − cos(𝜋𝑦)), (𝑥, 𝑦) ∈ Ω𝑓 ,

𝜙 = 𝜋 cos( 𝜋 𝑥), (𝑥, 𝑦) ∈ Ω .
𝑝 4 2 𝑝

50
Table 2

Numerical results of the two-grid decoupling scheme with 
ℎ =𝐻

3
2 .

𝐻 ℎ ‖𝒆𝒖‖Ω𝑓
𝑅0

𝒖
‖𝑒𝜙‖Ω𝑝

𝑅0
𝜙

1
16

1
64

7.6971e-5 ∖ 4.3344e-5 ∖
1
25

1
125

1.9208e-5 2.0736 1.0405e-5 2.1315

1
49

1
343

2.5403e-6 2.0041 1.4637e-6 1.9430

Then we can get the external force term 𝒈𝑓 in Ω𝑓 and the source term 
𝑔𝑝 in Ω𝑝. And we impose the boundary conditions accordingly.

The finite element spaces we used are the MINI elements, say 𝑃1𝑏 −
𝑃1 finite element pair, for the fluid region and the linear continuous 
Lagrangian element, that is 𝑃1 element, for the porous media region. In 
the following two tables, we denote

𝒆𝒖 = 𝒖𝑓 − 𝒖
𝑓ℎ

𝐻
, 𝑒𝑝 = 𝑝𝑓 − 𝑝

𝑓𝑝

𝐻
, 𝑒𝜙 = 𝜙𝑝 − 𝜙

𝑝ℎ

𝐻
,

and

𝑅0
𝒖
, 𝑅0

𝜙
, 𝑅1

𝒖
, 𝑅1

𝜙
, 𝑅0

𝑝
,

the convergence orders of 𝒖𝑓ℎ

𝐻
and 𝜙𝑝ℎ

𝐻
in 𝐿2 and 𝐻1 norm, the conver-

gence order in 𝐿2 norm of 𝑝𝑓ℎ

𝐻
, respectively.

We compute the errors between the exact solution and its numerical 
approximation by the proposed two-grid decoupling scheme. In Table 1, 
we show the errors and convergence orders with respect to the fine 
mesh size ℎ in 𝐻1 norm for 𝒖𝑓 , 𝜙𝑝 and 𝐿2 norm for 𝑝𝑓 with the mesh 
size configuration ℎ = 𝐻2. Table 2 presents the errors in 𝐿2 norm of 
𝒖𝑓 and 𝜙𝑝 with ℎ = 𝐻

3
2 . By analyzing the data in the two tables, we 

can conclude that the convergence orders for the two-grid decoupling 
scheme are optimal both in 𝐻1 and 𝐿2 norm. These are consistent with 
the theoretical results obtained in Theorem 4.2.

All the computations are completed by using the open source soft-

ware package FreeFem++ [15]. We also thank Dr. Yuhong Zhang 
from Hunan Normal University, China, for his help in programing with 
FreeFem++.

Link to the Reproducible Capsule

https://codeocean .com /capsule /6782045 /tree /v1
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