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1 Introduction

Because of the important applications in real world applications, the mixed Stokes/Darcy and
Navier–Stokes/Darcy model received much attention in both theoretical and numerical aspect
in last decades.

Although many numerical methods have been proposed and studied for such mixed mod-
els with Beavers–Joseph (BJ) interface condition or a simplified version, say Beavers–Joseph–
Saffman (BJS) interface condition, for examples, see [1, 3, 5–7, 9, 10, 13, 16], etc., there are
still some basic mathematical problems keeping unsolved. For example, for the steady-state
problems, the well-posedness of the Stokes/Darcy problem with BJ interface condition under
mild physical parameters, the existence of weak solutions for the Navier–Stokes/Darcy problem
with BJ or even simpler BJS interface condition without the restriction of small data and/or
large viscosity and the global uniqueness of the weak solution. As is pointed out by Layton
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and his co-authors in [11], even for the linear model, say the coupled Stokes/Darcy model with
BJ interface condition, the well-posedness of the problem is unclear in general data case. The
authors in [11] considered the steady-state coupled Stokes/Darcy model with the most accepted
BJS interface condition in literatures and showed the unique solvability of the problem. Later
on, Cao and his co-authors discussed the well-posedness of the coupled Stokes/Darcy model
with BJ interface condition in [4] and got the unique solvability of this problem when the
physical parameter appeared in the BJ condition is sufficiently small.

As far as we know, the solvability for the steady-state coupled Navier–Stokes/Darcy model
with BJ or BJS interface condition is still unknown unless some very restrictive conditions are
imposed on the data of the problem. For example, the solvability of the steady-state Navier–
Stokes/Darcy model with BJS interface condition with mild physical parameters in weak sense
and the global uniqueness of the weak solution is still an unsolved problem. When the data
is small and/or the viscosity is large, the existence results have been established, for example,
see [9]. Similar results can be found also in [6]. Especially, the authors in [6] slightly modified
the balance of the normal force along the interface by adding some inertial force so that the
interface conditions can completely compensate the nonlinear convection in the energy balance
of the Navier–Stokes and derive an existence result without the small data and/or large viscosity
restrictions. However, such modification is lack of physical interpolation. For mild data case,
as is pointed out in [9], the difficulty for obtaining the existence of weak solutions to the
coupled system comes from the interface conditions, which does not completely compensate
the nonlinear convection in the energy balance in the Navier–Stokes equations and makes the
nonlinear convection term unabsorbable in the dissipative energy in mild data case. Due to
the same difficulty, as far as we know, the global uniqueness of the weak solution remains an
unsolved open problem for lacking of a priori estimates of weak solutions.

In this paper, we try to solve the above mentioned open problems. Firstly, we get an a
priori estimate of the possible weak solutions by expanding the mixed Navier–Stokes/Darcy
model with BJS interface condition to a more large coupled system. By the same technique, we
show the solvability of the Navier–Stokes/Darcy model with BJS interface condition without
the large viscosity and/or the small data restrictions by showing the solvability of the expanded
system. As a direct corollary, we establish the global uniqueness of the weak solution.

2 Mixed Navier–Stokes/Darcy Model with BJS Interface Condition

Consider the following mixed model of the Navier–Stokes equations and the Darcy equation for
coupling a fluid flow and a porous media flow in a bounded domain Ω ⊂ R

d, d = 2, 3. Here

Ω = Ωf ∪ Γ ∪ Ωp,

where Ωf and Ωp are two disjoint domains occupied by fluid flow and porous media flow and
Γ = Ωf ∩ Ωp is the interface. We denote

Γf = ∂Ωf\Γ, Γp = ∂Ωp\Γ,
and we also denote by np and nf the unit outward normal vectors on ∂Ωp and ∂Ωf , respectively.
Furthermore, Γp consists of two disjoint parts Γpd and Γpn. We assume |Γf |, |Γpd| > 0. See
Figure 1 for a sketch.
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Figure 1 A global domain Ω consisting of a fluid flow region Ωf and a porous media flow region Ωp

separated by an interface Γ

Let us denote by [uf , pf ] the velocity field and the pressure of the fluid flow in Ωf and φp

the piezometric head in Ωp. The partial differential equations modeling the fluid flow and the
porous media flow are

⎧
⎪⎪⎨

⎪⎪⎩

−∇ · (Tν(uf , pf )) + uf · ∇uf = gf , in Ωf ,

∇ · uf = 0, in Ωf ,

−∇ ·K∇φp = gp, in Ωp,

(2.1)

where

Tν(uf , pf ) = −pfI + 2νD(uf ), D(uf ) =
1
2
(∇uf + ∇Tuf ),

are the stress tensor and the deformation rate tensor, ν > 0 is the kinetic viscosity and K is
the permeability in Ωp, which is a positive definite symmetric tensor that is allowed to vary in
space. The third equation of (2.1) that describes the porous media flow motion is the Darcy’s
law for the piezometric head φp. In the rest of this paper, we always use boldface characters to
denote vector valued functions or spaces of vector valued functions.

The above equations (2.1) are completed and coupled together by the following boundary
conditions:

uf = 0 on Γf , K∇φp · np = 0 on Γpn, φp = 0 on Γpd, (2.2)

and the interface conditions on Γ:
⎧
⎪⎪⎨

⎪⎪⎩

uf · nf −K∇φp · np = 0,

−[Tν(uf , pf ) · nf ] · nf = φp,

−[Tν(uf , pf ) · nf ] · τi = Giuf · τi, i = 1, . . . , d− 1.

(2.3)

Here Gi > 0, i = 1, . . . , d−1, are constants depending on the nature of the porous medium and
determined from experimental data, τi, i = 1, . . . , d − 1, are the orthonormal tangential unit
vectors along Γ. The first condition is the mass conservation, the second one is the balance
of normal force and the third one means the tangential components of the normal stress force
is proportional to the tangential components of the fluid velocity, which is called the Beavers–
Joseph–Saffman’s (BJS) interface condition (see [2] and [14]).
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3 Preliminaries

Later on we need the following Hilbert spaces

Xf = {vf ∈ H1(Ωf ) : vf |Γf
= 0}, Qf = L2(Ωf ),

Xp = {ψp ∈ H1(Ωp) : ψp|Γpd
= 0},

where [Xf , Qf ] is the space pair for the velocity and the pressure in the fluid flow region Ωf
and Xp is the space for the piezometric head in the porous medium region Ωp. Let us denote

by H
1
2
00(Γ) the interpolation space [12]

H
1
2
00(Γ) = [L2(Γ),H1

0 (Γ)] 1
2
.

In addition we also introduce a vector valued Hilbert space over Ωp,

Xp = {vp ∈ H1(Ωp) : vp|Γp
= 0},

and a lifting operator γ−1 from a subspace of H
1
2
00(Γ) into Xp: for any ζ ∈ H

1
2
00(Γ) with

∫

Γ
ζ · npds = 0,

γ−1ζ ∈ Xp, (γ−1ζ)|Γ = ζ, ∇ · (γ−1ζ) = 0.

We assume

gf ∈ X ′
f , gp ∈ X ′

p, K ∈ L∞(Ωp)d×d, (3.1)

and there exist λmax > 0 and λmin > 0 such that

a.e. x ∈ Ωp, λmin|x|2 ≤ Kx · x ≤ λmax|x|2. (3.2)

Here X ′
f and X ′

p are the dual spaces of Xf and Xp, respectively.
For simplicity, we always use (·, ·)D and ‖ · ‖D to denote the L2 inner product and the

corresponding norm on any given domain D. Since |Γf |, |Γpd| > 0, we know that ‖D(·)‖Ωf
and

‖K 1
2∇ · ‖Ωp

are equivalent norms of the usual Sobolev norms in Xf and Xp due to the Korn’s
inequality, the Poincaré inequality and (3.2).

For any [uf , pf , φp], [vf , qf , ψp] ∈ Xf ×Qf ×Xp, let us introduce:

B([uf , pf , φp], [vf , qf , ψp])

= a([uf , φp], [vf , ψp]) + bf (uf ,uf ,vf ) + df (pf ,vf ) − df (qf ,uf ) + aΓ([uf , φp], [vf , ψp]),

where

a([uf , φp], [vf , ψp]) = af (uf ,vf ) + ap(φp, ψp),

=
[

2ν(D(uf ),D(vf ))Ωf
+
d−1∑

i=1

Gi(uf · τi,vf · τi)Γ
]

+ (K∇φp,∇ψp)Ωp
,

bf (uf ,wf ,vf ) = b1f (uf ,wf ,vf ) + b2f (uf ,wf ,vf ),

= ((uf · ∇)wf ,vf )Ωf
+

1
2
((∇ · uf )wf ,vf )Ωf

,

df (pf ,vf ) = (pf ,∇ · vf )Ωf
, ãΓ(φp,vf ) = (φp,vf · nf )Γ,

aΓ([uf , φp], [vf , ψp]) = ãΓ(φp,vf ) − ãΓ(ψp,uf ).
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Now the weak formulation of the mixed Navier–Stokes/Darcy model with BJS interface con-
dition reads as follows: for gf ∈ X ′

f , gp ∈ X ′
p, find [uf , pf , φp] ∈ Xf × Qf × Xp such that

∀[vf , qf , ψp] ∈ Xf ×Qf ×Xp

(Q) B([uf , pf , φp], [vf , qf , ψp]) = (gf ,vf )Ωf
+ (gp, ψp)Ωp

.

Since ∇ · uf = 0, we know that b2f (uf ,uf ,vf ) = 1
2 ((∇ ·uf )uf ,vf )Ωf

= 0 in the problem (Q).

Thanks to [9], we know that there exists a positive constant β > 0 such that the following
Ladyzhenskaya–Babuška–Brezzi (LBB) condition holds:

inf
qf∈Qf

sup
vf∈Xf

df (qf ,vf )
‖qf‖Ωf

‖D(vf )‖Ωf

≥ β. (3.3)

If we introduce the following divergence-free space

Vf = {vf ∈ Xf : ∇ · vf = 0},

the restriction of the test function vf to Vf in (Q) leads to the following reduced weak form:
find [uf , φp] ∈ Vf ×Xp such that ∀[vf , ψp] ∈ Vf ×Xp,

(P) BV ([uf , φp], [vf , ψp]) = (gf ,vf )Ωf
+ (gp, ψp)Ωp

,

where BV ([uf , φp], [vf , ψp]) = B([uf , 0, φp], [vf , 0, ψp]). By the same argument in [8], we know
that the problem (Q) and (P) are equivalent.

In the rest of this paper, we assume Ωf and Ωp are polygons or polyhedrons for simplicity.
For a given small positive parameter μ > 0, let us denote by Tμf , Tμp the regular triangulations
of Ωf , Ωp and we assume that the two meshes coincide on Γ. Let us denote by Xfμ ⊂ Xf ,
Qfμ ⊂ Qf , Xpμ ⊂ Xp and Xpμ ⊂ Xp the finite element spaces defined on Ωf and Ωp based
on the above triangulations. And we assume that [Xfμ, Qfμ] is a stable finite element pair.
In addition, let us denote by Πμ

f the Scott–Zhang finite element interpolator[15] from Xf onto
Xfμ with the following property

‖vf − Πμ
fvf‖Ωf

≤ cμ‖D(vf )‖Ωf
, ∀vf ∈ Xf . (3.4)

Here and after, we always use c to denote a generic positive constant which may take different
values in different occasions.

For the purpose of later analysis, for any bounded domain D ∈ R
d, we recall some inequal-

ities and identity:

‖v‖L2(∂D) ≤ c‖v‖ 1
2
L2(D)‖v‖

1
2
H1(D) ≤ c‖v‖H1(D), ∀v ∈ H1(D), (3.5)

‖v‖L4(∂D) ≤ c‖v‖H1(D), ∀v ∈ H1(D), (3.6)

|((w · ∇)u,v)D|, |((∇ · u)w,v)D|
≤ c‖w‖ 1

2
L2(D)‖w‖ 1

2
H1(D)‖u‖H1(D)‖v‖H1(D), ∀w,u,v ∈ H1(D), (3.7)

∫

D

(u · ∇)v · w +
∫

D

(u · ∇)w · v

=
∫

∂D

(v · w)u · n −
∫

D

(∇ · u)v · w, ∀u,v,w ∈ H1(D). (3.8)
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4 An a Priori Estimate of Weak Solutions

We know from [9] that the difficulty for obtaining an a priori estimate of weak solutions to the
Navier–Stokes/Darcy model comes from the unbalance of the energy caused by the nonlinear
convection in the Navier–Stokes equations. In one sentence, there is energy exchange due to
convection along the interface Γ. Generally, we need some small data and/or large viscosity
restrictions to make such energy exchange to be absorbed by the dissipative energy in the energy
balance of the Navier–Stokes equations. On the other hand, such energy exchange along the
interface Γ must come from the outside region of the Navier–Stokes equations. If we can mimic
an outside world of the Navier–Stokes equations, for example an outside world in Ωp, such that
the convection in the outside system can completely or nearly compensate the above mentioned
energy exchange, it is possible for us to make the energy exchange along Γ controllable.

To do this, for certain fixed μ > 0 and some constant σ > 0, we introduce the following
auxiliary linear equations in Ωp: for any given uf ∈ Vf ,

⎧
⎨

⎩

−2σ∇ ·D(up) + (u0
p · ∇)up = 0 in Ωp,

up|Γp
= 0, up|Γ = (Πμ

fuf )|Γ,
(4.1)

where u0
p = γ−1(uf |Γ) ∈ Xp with ∇ · u0

p = 0. We can easily show that the auxiliary system is
well-posed for any given μ > 0, σ > 0 and uf ∈ Vf .

Now we consider the Galerkin approximation of (4.1) in the finite element space Xpμ: find
upμ ∈ Xpμ such that

(Aμ)

⎧
⎨

⎩

2σ(D(upμ),D(vpμ))Ωp
+ ((u0

p · ∇)upμ,vpμ)Ωp
− σ

∫

Γ
∂upµ

∂np
vpμ = 0, ∀vpμ ∈ Xpμ,

upμ|Γ = (Πμ
fuf )|Γ.

It is clear that (P) and (Aμ) form a weakly coupled system

(C)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

BV ([uf , φp], [vf , ψp]) = (gf ,vf )Ωf
+ (gp, ψp)Ωp

, ∀[vf , ψp] ∈ Vf ×Xp,

2σ(D(upμ),D(vpμ))Ωp
+ ((u0

p · ∇)upμ,vpμ)Ωp
− σ

∫

Γ

∂upμ
∂np

vpμ = 0, ∀vpμ ∈ Xpμ,

upμ|Γ = (Πμ
fuf )|Γ.

We call (C) a weakly coupled system since (Aμ) is subjected to (P) while (P) is independent
of (Aμ).

Now it is ready for us to derive the a priori estimate of the possible solutions to (P).

Theorem 4.1 There holds the following a priori estimate for the possible solutions [uf , φp] ∈
Vf ×Xp to (P)

ν‖D(uf )‖2
Ωf

+ ‖K 1
2∇φp‖2

Ωp
≤ C2,

where
C2 = cν−1‖gf‖2

X′
f

+ cλ−1
min‖gp‖2

X′
p
.

Proof In the proof, we assume that [uf , φp] ∈ Vf ×Xp is a solution to the problem (P) and
upμ ∈ Xpμ is the corresponding unique solution of (Aμ). For this solution uf ∈ Vf , we denote

Muf
= ‖D(uf )‖Ωf

. (4.2)
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Taking [vf , ψp] = [uf , φp] in (P) and omitting the non-negative interface term
∑d−1
i=1 Gi(uf ·

τi,uf · τi)Γ, we get

2ν‖D(uf )‖2
Ωf

+ ‖K 1
2∇φp‖2

Ωp
+ ((uf · ∇)uf ,uf )Ωf

(4.3)

≤ (gf ,uf )Ωf
+ (gp, φp)Ωp

.

Taking vpμ = upμ in (Aμ) and using the boundary condition upμ|Γ = (Πμ
fuf )|Γ lead to

2σ‖D(upμ)‖2
Ωp

+ ((u0
p · ∇)upμ,upμ)Ωp

− σ

∫

Γ

∂upμ
∂np

Πμ
fuf = 0. (4.4)

Being aware of nf = −np on Γ, ∇ · uf = ∇ · u0
p = 0 and the identity (3.8), it is easy to verify

that

((uf · ∇)uf ,uf )Ωf
=

1
2

∫

Γ

|uf |2uf · nf ,

((u0
p · ∇)upμ,upμ)Ωp

=
1
2

∫

Γ

|upμ|2u0
p · np = −1

2

∫

Γ

|Πμ
fuf |2uf · nf .

By using (3.5), (3.6), (3.4), the assumption (4.2), the Korn’s and the Poincaré inequality,
summation of the above two identities leads to

((uf · ∇)uf ,uf )Ωf
+ ((u0

p · ∇)upμ,upμ)Ωp

=
1
2

∫

Γ

[|uf |2uf · nf − |Πμ
fuf |2uf · nf ]

=
1
2

∫

Γ

[(uf − Πμ
fuf ) · (uf + Πμ

fuf )uf · nf ]
≤ c‖uf − Πμ

fuf‖L2(Γ)‖uf + Πμ
fuf‖L4(Γ)‖uf‖L4(Γ)

≤ cMuf
μ

1
2 ‖D(uf )‖2

Ωf
. (4.5)

This means the auxiliary system can almost compensate the nonlinear convection of the Navier–
Stokes equations in the energy balance.

Taking the above estimation into account, the summation of (4.3) and (4.4) yields

2ν‖D(uf )‖2
Ωf

+ ‖K 1
2∇φp‖2

Ωp
+ 2σ‖D(upμ)‖2

Ωp
(4.6)

≤ |(gf ,uf )Ωf
| + |(gp, φp)Ωp

| + σ

∣
∣
∣
∣

∫

Γ

∂upμ
∂np

Πμ
fuf

∣
∣
∣
∣ + cMuf

μ
1
2 ‖D(uf )‖2

Ωf
.

For the first two terms on the right hand side of the above inequality, by using the Korn’s
inequality, the Poincaré inequality and (3.2) we have

|(gf ,uf )Ωf
| + |(gp, φp)Ωp

|
≤ c‖gf‖X′

f
‖D(uf )‖Ωf

+ cλ
− 1

2
min‖gp‖X′

p
‖K 1

2∇φp‖Ωp

≤ ν

2
‖D(uf )‖2

Ωf
+

1
2
‖K 1

2∇φp‖2
Ωp

+ cν−1‖gf‖2
X′

f
+ cλ−1

min‖gp‖2
X′

p
. (4.7)

For the third term on the right hand side of (4.6), by using (3.5), the Korn’s inequality, the
Poincaré inequality and the following inequality

‖vpμ‖L2(∂K) ≤ cμ− 1
2 ‖vpμ‖L2(K), ∀vpμ ∈ Xpμ,
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we have

σ

∣
∣
∣
∣

∫

Γ

∂upμ
∂np

Πμ
fuf

∣
∣
∣
∣ ≤ σ

∥
∥
∥
∥
∂upμ
∂np

∥
∥
∥
∥
L2(Γ)

‖Πμ
fuf‖L2(Γ)

≤ cσ‖∇upμ · np‖L2(∂Ωp)‖Πμ
fuf‖L2(∂Ωf )

≤ cσ

(
∑

K∈Tµ
p

‖∇upμ‖2
L2(∂K)

) 1
2

‖Πμ
fuf‖H1(Ωf )

≤ cσμ− 1
2 ‖∇upμ‖Ωp

‖∇uf‖Ωf
≤ cσμ− 1

2 ‖D(upμ)‖Ωp
‖D(uf )‖Ωf

≤ cσ2μ−1ν−1‖D(upμ)‖2
Ωp

+
ν

2
‖D(uf )‖2

Ωf
. (4.8)

If we choose μ small enough and σ small enough such that

cMuf
μ

1
2 <

ν

2
, 0 < σ ≤ cνμ,

combination of (4.3), (4.4), (4.5), (4.7) and (4.8) admits

σ‖D(upμ)‖2
Ωp

+ ν‖D(uf )‖2
Ωf

+ ‖K 1
2∇φp‖2

Ωp
(4.9)

≤ cν−1‖gf‖2
X′

f
+ cλ−1

min‖gp‖2
X′

p

�
= C2.

Since the solutions of (P) is independent of the system (Aμ), the above a priori estimate
actually gives a μ and σ independent a priori estimate of possible solutions to (P)

ν‖D(uf )‖2
Ωf

+ ‖K 1
2∇φp‖2

Ωp
≤ C2. �

Remark 4.2 The result of Theorem 4.1 means that there exists a positive constant C only
depending on the data of the problem (P) such that all possible solutions [uf , φp] ∈ Vf ×Xp

to (P) is bounded by this constant, especially

ν‖D(uf )‖2
Ωf

≤ C2.

Therefore
Muf

≤ C
ν

1
2
.

In the next section, we fix μ > 0 and σ > 0 such that

cCμ 1
2 <

ν
3
2

2
and σ ≤ cνμ. (4.10)

5 Existence and Global Uniqueness of the Weak Solution

In this section, we will use the Galerkin method to show the solvability of (P) (and (Q)), and
then give the global uniqueness of the solution.

5.1 Solvability of the Coupled FEM Scheme

For any given h > 0, we denote by Xfh, Qfh and Xph the corresponding finite element spaces
of Xf , Qf and Xp, which converge to Xf , Qf and Xp when h→ 0. Furthermore, we introduce

Vfh = {vfh ∈ Xfh : df (qfh,vfh) = 0, ∀qfh ∈ Qfh}.
We consider the Galerkin approximation of (P) in Vfh×Xph: find [ufh, φph] ∈ Vfh×Xph such
that ∀[vfh, ψph] ∈ Vfh ×Xph,

(Ph) BV ([ufh, φph], [vfh, ψph]) = (gf ,vfh)Ωf
+ (gp, ψph)Ωp

.
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First of all, we need to show the solvability of (Ph). Let us denote

Uhμ = Vfh × Xpμ ×Xph.

We consider the following more large coupled system: find [ufh,upμ, φph] ∈ Uhμ such that
∀[vfh,vpμ, ψph] ∈ Uhμ,

(Ch)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

BV ([ufh, φph], [vfh, ψph]) = (gf ,vfh)Ωf
+ (gp, ψph)Ωp

,

2σ(D(upμ),D(vpμ))Ωp
+ ((u0

p · ∇)upμ,vpμ)Ωp
− σ

∫

Γ

∂upμ
∂np

vpμ = 0,

upμ|Γ = (Πμ
fufh)|Γ,

where u0
p = γ−1(ufh|Γ) with ∇·u0

p = 0. It is obvious that if [ufh,upμ, φph] ∈ Uhμ is a solution
to (Ch), [ufh, φph] solves (Ph). On the other hand, if [ufh, φph] ∈ Vfh ×Xph is a solution to
(Ph), one can get a unique upμ ∈ Xpμ such that [ufh,upμ, φph] ∈ Uhμ solves (Ch). Therefore,
to show the solvability of (Ph), we turn to show the solvability of (Ch).

For this purpose, for any given ũfh ∈ Vfh satisfying ν‖D(ũfh)‖2
Ω ≤ C2, let us consider the

following linear coupled system

(LCh)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

L̃([ufh, φph], [vfh, ψph]) = (gf ,vfh)Ωf
+ (gp, ψph)Ωp

,

2σ(D(upμ),D(vpμ))Ωp
+ ((ũ0

p · ∇)upμ,vpμ)Ωp
− σ

∫

Γ

∂upμ
∂np

vpμ = 0,

upμ|Γ = (Πμ
fufh)|Γ,

where ũ0
p = γ−1(ũfh|Γ) with ∇ · ũ0

p = 0 and

L̃([ufh, φph], [vfh, ψph])

= a([ufh, φph], [vfh, ψph]) + bf (ũfh,ufh,vfh) + aΓ([ufh, φph], [vfh, ψph]).

To diminish the restriction upμ|Γ = (Πμ
fufh)|Γ in (LCh), we introduce the following trace

space on Γ,
Mμ = Xpμ|Γ ⊂ H

1
2
00(Γ),

and a bilinear form bhμ(·, ·) defined on Uhμ × M ′
μ,

bhμ(ξμ, [vfh,vpμ, ψph]) = 〈ξμ,Πμ
fvfh − vpμ〉M ′

µ

�
= 〈ξμ, Bhμ(vfh,vpμ, ψph)〉M ′

µ
,

where Bhμ is a linear mapping from Uhμ into Mμ. Now we define a bilinear form Ch(·, ·) on
(Uhμ × M ′

μ) × (Uhμ × M ′
μ):

∀[ufh,upμ, φph, ξμ], [vfh,vpμ, ψph,μμ] ∈ Uhμ × M ′
μ,

Ch([ufh,upμ, φph, ξμ], [vfh,vpμ, ψph,μμ])

= L̃([ufh, φph], [vfh, ψph]) + 2σ(D(upμ),D(vpμ))Ωp
+ ((ũ0

p · ∇)upμ,vpμ)Ωp

−σ
∫

Γ

∂upμ
∂np

vpμ + bhμ(ξμ, [vfh,vpμ, ψph]) + bhμ(μμ, [ufh,upμ, φph])

�
= ãh([ufh,upμ, φph], [vfh,vpμ, ψph])

+bhμ(ξμ, [vfh,vpμ, ψph]) + bhμ(μμ, [ufh,upμ, φph]).
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Let us consider the following problem: find [ufh,upμ, φph, ξμ] ∈ Uhμ × M ′
μ such that for any

[vfh,vpμ, ψph,μμ] ∈ Uhμ × M ′
μ,

(LC′
h) Ch([ufh,upμ, φph, ξμ], [vfh,vpμ, ψph,μμ]) = (gf ,vfh)Ωf

+ (gp, ψph)Ωp
.

If we introduce

Vhμ = {[vfh,vpμ, ψph] ∈ Uhμ : vpμ|Γ = (Πμ
fvfh)|Γ},

it is clear that
ker(Bhμ) = Vhμ.

The bilinear form ãh(·, ·) is Vhμ-elliptic on Vhμ×Vhμ for fixed μ and σ described in (4.10), which
can be easily showed by the manner in the previous section if we notice ν‖D(ũfh)‖2

Ω ≤ C2. In
addition,

sup
[vfh,vpµ,ψph]∈Uhµ\{0}

bhμ(ξμ, [vfh,vpμ, ψph])

‖D(vfh)‖Ωf
+ ‖K 1

2∇ψph‖Ωp
+ ‖D(vpμ)‖Ωp

≥ sup
vpµ∈Xpµ\{0}

〈ξμ,vpμ〉M ′
µ

‖D(vpμ)‖Ωp

≥ c‖ξμ‖M ′
µ
.

The last inequality is valid since for any given vpμ|Γ ∈ Mμ, we can always find some v′
pμ ∈ Xpμ

with v′
pμ|Γ = vpμ|Γ and ‖D(v′

pμ)‖Ωp
≤ c‖vpμ|Γ‖Mµ

. Then we assert that the bilinear form
bhμ(·, ·) satisfies the LBB condition on Uhμ × M ′

μ. Together with the Vhμ-elliptic of ah(·, ·), we
can get the well-posedness of the problem (LC′

h) in Uhμ × M ′
μ (see [8]).

Suppose [ufh,upμ, φph, ξμ] ∈ Uhμ×M ′
μ is the solution to the problem (LC′

h), we can further
show that ξμ = 0. In fact, taking vfh = 0, ψph = 0, μμ = 0 and vfh = 0, vpμ = 0, ψph = 0 in
(LC′

h), respectively, we get

2σ(D(upμ),D(vpμ))Ωp
+ ((ũ0

p · ∇)upμ,vpμ)Ωp
− σ

∫

Γ

∂upμ
∂np

vpμ

+(ξμ,vpμ)Γ = 0, ∀vpμ ∈ Xpμ,

upμ|Γ = (Πμ
fufh)|Γ.

It is clear that the above upμ satisfies: ∀vpμ ∈ Xpμ ∩ H1
0 (Ωp),

2σ(D(upμ),D(vpμ))Ωp
+ ((ũ0

p · ∇)upμ,vpμ)Ωp
= 0, upμ|Γ = (Πμ

fufh)|Γ.
This is also equivalent to the problem: ∀vpμ ∈ Xpμ,

2σ(D(upμ),D(vpμ))Ωp
+ ((ũ0

p · ∇)upμ,vpμ)Ωp
− σ

∫

Γ

∂upμ
∂np

vpμ = 0,

upμ|Γ = (Πμ
fufh)|Γ.

Thus we have
〈ξμ,vpμ〉M ′

µ
= 0, ∀vpμ ∈ Xpμ.

That is ξμ = 0. This ensures the problem (LC′
h) is equivalent to the problem (LCh). And the

well-posedness of (LC′
h) in Uhμ × M ′

μ guarantees the unique solvability of (LCh) in Uhμ.
By the similar procedure for obtaining the a priori estimate in the previous section, if μ and

σ satisfy (4.10) and ν‖D(ũfh)‖2
Ω ≤ C2, we can get the solution of (LCh) satisfies

σ‖D(upμ)‖2
Ωp

+ ν‖D(ufh)‖2
Ωf

+ ‖K 1
2∇φph‖2

Ωp
≤ C2.
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If we introduce a ball BhC ⊂ Vfh ×Xph,

BhC = {[vfh, ψph] ∈ Vfh ×Xph : ν‖D(vfh)‖2
Ωf

+ ‖K 1
2∇ψph‖2

Ωp
≤ C2},

the linear system (LCh) defines a continuous mapping [ufh, φph] = T (ũfh) from BhC into BhC .
Then by the Brouwer’s fixed point theorem, (Ph) possesses at least one solution [ufh, φph] ∈ BhC .

We conclude the above result in the following theorem.

Theorem 5.1 For any given h > 0, the problem (Ph) has at least one solution [ufh, φph] ∈
Vfh ×Xph satisfying

ν‖D(ufh)‖2
Ωf

+ ‖K 1
2∇φph‖2

Ωp
≤ C2,

where C is defined in Theorem 4.1.

5.2 Well-posedness

Thanks to Theorem 5.1, we derive a uniformly bounded sequence {[ufh, φph]}h>0 in Xf ×Xp.
Since Xf ×Xp is compactly embedded in L2(Ωf ) × L2(Ωp) for bounded domains Ωf and Ωp,
we can extract a subsequence, which is still denoted by h, such that as h → 0 there exists
[uf , φp] ∈ Vf ×Xp such that

[ufh, φph] → [uf , φp] weakly in Xf ×Xp, (5.1)

[ufh, φph] → [uf , φp] strongly in L2(Ωf ) × L2(Ωp). (5.2)

Lemma 5.2 For [uf , φp] defined in (5.1) and (5.2), we have ∀[vf , ψp] ∈ Xf ×Xp,

lim
h→0

a([ufh, φph], [vf , ψp]) = a([uf , φp], [vf , ψp]),

lim
h→0

aΓ([ufh, φph], [vf , ψp] = aΓ([uf , φp], [vf , ψp],

lim
h→0

bf (ufh,ufh,vf ) = bf (uf ,uf ,vf ) = b1f (uf ,uf ,vf ).

Proof The proof of this lemma is trivial and we omit it. �

Theorem 5.3 The problem (Q) has at least one solution [uf , pf , φp] ∈ Xf × Qf ×Xp with
the following bounds

ν‖D(uf )‖2
Ωf

+ ‖K 1
2∇φp‖2

Ωp
≤ C2, ‖pf‖Ωf

≤ cβ−1C(1 + C),

where C is defined in Theorem 4.1.

Proof Taking h → 0 in the problem (Ph) and being aware of the results in Lemma 5.2, we
know that the limit [uf , φp] in (5.1) and (5.2) is a solution to the problem (P) and the bound
for ν‖D(uf )‖2

Ωf
+ ‖K 1

2∇φp‖2
Ωp

is obvious thanks to Theorem 5.1.
Thanks to the LBB condition (3.3), we know that there exists a unique pf ∈ Qf such that

[uf , pf , φp] ∈ Xf × Qf × Xp is a solution to problem (Q). And it is easily obtained by using
(3.3) that

‖pf‖Ωf
≤ cβ−1C(1 + C). �

Finally, we can also get the following global uniqueness of the weak solution.

Theorem 5.4 Assume the data of the mixed Navier–Stokes/Darcy model with BJS interface
condition satisfy

c(ν−2‖gf‖X′
f

+ ν−
3
2λ

− 1
2

min‖gp‖X′
p
) < 1. (5.3)
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The problem (P) (and (Q)) has only one solution in Vf ×Xp (and Xf ×Qf ×Xp).

Proof Suppose (uif , φ
i
p) ∈ Vf ×Xp, i = 1, 2, be two solutions to (P). Their difference satisfies

2ν(D(u1
f − u2

f ),D(vf ))Ωf
+ (((u1

f − u2
f ) · ∇)u1

f ,vf )Ωf

+((u2
f · ∇)(u1

f − u2
f ),vf )Ωf

+ (K∇(φ1
p − φ2

p),∇ψp)Ωp

+(φ1
p − φ2

p,vf · nf )Γ − (ψp, (u1
f − u2

f ) · nf )Γ

+
d−1∑

i=1

Gi

∫

Γ

((u1
f − u2

f ) · τi)(vf · τi) = 0.

Taking vf = u1
f − u2

f and ψp = φ1
p − φ2

p, using (3.7) and taking the result in Theorem 5.3
into account, we obtain

2ν‖D(u1
f − u2

f )‖2
Ωf

+ ‖K 1
2∇(φ1

p − φ2
p)‖2

Ωp

≤ c(‖D(u1
f )‖Ωf

+ ‖D(u2
f )‖Ωf

)‖D(u1
f − u2

f )‖2
Ωf

≤ cC
ν

1
2
‖D(u1

f − u2
f )‖2

Ωf
.

Thanks to the definition of C in Theorem 4.1 and (5.3), we have

cν‖D(u1
f − u2

f )‖2
Ωf

+ c‖K 1
2∇(φ1

p − φ2
p)‖2

Ωp
≤ 0.

This leads to the global uniqueness of the weak solution of (P) in Vf ×Xp. The uniqueness of
the solution of (Q) in Xf ×Qf ×Xp is obvious thanks to (3.3). �

6 Conclusion

By means of expanding the Navier–Stokes/Darcy model with BJS interface condition to a more
large coupled system, we establish an a priori estimate of the weak solutions of the original
problem. Then an existence result of weak solution to this coupled system is obtained without
the restriction of the small data and/or the large viscosity for the first time. Finally, a global
uniqueness result of the weak solution is derived which solves the open problem raised in [9].
The contribution of this paper is to overcome the difficulty caused by the nonlinear convection
in the Navier–Stokes equations. However, if we consider the Navier–Stokes/Darcy problem with
BJ interface condition, the difficulty pointed out in [4] and [11] is still there. Whether one can
get the a priori estimate of the weak solution and obtain the unique solvability globally is still
unclear. It is obvious that the uniqueness holds true for small data, while for the problem with
general large data, only weaker results can be proved.
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