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1 Introduction

Because of the important applications in real world applications, the mixed Stokes/Darcy and
Navier—Stokes/Darcy model received much attention in both theoretical and numerical aspect
in last decades.

Although many numerical methods have been proposed and studied for such mixed mod-
els with Beavers—Joseph (BJ) interface condition or a simplified version, say Beavers—Joseph—
Saffman (BJS) interface condition, for examples, see [1, 3, 5-7, 9, 10, 13, 16], etc., there are
still some basic mathematical problems keeping unsolved. For example, for the steady-state
problems, the well-posedness of the Stokes/Darcy problem with BJ interface condition under
mild physical parameters, the existence of weak solutions for the Navier—Stokes/Darcy problem
with BJ or even simpler BJS interface condition without the restriction of small data and/or
large viscosity and the global uniqueness of the weak solution. As is pointed out by Layton
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and his co-authors in [11], even for the linear model, say the coupled Stokes/Darcy model with
BJ interface condition, the well-posedness of the problem is unclear in general data case. The
authors in [11] considered the steady-state coupled Stokes/Darcy model with the most accepted
BJS interface condition in literatures and showed the unique solvability of the problem. Later
on, Cao and his co-authors discussed the well-posedness of the coupled Stokes/Darcy model
with BJ interface condition in [4] and got the unique solvability of this problem when the
physical parameter appeared in the BJ condition is sufficiently small.

As far as we know, the solvability for the steady-state coupled Navier—Stokes/Darcy model
with BJ or BJS interface condition is still unknown unless some very restrictive conditions are
imposed on the data of the problem. For example, the solvability of the steady-state Navier—
Stokes/Darcy model with BJS interface condition with mild physical parameters in weak sense
and the global uniqueness of the weak solution is still an unsolved problem. When the data
is small and/or the viscosity is large, the existence results have been established, for example,
see [9]. Similar results can be found also in [6]. Especially, the authors in [6] slightly modified
the balance of the normal force along the interface by adding some inertial force so that the
interface conditions can completely compensate the nonlinear convection in the energy balance
of the Navier—Stokes and derive an existence result without the small data and/or large viscosity
restrictions. However, such modification is lack of physical interpolation. For mild data case,
as is pointed out in [9], the difficulty for obtaining the existence of weak solutions to the
coupled system comes from the interface conditions, which does not completely compensate
the nonlinear convection in the energy balance in the Navier—Stokes equations and makes the
nonlinear convection term unabsorbable in the dissipative energy in mild data case. Due to
the same difficulty, as far as we know, the global uniqueness of the weak solution remains an
unsolved open problem for lacking of a priori estimates of weak solutions.

In this paper, we try to solve the above mentioned open problems. Firstly, we get an a
priori estimate of the possible weak solutions by expanding the mixed Navier—Stokes/Darcy
model with BJS interface condition to a more large coupled system. By the same technique, we
show the solvability of the Navier—Stokes/Darcy model with BJS interface condition without
the large viscosity and/or the small data restrictions by showing the solvability of the expanded

system. As a direct corollary, we establish the global uniqueness of the weak solution.

2 Mixed Navier—Stokes/Darcy Model with BJS Interface Condition

Consider the following mixed model of the Navier—Stokes equations and the Darcy equation for

coupling a fluid flow and a porous media flow in a bounded domain Q C R, d = 2,3. Here
Q= Qf uru Qp,

where Qf and 2, are two disjoint domains occupied by fluid flow and porous media flow and
I' = Q7 N Q, is the interface. We denote

Iy =00,\I', T',=0Q,\TI,

and we also denote by n, and ny the unit outward normal vectors on 02, and 9, respectively.
Furthermore, I', consists of two disjoint parts I'pg and I',. We assume |T'f|, |T'pq| > 0. See

Figure 1 for a sketch.
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Figure 1 A global domain € consisting of a fluid flow region {2y and a porous media flow region €,

separated by an interface I’

Let us denote by [uy, ps] the velocity field and the pressure of the fluid flow in Q; and ¢,
the piezometric head in 2,. The partial differential equations modeling the fluid flow and the

porous media flow are

=V - (Tu(uy,py)) +uy - Vuy =gy, inQy,
V-uy =0, in Qy¢, (2.1)
-V - ]de)p = 9p, in Qp,

where

1
T (us,py) = —psL+2vD(uy), D(uy) =, (Vus + Viuy),

are the stress tensor and the deformation rate tensor, v > 0 is the kinetic viscosity and K is
the permeability in €2,,, which is a positive definite symmetric tensor that is allowed to vary in
space. The third equation of (2.1) that describes the porous media flow motion is the Darcy’s
law for the piezometric head ¢,. In the rest of this paper, we always use boldface characters to
denote vector valued functions or spaces of vector valued functions.

The above equations (2.1) are completed and coupled together by the following boundary
conditions:

ur=0 only, KV¢, n,=0 onl,,, ¢,=0 onl), (2.2)

and the interface conditions on I':

uy-ny—KVe, - -n, =0,

—[Ty(uys,ps) ngl-ny = oy, (2.3)

—[T,(us,py) -nyl -1 =Guy-1, i=1,...,d—1
Here G; > 0,i=1,...,d—1, are constants depending on the nature of the porous medium and
determined from experimental data, 7;, ¢ = 1,...,d — 1, are the orthonormal tangential unit
vectors along I'. The first condition is the mass conservation, the second one is the balance
of normal force and the third one means the tangential components of the normal stress force

is proportional to the tangential components of the fluid velocity, which is called the Beavers—
Joseph—Saffman’s (BJS) interface condition (see [2] and [14]).
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3 Preliminaries

Later on we need the following Hilbert spaces

Xy ={vy € H'(Qy) :vslr, =0}, Qf = L*(Qy),

Xp={vp € Hl(Qp) : wph‘pd =0},
where [ X, Q] is the space pair for the velocity and the pressure in the fluid flow region Qf
and X, is the space for the piezometric head in the porous medium region €2,. Let us denote

1
by HZ(T') the interpolation space [12]
1
Hg,(T) = [L*(T), Hy (D)) 3.

In addition we also introduce a vector valued Hilbert space over ),
X, ={v, € H'(®,) : v,|r, = 0},

and a lifting operator y~! from a subspace of HOéO(I‘) into X,: for any ¢ € HOéO(I‘) with
Jr¢ - npds =0,
7ICEX,, (Ol =¢ V(37O =0.

We assume

gr € X}, gpeX), KeL®Q,)™, (3.1)
and there exist Apax > 0 and Ay, > 0 such that
a.e. X € (1, )\min|x\2 <Kx-x< )\max|x|2. (3.2)

Here X and X, are the dual spaces of X and X, respectively.

For simplicity, we always use (-,-)p and || - |p to denote the L? inner product and the
corresponding norm on any given domain D. Since |T'y[, [T',q| > 0, we know that [|ID(-)|lo, and
H]Ké V- |la, are equivalent norms of the usual Sobolev norms in X; and X, due to the Korn’s
inequality, the Poincaré inequality and (3.2).

For any [us,pr, ¢pl, V5, a5, ¥p) € X5 x Qf x Xp, let us introduce:

B([ug,pgs ¢pls V5, a5, ¥p))
= a(lus, dpl, [vr, ¥p]) + by (g, up, vp) +dp(pr,vy) — de(ar, us) + ar([ug, dpl, [vg, ¥p)),

where

a[wg, ¢pl, [vr,¥p)) = ap(ur,ve) + ay(dp, vyp),
d—1

= | 20(D(us), D(vy)a, + Y Giluy 7,05 - 7)r | + (KVey, Vi )a,,

=1
bp(ug,wy,vp) =bip(up, wy,vp) + boy(us, wy, vy),
= (uy - V)wp,vp)a, + (V- ughwy, o),
de(ps,vs) = (s, V- v5)ass  ar(dp, vy) = (¢p, vs - ng)r,
ar([ug, ¢pl, [vy,¥p]) = ar(dp, vy) — ar(¥p, uy).
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Now the weak formulation of the mixed Navier—Stokes/Darcy model with BJS interface con-
dition reads as follows: for gy € X}, g, € X, find [us,ps,¢p] € Xy x Q x X, such that
V[vg g dpl € X5 x Qp x X,

Q) B([uy,ps, dpls [vr, a5, ¥p)) = (g5, v)a, + (9o, p)a, -

Since V- uy = 0, we know that bys(ug, ug,vs) = 5((V-ug)us,vs)a, =0 in the problem (Q).
Thanks to [9], we know that there exists a positive constant 3 > 0 such that the following
Ladyzhenskaya—Babuska—Brezzi (LBB) condition holds:

: dy(as,vy)
inf  sup > g. (3.3)
a1€Qs vre X, llarlla, [ID(vr)lla,

If we introduce the following divergence-free space
Vf:{’l)fEXf: V~’l)f:0},

the restriction of the test function v, to V; in (Q) leads to the following reduced weak form:
find [uy, ¢p] € V; x X, such that Vv, ] € Vy x X,

(P) BV([uf’ ¢;D]v [va ¢p]) = (gf’ v.f)Qf + (gpa wp)ﬂpa

where BY ([uy, ¢p), [vs,¥p]) = B([uy,0,8,], [vs,0,1,]). By the same argument in [8], we know
that the problem (Q) and (P) are equivalent.

In the rest of this paper, we assume §2; and €2, are polygons or polyhedrons for simplicity.
For a given small positive parameter u > 0, let us denote by T%, T »' the regular triangulations
of Qf, Q, and we assume that the two meshes coincide on I'. Let us denote by Xy, C Xy,
Qru C Qf, Xpu C X, and X, C X, the finite element spaces defined on €2y and €2, based
on the above triangulations. And we assume that [X¢,,Qy,] is a stable finite element pair.
In addition, let us denote by H‘f‘ the Scott-Zhang finite element interpolator[15] from X onto
X, with the following property

oy — Whoslla, < cullD(vp)lle,. Yoy € X;. (3.4)

Here and after, we always use ¢ to denote a generic positive constant which may take different
values in different occasions.
For the purpose of later analysis, for any bounded domain D € R?, we recall some inequal-

ities and identity:

1 1
lollzsop) < clvllZa o Wl oy < cllvlanpy, Vo € H(D), (3.5)
lollzsop) < clvlany, Vo€ H(D), (3.6)

[((w - V)u,v)pl, [(V - uw)w,v)p|

1 1
< cllwll2a Il s o el a2 o) [0l a1 () Vo, w0 € HY(D), (3.7)

[ v [ @ v
:/BD(v.w)u.n_/D(v.u)v.w, Yu,v,w € H' (D). (3.8)
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4 An a Priori Estimate of Weak Solutions

We know from [9] that the difficulty for obtaining an a priori estimate of weak solutions to the
Navier—Stokes/Darcy model comes from the unbalance of the energy caused by the nonlinear
convection in the Navier-Stokes equations. In one sentence, there is energy exchange due to
convection along the interface I'. Generally, we need some small data and/or large viscosity
restrictions to make such energy exchange to be absorbed by the dissipative energy in the energy
balance of the Navier—Stokes equations. On the other hand, such energy exchange along the
interface I' must come from the outside region of the Navier—Stokes equations. If we can mimic
an outside world of the Navier-Stokes equations, for example an outside world in €, such that
the convection in the outside system can completely or nearly compensate the above mentioned
energy exchange, it is possible for us to make the energy exchange along I' controllable.
To do this, for certain fixed p > 0 and some constant ¢ > 0, we introduce the following
auxiliary linear equations in €,: for any given uy € Vi,
—20V - D(uy) + (u) - V)u, =0 inQ,, (4.1)
uplr, =0, wuplr = (Wuy)lr,
where ug = ’}/_1(’U,f|1") € X, with V- ug = 0. We can easily show that the auxiliary system is
well-posed for any given y > 0, 0 > 0 and uy € V7.
Now we consider the Galerkin approximation of (4.1) in the finite element space X,,,: find
Uy, € X,y such that

Oupy _
20(D(upy), D(vyu))a, + ((ug V) Upp, Vpu), — Ufr on, Vpn = 0, Vop, € Xpp,

(Aw)
Upulr = (Hl;uf)h“-

It is clear that (P) and (A,) form a weakly coupled system
BV([uf7 (rb[)]a [vfa 1/}1’)}) = (gfa 'Uf)Qf + (gpa 1/}17)9195 V['Uf, 17[}17] S Vf X va

(©) S 20(D(tup) Dwp))a, + (U - V)it vy ), — 0 /

Upu|r = (H?uf)h“-

dupy,

v,, =0, Y, X
on, " ) i P>

We call (C) a weakly coupled system since (A,,) is subjected to (P) while (P) is independent
of (A,).

Now it is ready for us to derive the a priori estimate of the possible solutions to (P).
Theorem 4.1  There holds the following a priori estimate for the possible solutions [uy, ¢, €
Vr x X, to (P)

vID(uy)lla, + K2 Veylla, < C2,

where

C* = cvlgrllx, + cAniallgnlli;

Proof In the proof, we assume that [uy, ¢,] € Vy x X, is a solution to the problem (P) and

Uy, € X, is the corresponding unique solution of (A,,). For this solution uy € V¢, we denote

My, = ||[D(uy)llq;- (4.2)
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Taking [vy,1,] = [us, ¢p] in (P) and omitting the non-negative interface term Zf;ll Gi(uy

T, Wf - T;)T, We get
1
w[|D(up)|d, + K2 Ve,ld, + ((uf - V)ug, ug)a, (4.3)
< (gf,uf)a; + (9p: Pp)a,

Taking vy, = upy, in (4,) and using the boundary condition wuy,|r = (Ijuy)|r lead to

201Dy, + () Vi, = [ DMy =0 4

Being aware of ny = —n, on I', V-uy =V - ug = 0 and the identity (3.8), it is easy to verify
that

1
((uy - Vus,usp)o, = /qul us-mny,
1 o |2
((u V) upp, up)o |uw| u My =7 F|Hfuf| Uy -Nj.

By using (3.5), (3.6), (3.4), the assumption (4.2), the Korn’s and the Poincaré inequality,

summation of the above two identities leads to
(wg - Vug,up)a, + ((up - V)tpy, upp)a,
=y [l Pus g = Ty P g
= /F[(uf —Wug) - (uy +Mpup)uy -ny

< clluy — Miugllpzylluy + Wpwg |l paryllwsllpar)
1
< My, 12 | D(uy) I3, - (4.5)

This means the auxiliary system can almost compensate the nonlinear convection of the Navier—
Stokes equations in the energy balance.

Taking the above estimation into account, the summation of (4.3) and (4.4) yields
20| D(up) |8, + 1K= V8, + 20D (), (4.6)

8’11, 1
<I(arupda| + (00,00, | +o| [ a,f“ﬂ‘;uf\ + My, 13 D) 3,
P

For the first two terms on the right hand side of the above inequality, by using the Korn’s

inequality, the Poincaré inequality and (3.2) we have

l(gr,up)as |+ 1(gp, Pp)a,|
< cllgslx;, ||lD(Uf)||Qf + C)\mmHgPHX' K2 Veyllq,

< 2||ID(uf)||Qf IIK2V¢p\IQ + e lgrllx, + eAniallgnlk, (4.7)

For the third term on the right hand side of (4.6), by using (3.5), the Korn’s inequality, the

Poincaré inequality and the following inequality

1
|vpull2or) < ™2 vpullLexys VU € Xppus
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we have

g

ou
/ pr H/;Uf‘ S g
r on,

o (T sl 2y

< co||Vupy - npl 200, T u sl L2 00,)
1

2
<ca( 3 |Vuw|%2<am) IV
KeT)y

_1 1
< cop” 2 [Vupull, [Vurlla, < cop™2 [D(up)llo, [ID(uy)llo,
1 v
<o pT T D)6, + ) D (uy) I3, (4.8)
If we choose p small enough and o small enough such that
v
2’
combination of (4.3), (4.4), (4.5), (4.7) and (4.8) admits

cMuf,ué < 0 <o <cvp,

1
gD (up)ld, + vID(up) 8, + K2 Vépl3, (4.9)
_ _ A
< v grli, + eXginllgpllk, =€
Since the solutions of (P) is independent of the system (A,), the above a priori estimate
actually gives a 1 and o independent a priori estimate of possible solutions to (P)

1
VD (up)lf, + K2 Ve,|l3, < C*. O

Remark 4.2 The result of Theorem 4.1 means that there exists a positive constant C only
depending on the data of the problem (P) such that all possible solutions [us, ¢, € V; x X,
to (P) is bounded by this constant, especially

v[D(uy)lE, < C*.

Therefore

c
My, <

In the next section, we fix p > 0 and ¢ > 0 such that

3
Cuz < V; and o < cvp. (4.10)
5 Existence and Global Uniqueness of the Weak Solution
In this section, we will use the Galerkin method to show the solvability of (P) (and (Q)), and

then give the global uniqueness of the solution.

5.1 Solvability of the Coupled FEM Scheme

For any given h > 0, we denote by X, @, and X, the corresponding finite element spaces
of X¢, Qf and X, which converge to X¢, Q¢ and X, when h — 0. Furthermore, we introduce

Vin ={ven € Xgn: dp(qen,ven) =0, Varn € Qpn}e

We consider the Galerkin approximation of (P) in Vyj, x Xpp: find [wn, dpn] € Vin X Xph such
that V['Ufh, wph] € Vin x Xpn,

(Pn) BY ([wsn, dpnl; [0rn: ¥pnl) = (g5, 0500, + (9ps Ypn)a,-
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First of all, we need to show the solvability of (P},). Let us denote
Uh# = ‘/fh X Xp# X Xph.

We consider the following more large coupled system: find [wp, Upy, ¢pn] € Uy, such that
v[Ufha ’vp,uvah] € Uny,

BY ([wsn, dpnl, [sn, Ypnl) = (g, ven)a; + (9p, Yph)a,
Dy,

(Cn) 20(D(uy,), ]D('Upu))ﬂp + ((ug V) upy, 'Upu)Qp - P
r ony

Uy = 0,

Upulr = (H?ufh)h“v

where ul =y~ (usp|p) with V-u) = 0. It is obvious that if [w s, Uy, dpn] € Uny, is a solution
to (Ch), [wsn, dpn] solves (Py). On the other hand, if [wsn, dpr] € Vin X Xpp is a solution to
(Pp), one can get a unique uy,, € X, such that [wsn, upy, dpn] € Up, solves (Cj). Therefore,
to show the solvability of (P,), we turn to show the solvability of (Cp,).

For this purpose, for any given s, € Vyy, satisfying v||D(wsp)||3 < C?, let us consider the
following linear coupled system

L([wgn, dpnls [0rn, Yon]) = (g1, v50)0, + (99, Ypn)a,

_ ou
(LCh) 20(D(upy), D(vpu))a, + ((ug V)Upy, Upu)a, — 0 . anpu Upp = 0,
P

Upu|r = (H?ufh)h“v

where @9 =y~ (@y|r) with V- @) = 0 and

y
L([wsn, dpnls [V5n, Ypn))
= a([wsn, dpnls [Vns pn]) +bf(Upn, wen, ven) + ar([Wen, Gpnls [Vin, Ypn))-

To diminish the restriction w,,|r = (Ijuyp)|r in (LCy), we introduce the following trace
space on I,
1
M, = Xpulr € Hgy(T),

and a bilinear form bﬁ(~, -) defined on Uy, x M,
bﬁ(gm (Vs Vpus Ypn]) = (€us v sn — Vpp) nay
<€m (0 hs Opps Ppn)) M

where BZ is a linear mapping from Uy, into M,,. Now we define a bilinear form Cj(-,-) on
(Unp x M) x (Upy x M),):

V[ shs Wppus pns €l [V hs Vpps Yph i) € Unyu x M,

Cr([wsn, Wpps Spn, Eul, [V R, Vpps Ypn, 1)

= L ([wrn, ¢ph] [Vn, Ypn]) + 20 (D(upu), ]D(vpu))ﬂp + (('&2 V) upy, 'Upu)Qp
—U/ on, Oy + 002 (€ [V h Oppes Ypn]) + Oty [ pn, Uy, Gpi])

A
= an([Wshs Wpps Ppnls [Vfns Vo, Ypnl)

+bﬁ (6#, [vfhv Vpps wph]) + bﬁ (p‘,u, [ufhv Up, ¢ph])'
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Let us consider the following problem: find [wsn, Upy, Oph, Eu] € Uny X M[L such that for any
[vfhuvpu>'(/}phauu] € Uhp, X M,/J,u

(LCh) Chl[wpn, Wpp, Bphs €uls [Vhs Vppus Yphs 4]) = (gfvvfh)ﬂf + (9ps Ypr)a, -

If we introduce

Vi = {[vsn, Vpus Ppn] € Unpe : vpulr = (Wpvgn)r},
it is clear that
ker(B)) = Vi,
The bilinear form ay (-, -) is V3,,-elliptic on V},,, x V3, for fixed p and o described in (4.10), which

can be easily showed by the manner in the previous section if we notice v||D(wyp)[|3 < C?. In
addition,
sup bZ(E;u [Vsh; Vpus Yph])
1
[wrn0p pn]€URNOY [ID(vgn) o) + K2 Vibpnlla, + [[D(vp)lle,
(&> vpu)

> sup
opne X, \ {0} ID(vp)lle,

> el ng,-
The last inequality is valid since for any given v,,|r € M,,, we can always find some vzlm € X,
with v, [r = vpulr and [|D(v,,)lle, < cllvpulrlag,. Then we assert that the bilinear form
bli(-,-) satisfies the LBB condition on Uy, x M),. Together with the Vj, -elliptic of a (-, -), we
can get the well-posedness of the problem (LC},) in Uy, x Mj, (see [8]).

Suppose [ sn, Upp, Pph, €] € Uny < M, is the solution to the problem (LC},), we can further
show that &, = 0. In fact, taking vy, = 0, ¥p, =0, p, = 0 and vsp = 0, vy, =0, Ppn, =0 in
(LC},), respectively, we get

- Jou
20(D(upp), D(vpu))a, + ((ug V) Upy, Vpu ), — 0 9 - Upp
r ony
+(&u vpp)r =0, Yo, € Xy,
Upulr = (H?ufh)‘l“
It is clear that the above u,, satisfies: Vv, € X,, N H{(2,),
20 (D(uy,), ]D('Upu))ﬂp + (('&2 : v)uwvvw)ﬂp =0, uplr= (Hl;ufh)h“-

This is also equivalent to the problem: Vv,, € X,
20(D(upu), D(vpu))a, + ((ﬁg “V)upp, vpu)e, — 0

Upulr = (Hl;ufh)h“-
Thus we have
<£M,UPH)ML =0, Vo, € X,,.
That is €, = 0. This ensures the problem (LC},) is equivalent to the problem (LCj). And the
well-posedness of (LC},) in Uy, x M), guarantees the unique solvability of (LCp) in Up,,.
By the similar procedure for obtaining the a priori estimate in the previous section, if ;1 and
o satisfy (4.10) and v||D(ag)||3 < C?, we can get the solution of (LC},) satisfies

1
D (up) Iy, + vID(usn)lIy, + K2 Ve, < C*.
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If we introduce a ball Bg C Vin X Xph,

1
Bg = {[vsn, Y] € Vin x Xpn : v[D(vsn)[I3, + K2 V|3, < C?},
the linear system (LC},) defines a continuous mapping [w s, dpn] = T(wysp) from BE into BE.
Then by the Brouwer’s fixed point theorem, (Pj,) possesses at least one solution [wsp, ¢,n] € BE.

We conclude the above result in the following theorem.

Theorem 5.1 For any given h > 0, the problem (Pj) has at least one solution [wsn, dpn] €
Vin x Xpn satisfying
1
VD)3, + 1K Vo3, <,

where C is defined in Theorem 4.1.
5.2 Well-posedness

Thanks to Theorem 5.1, we derive a uniformly bounded sequence {[wp, dpn|}r>o in Xy x X,
Since X s x X, is compactly embedded in L?(€2y) x L?(§,) for bounded domains Qf and €,
we can extract a subsequence, which is still denoted by h, such that as h — 0 there exists
[us, ¢p] € V§ x X, such that

[Wsn, dpn] — [ur, @p] weakly in Xy x X, (5.1)
[upns Gp] — [tag, 6] strongly in L2(y) x L2(2,). (5.2)
Lemma 5.2 For [uy, ¢, defined in (5.1) and (5.2), we have V[vs,v,] € Xf x X,
lim a([wsn, dpnl, [vr, ¥pl) = alluy, dp); [vr, ¥p)),
lim ar([wsn, @pnl, [vr, ¥p] = ar(fur, dp], [vr, ¥p],
Hm by (wsn, wpn, vp) = by (up, ugp,vp) = biy(uy, uy, vy).
Proof The proof of this lemma is trivial and we omit it. O

Theorem 5.3 The problem (Q) has at least one solution [uy,ps, dp] € X5 x Qf x X, with
the following bounds

1 —
vD(ug)llf, + K2 Vep[g, <€ lprlle, < eB7'C1+C),
where C is defined in Theorem 4.1.

Proof Taking h — 0 in the problem (P;) and being aware of the results in Lemma 5.2, we
know that the limit [uy, ¢, in (5.1) and (5.2) is a solution to the problem (P) and the bound
for VHID(’u,f)H%f + H]K§V¢p\|?2p is obvious thanks to Theorem 5.1.

Thanks to the LBB condition (3.3), we know that there exists a unique p; € @ such that
[us,pr, ¢p] € X5 X Qf x X, is a solution to problem (Q). And it is easily obtained by using
(3.3) that

Ipslle, <cB7'C(1+C). O

Finally, we can also get the following global uniqueness of the weak solution.

Theorem 5.4 Assume the data of the mized Navier—Stokes/Darcy model with BJS interface
condition satisfy

_ _3 .1
(™ llgsllxy + v 2 A llgpllx,) < 1. (5.3)
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The problem (P) (and (Q)) has only one solution in Vi x X, (and X x Q¢ x X,).
Proof Suppose (u}, gb;) € Vi x X, i = 1,2, be two solutions to (P). Their difference satisfies
2v(D
+
+

uy —u}), D(vy))a, + (((uy —u) - Vup, vf)o,
uf - V)(uf —uf),vp)o, + (KV(dy, — 05), Vo,

Gy — b2 vp g — (Y, (up —uf) - nyp)r

(

((

(
d-1

+ZGZ/F((u} —u}) - 7i)(vy - 7;) =0.

2

-, using (3.7) and taking the result in Theorem 5.3

Taking vy = u} —u} and ¥, = ¢, —

into account, we obtain
2vD(uf — u)lla, + 1K=V (6, — 6)l,
< c(|D(up)llo, + D)o, ID(u) —uf)ld,
< I} — ),
Thanks to the definition of C in Theorem 4.1 and (5.3), we have
ev|D(uj — )|, + K2V (3, - 65, <0.

This leads to the global uniqueness of the weak solution of (P) in V; x X,,. The uniqueness of
the solution of (Q) in X; x Qf x X,, is obvious thanks to (3.3). O

6 Conclusion

By means of expanding the Navier—Stokes/Darcy model with BJS interface condition to a more
large coupled system, we establish an a priori estimate of the weak solutions of the original
problem. Then an existence result of weak solution to this coupled system is obtained without
the restriction of the small data and/or the large viscosity for the first time. Finally, a global
uniqueness result of the weak solution is derived which solves the open problem raised in [9].
The contribution of this paper is to overcome the difficulty caused by the nonlinear convection
in the Navier—Stokes equations. However, if we consider the Navier—Stokes/Darcy problem with
BJ interface condition, the difficulty pointed out in [4] and [11] is still there. Whether one can
get the a priori estimate of the weak solution and obtain the unique solvability globally is still
unclear. It is obvious that the uniqueness holds true for small data, while for the problem with

general large data, only weaker results can be proved.
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