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In this paper, we present a fully discrete analysis of an H(div)-conforming DG method with semi-implicit
time-marching for the evolutionary incompressible Navier–Stokes equations. We use a semi-implicit
time-discrete scheme in which the convection velocity is treated explicitly for the convection term. A
stability analysis and a priori error estimates are given, in which the constants are independent of the
negative powers of the viscosity. For inf-sup stable H(div)-conforming finite element pairs BDMk/Pk−1
and RTk/Pk, the rate of convergence k + 1/2 is proved for the L2 error of the velocity in the case of
ν ≤ Ch, where k is the degree of the polynomials in the velocity approximation. In particular, for the inf-
sup stable finite element pair RTk/Pk, the convergence rate of the pressure is also k + 1/2 when ν ≤ Ch.
The numerical experiments verify the analytical results.

Keywords: semirobust; H(div)-conforming DG method; semi-implicit time-marching; evolutionary
Navier–Stokes equations.

1. Introduction

In the paper, we study fully discrete approximations to the evolutionary incompressible Navier–Stokes
equations, with H(div)-conforming DG method in space and the semi-implicit Euler method in time.
The use of the semi-implicit scheme is a popular approach, which avoids solving a nonlinear problem at
each discrete time. We derive the error bound of the velocity, where the constants in the error bound of
kinetic energy and dissipative energy are independent of the Reynolds number. These kinds of bounds
are called semirobust or quasi-robust in the literature.

For semirobust analysis of the velocity, some works have been done recently. The H1-conforming
mixed finite element method with grad-div stabilization has been analyzed in De Frutos et al. (2016,
2018), in which a rate of convergence k is proved for the L2 error of the velocity. The local projection
stabilization method has been widely studied. With inf-sup and non-inf-sup stable mixed finite elements,
the rates of convergence k and k + 1/2 are proved for the L2 error of the velocity, in Arndt et al. (2015)
and de Frutos et al. (2019), respectively. In addition, for continuous internal penalty (CIP) methods,
an error bound of order k + 1/2 is obtained by using equal-order finite element pairs (Burman &
Fernández, 2007). Unfortunately, they are not pressure-robust, that is to say, the error bounds of the
velocity depend on the pressure. For divergence-free H1-conforming finite element method, the error
bound of the velocity is pressure-robust and semirobust; however, it is sub-optimal with convergence
rate of k (Schroeder & Lube, 2017). An optimal estimate of order k + 1 is given in Evans & Hughes
(2013) for isogeometric finite element method, but it is not semirobust.

In this paper, we consider H(div)-conforming DG method for the evolutionary incompressible
Navier–Stokes equations. H(div)-conforming DG method provides exact divergence-free velocity,
which of course is also pressure-robust. In the method, the natural upwind stabilization is included
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as a convection stabilization. In addition, the fact that less stability is required leads to less numerical
dissipation. So, it is a very promising approach for high Reynolds number flow (Schroeder & Lube,
2018; Schroeder et al., 2019; Lube & Schroeder, 2020). We particularly focus on numerical analysis of
H(div)-conforming DG method for the evolutionary incompressible Navier–Stokes equations. H(div)-
conforming DG methods with the central flux have been analyzed for the incompressible Euler
equations. However, numerical experiments suggest that the analysis is not sharp for the upwind flux
(Guzmán et al., 2017). H(div)-conforming DG methods for the space semidiscrete Navier–Stokes
equations is presented in Schroeder et al. (2018), which basically follow the ideas from Guzmán et al.
(2017). The L2 error of the velocity is pressure-robust and semirobust, but it has a rate of convergence k
(Schroeder et al., 2018).

In this paper, we focus on the numerical analysis of the fully discrete H(div)-conforming DG
method for the evolutionary incompressible Navier–Stokes equations with semi-implicit time-marching
strategy. First, we focus on semirobust analysis of the velocity error bound at high Reynolds number. By
introducing the Raviart–Thomas (RT) interpolation operator, we apply some specific techniques to the
convection term and prove that the L2 error of the velocity is semirobust, and has a rate of convergence
k + 1/2 in the case of ν ≤ Ch, which shows the same convergence rate as the CIP method (Burman
& Fernández, 2007). Secondly, following the ideas of Ahmed et al. (2017) and de Frutos et al. (2019),
we give the error bound of the L2 norm of a discrete in time primitive of the pressure, which is not
of the stronger discrete in time L2 norm of the pressure. For the inf-sup stable finite element pair, the
convergence rate of the pressure is also obtained. In particular, for the inf-sup stable finite element pair
RTk/Pk, the convergence rate of the pressure is k + 1/2 in the case of ν ≤ Ch.

The outline of the paper is as follows. In Section 2, the weak form of the continuous Navier–Stokes
equations is presented. In Section 3, we introduce H(div)-conforming and inf-sup stable finite element
method for the evolutionary Navier–Stokes equations. In Section 4, we give the existence and uniqueness
of solutions and stability analysis. In Section 5, by introducing H(div) interpolation operator, we prove
that when the condition ν ≤ Ch is satisfied, the error bound of the velocity, which is pressure-robust
and semirobust, has a rate of convergence k + 1/2. In Section 6, the convergence rate of the pressure
is obtained. In Section 7, we provide a comment on alternative time discretizations, full-implicit and
implicit-explicit (IMEX) time-marching schemes. Finally, Section 8 presents numerical experiments to
verify the analytical results.

2. Navier–Stokes problem

Throughout the paper, for D ⊆ Rd (d ∈ {2, 3}), we use the Sobolev spaces Wm,p(D) for scalar-valued
functions with associated norms ‖·‖Wm,p(D) and seminorms |·|Wm,p(D) for m � 0 and p � 1. In the case
m = 0, W0,p(D) = Lp(D), and when p = 2, Wm,2(D) = Hm(D). Spaces for vector- and tensor-valued
functions are indicated with bold letters. In addition, for the Bochner space Lp(0, T; Y)(1 ≤ p ≤ ∞),
where Y is a Banach space, the abbreviation Lp(Y) = Lp(0, T; Y) is frequently used. ‖v‖Lp(0,T;Y)

represents a discrete approximation of ‖v‖Lp(0,T;Y).
Let Ω ⊂ R

d be a bounded polygonal or polyhedral domain with Lipschitz boundary ∂Ω . We
consider the evolutionary incompressible Navier–Stokes equations⎧⎪⎪⎪⎨

⎪⎪⎪⎩

∂tu − νΔu + (u · ∇)u + ∇p = f (0, T] × Ω ,

∇ · u = 0 (0, T] × Ω ,

u = 0 (0, T] × ∂Ω ,

u(0, x) = u0(x) Ω ,

(2.1)
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where u is the velocity field, p the kinematic pressure, ν > 0 the kinematic viscosity, u0 a given initial
velocity and f represents the external body force. Introduce

X = H1
0(Ω), Q = L2

0(Ω) =
{

q ∈ L2(Ω),
∫

Ω

q dx = 0

}
.

The weak formulation of (2.1) takes the form: find (u, p) : (0, T] → (X, Q), satisfying

(∂tu, v) + νa(u, v) + c(u, u, v) + b(v, p) = F(v) ∀v ∈ X,

b(u, q) = 0 ∀q ∈ Q.
(2.2)

Here, the multilinear forms are given by

a(u, v) =
∫

Ω

∇u:∇v dx, c(u, u, v) =
∫

Ω

(u·∇)u·v dx,

b(u, q) = −
∫

Ω

q(∇ ·u) dx.

We introduce the space of weakly divergence-free velocities

V = {v ∈ X : b(v, q) = 0, ∀ q ∈ Q}.

3. H(div)-conforming DG finite element method

Let Th be a shape-regular and quasi-uniform simplicial mesh of Ω , and mesh size hT denotes the
diameter of the element T ∈ Th. The skeleton Fh denotes the set of all facets. Fh = F i

h ∪ F∂
h where F i

h
and F∂

h are the subset of interior facets and boundary facets, respectively. Then, we define the jump �·�F
and average { · }F operator across interior facets F ∈ F i

h by

�φ�F = φ+ − φ−, {φ}F = φ+ + φ−

2
.

For boundary facets F ∈ F∂
h , we set

�φ�F = {φ}F = φ.

Define the broken gradient ∇h: H1(Th

) → L2(Ω) by (∇hw)|T = ∇(w|T) and the broken Sobolev
space Hm(Th) = {w ∈ L2(Ω) : w|T ∈ Hm(T), ∀ T ∈ Th}. We introduce the following space:

H0(div; Ω) =
{

w ∈ L2(Ω) : ∇ · w ∈ L2(Ω), w · n| ∂Ω = 0
}

.

We introduce H(div)-conforming velocity space and pressure space,

Xh ⊂ H0(div; Ω), Qh ⊂ L2
0(Ω) = Q.
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For simplicial mesh, we consider RT elements and Brezzi–Douglas–Marini (BDM) elements (Boffi
et al., 2013). For real application, BDM elements are computationally more efficient compared with
RT elements since they have less degrees of freedom for the same velocity approximation (Boffi et al.,
2013).

The global spaces Xh and Qh, say RTk/Pk or BDMk/Pk−1 pair (k ≥ 1), form a discretely inf-sup
stable FE pair (Schroeder & Lube, 2018). That is, there exists β > 0, independent of the mesh size h,
such that

inf
qh∈Qh\{0} sup

vh∈Xh\{0}
b
(
vh, qh

)
�vh�e‖qh‖L2

� β, (3.1)

where � · �e is defined in (3.6). The global spaces Xh and Qh are divergence-conforming, namely

∇ ·Xh ⊆ Qh. (3.2)

3.1 Numerical scheme

Now, we consider the approximation of (2.2) with the semi-implicit Euler method in time and H(div)-
conforming DG method in space. Given u0

h, an approximation to u0 in Xh, find
(
un+1

h , pn+1
h

) ∈ Xh × Qh
such that(

un+1
h − un

h

Δt
, vh

)
+ νah

(
un+1

h , vh

)
+ bh(vh, pn+1

h ) + ch

(
un

h, un+1
h , vh

)
=
(

f n+1, vh

)
, ∀ vh ∈ Xh,

bh(u
n+1
h , qh) = 0, ∀ qh ∈ Qh,

(3.3)

where

ah

(
un+1

h , vh

)
=
∫

Ω

∇hun+1
h :∇hvh dx −

∑
F∈Fh

∫
F

[
({∇hun+1

h }nF · �vh�) + (�un+1
h � · {∇hvh}nF)

−
(

σ

hF
�un+1

h � · �vh�

)]
ds, (3.4)

bh

(
un+1

h , qh

)
= −

∫
Ω

qh

(
∇h ·un+1

h

)
dx, bh

(
vh, pn+1

h

)
= −

∫
Ω

pn+1
h

(∇h ·vh

)
dx,

and

ch

(
un

h, un+1
h , vh

)
=
∫

Ω

(
un

h·∇h

)
un+1

h ·vh dx −
∑

F∈F i
h

∫
F
(un

h · nF)�un+1
h �{vh} ds

+
∑

F∈F i
h

∫
F

1

2
|(un

h · nF)|�un+1
h ��vh� ds. (3.5)

The penalty parameter σ > 0 in (3.4) has to be sufficiently large such that the coercivity of ah is
guaranteed (Di Pietro & Ern, 2012, Lemma 4.12). In conjunction with the viscous term ah, the following
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norm is used:

�vh�
2
e = ‖∇hvh‖2

L2 +
∑

F∈Fh

σ

hF
‖�vh�‖2

L2(F)
. (3.6)

In addition, we notice that the above appearance of traces of velocity normal derivatives dictates that

the involved velocities at least belong to H
3
2 +ε

(
Th

)
for some ε > 0. In order to facilitate numerical

analysis, we introduce a larger space,

X(h) = Xh ⊕ [X ∩ H
3
2 +ε
(
Th

)]
.

Then, we define a stronger norm in the space X(h)

�v�2
e,
 = �v�2

e +
∑
T∈Th

hT‖∇hv · nT‖2
L2(∂T)

.

Notice that � · �e and � · �e,
 norms are uniformly equivalent on Xh, namely

C|||vh|||e,
 ≤ |||vh|||e ≤ |||vh|||e,
, ∀ vh ∈ Xh, (3.7)

with C independent of h; cf. (Di Pietro & Ern, 2012, Lemma 4.20) for scalar-valued functions. Assume
that σ > 0 is sufficiently large. Then, there exist constants Cσ > 0 and C > 0, independent of h, such
that

Cσ �vh�
2
e ≤ ah

(
vh, vh

)
, ∀ vh ∈ Xh (3.8)

and

ah

(
w, vh

) ≤ C�w�e,
�vh�e, ∀ (w, vh) ∈ X(h) × Xh. (3.9)

We introduce the discrete divergence-free space

Vh = {vh ∈ Xh : b
(
vh, qh

) = 0, ∀ qh ∈ Qh

}
.

Moreover, we introduce the jump seminorm

∣∣vh

∣∣2
uh,upw =

∑
F∈F i

h

∫
F

1

2
|(uh · nF)||�vh�|2 ds (3.10)

and the space Pl
d(Th)

Pl
d(Th) = {vh ∈ L2(Ω) : vh|T ∈ (Pl(T))d, ∀ T ∈ Th},

where l ≥ 0 is an integer.
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Let Plw denote the L2-projection of w onto Pl
d(Th), then there exists C, independent of h, such that,

for 0 � j � s � l + 1, 1 � p � ∞, there holds (Di Pietro & Droniou, 2020, Theorem 1.45):

|w − Plw|Wj,p(T) ≤ Chs−j
T |w|Ws,p(T), ∀ T ∈ Th, ∀ w ∈ Ws,p(T). (3.11)

The space Pl
d(Th) satisfies the discrete trace inequality (Di Pietro & Ern, 2012, Remark 1.47)

‖vh‖L2(∂T) � Ctrh
− 1

2
T ‖vh‖L2(T), ∀ T ∈ Th, ∀ vh ∈ Pl

d(Th). (3.12)

Let 0 � m � � and 1 � p, q � ∞, the space Pl
d(Th) satisfies the local inverse inequality (Ern &

Guermond, 2004, Lemma 1.138)

‖vh‖W�,p(T) � Cinvh
m−�+d

(
1
p − 1

q

)
T ‖vh‖Wm,q(T), ∀ T ∈ Th, ∀ vh ∈ Pl

d(Th).
(3.13)

Furthermore, there is C independent of h, such that (Di Pietro & Ern, 2012, Corollary 5.4)

‖vh‖L2 ≤ C�vh�e, ∀ vh ∈ Pl
d(Th). (3.14)

In the following numerical analysis, RT interpolation operator Ih
Rt (Wang & Ye, 2007; Boffi et al.,

2013) plays a crucial role

⎧⎪⎪⎨
⎪⎪⎩

∫
∂T

(w − Ih
Rtw) · npk ds = 0, ∀ pk ∈ Pk(∂T),

∫
T
(w − Ih

Rtw) · pk−1 dx = 0, ∀ pk−1 ∈ (Pk−1(T))d.

(3.15)

Lemma 3.1 (Boffi et al., 2013, Proposition 2.5.2) Let Ih
Rt be the interpolation operator H1(Ω) → RTk

and π0 be the L2-orthogonal projection on ∇ · RTk. Then, we have, for all q ∈ H1(Ω),

∇ · (Ih
Rtq) = π0∇ · q.

Lemma 3.2 Let T be an n-simplicial (triangular or tetrahedral) element. Then, we have

BDM0
k (T) = RT0

k (T) ⊂ (Pk(T))d,

where

RT0
k (T) = {q ∈ RTk(T) | ∇ · q = 0},

BDM0
k (T) = {q ∈ BDMk(T) | ∇ · q = 0}.

Proof. cf. (Boffi et al., 2013, p. 90). �
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1574 Y. HAN AND Y. HOU

The RT interpolation operator satisfies the following approximation properties (Guzmán et al., 2017,
p. 1737): for ∀ T ∈ Th and ∀ w ∈ Hm(T), with 1 ≤ m ≤ k + 1, there holds

‖w − Ih
Rtw‖L2(T) + hT‖∇w − ∇hIh

Rtw‖L2(T) � Chm
T |w| Hm(T), (3.16)

and for ∀ T ∈ Th and ∀ w ∈ W1,∞(T), we also have the following bound:

‖w − Ih
Rtw‖L∞(T) + hT‖∇w − ∇hIh

Rtw‖L∞(T) � ChT‖∇w‖L∞(T). (3.17)

Remark 1 For the L∞ estimate in (3.17), ‖w − Ih
Rtw‖L∞(T) � ChT‖∇w‖L∞(T), the detailed proof

is similarly proceeded as in the proof of the lowest-order RT interpolation operator IRT
K in Ern &

Guermond (2004); see (Ern & Guermond, 2004, Lemma 1.113 and Theorem 1.114). In fact, Theorem
1.114 in Ern & Guermond (2004) is valid with p = ∞ by means of Lemma 1.113 in Ern & Guermond
(2004). In addition, for the stability estimate in (3.17), ‖∇w − ∇hIh

Rtw‖L∞(T) � C‖∇w‖L∞(T), it can be
proved by using a standard argument below.

‖∇w − ∇hIh
Rtw‖L∞(T) ≤ ‖∇w − ∇hPkw‖L∞(T) + ‖∇hIh

Rtw − ∇hPkw‖L∞(T)

≤ C‖∇w‖L∞(T) + Ch−1
T (‖w − Ih

Rtw‖L∞(T) + ‖w − Pkw‖L∞(T))

≤ C‖∇w‖L∞(T),

in which we use the triangle inequality, the inverse inequality, (3.11) and the L∞ estimate in (3.17).

Next, we introduce two essential lemmas, which are frequently used in fully discrete numerical
analysis of the evolutionary incompressible Navier–Stokes equations.

Lemma 3.3 (Heywood & Rannacher, 1990, Lemma 5.1) Let k, B, aj, bj, cj, γj be non-negative numbers
such that

an + k
n∑

j=0

bj ≤ k
n∑

j=0

γjaj + k
n∑

j=0

cj + B, for n ≥ 0.

Suppose that kγj < 1, for all j, and set σj = (1 − kγj)
−1. Then,

an + k
n∑

j=0

bj ≤ exp

⎛
⎝k

n∑
j=0

σjγj

⎞
⎠
⎧⎨
⎩k

n∑
j=0

cj + B

⎫⎬
⎭ , for n ≥ 0.

Lemma 3.4 (John, 2016, Lemma 7.67) Let v, ∂tv, ∂ttv ∈ L2
(
tn, tn+1; L2(Ω)

)
, then

∥∥∥∥∂tv
n+1 − vn+1 − vn

Δt

∥∥∥∥
2

L2(Ω)

≤ Δt
∥∥∂ttv

∥∥2
L2(tn,tn+1;L2(Ω))

. (3.18)

In addition, integration by parts of different terms in ch is done in several places. The following
equation would help us to understand integration by parts of different terms in ch. For uh, wh, vh ∈ Xh,
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and ∇ · uh = 0, we have

∑
F∈Fh

∫
F

(
uh · nF

) [
�wh� · {vh

}+ �vh� · {wh}
]

ds

=
∑

K∈Th

∫
∂K

(
uh · nK

)
wh · vh ds =

∑
K∈Th

∫
K

[
(uh · ∇h)wh · vh + (uh · ∇h)vh · wh

]
dx, (3.19)

where the first equal sign is due to �wh · vh� = �wh� · {vh

}+ �vh� · {wh} and the second equal sign due
to element-wise integration by parts with ∇ · uh = 0.

4. Existence and uniqueness of solutions and stability analysis

In this section, we derive the velocity energy estimate, in which the constants are independent of the
negative powers of the viscosity, and prove well-posedness of the fully discrete scheme (3.3).

Lemma 4.1 Let f ∈ L1(0, T; L2(Ω)), u0 ∈ L2(Ω), and u0
h is an approximation of u0. Then, (3.3) has a

unique solution, and for all N ≥ 0, the following stability estimate holds:

1

2

∥∥∥uN+1
h

∥∥∥2

L2
+ Cσ νΔt

N+1∑
n=1

�un
h�

2
e + Δt

N+1∑
n=1

∣∣un
h

∣∣2
un−1

h ,upw ≤ ‖u0
h‖2

L2 + 3

2

(
N+1∑
n=1

Δt‖f n‖L2

)2

.

Proof. First, taking
(
vh, qh

) =
(

un+1
h , pn+1

h

)
in (3.3) yields

(
un+1

h − un
h

Δt
, un+1

h

)
+ νah

(
un+1

h , un+1
h

)
+ ch

(
un

h, un+1
h , un+1

h

)
=
(

f n+1, un+1
h

)
. (4.1)

Due to (3.8) and (3.10), we have

ah

(
un+1

h , un+1
h

)
≥ Cσ �un+1

h �
2
e ,

ch(u
n
h, un+1

h , un+1
h ) =

∣∣∣un+1
h

∣∣∣2
un

h,upw
.

(4.2)

Using (4.1) and (4.2), we have

1

Δt

(
un+1

h − un
h, un+1

h

)
+ νCσ �un+1

h �
2
e +

∣∣∣un+1
h

∣∣∣2
un

h,upw
≤ (f n+1, un+1

h ). (4.3)
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1576 Y. HAN AND Y. HOU

Using (4.3) and Cauchy–Schwarz inequality, we can obtain

‖un+1
h ‖L2

(‖un+1
h ‖L2 − ‖un

h‖L2)

Δt
≤
(

un+1
h − un

h

Δt
, un+1

h

)

≤ (f n+1, un+1
h ) ≤ ‖f n+1‖L2‖un+1

h ‖L2 . (4.4)

Estimate (4.4) gives

‖un+1
h ‖L2 − ‖un

h‖L2 ≤ Δt‖f n+1‖L2 . (4.5)

Observing that the left-hand side of (4.5) constitute a telescopic sum, we can get

max
1≤j≤N+1

‖uj
h‖L2 ≤

N+1∑
n=1

Δt‖f n‖L2 + ‖u0
h‖L2 . (4.6)

Due to (
un+1

h − un
h, un+1

h

)
= 1

2

(∥∥∥un+1
h

∥∥∥2

L2
+
∥∥∥un+1

h − un
h

∥∥∥2

L2
− ∥∥un

h

∥∥2
L2

)
. (4.7)

Inserting (4.7) in (4.3) yields

1

2

∥∥∥un+1
h

∥∥∥2

L2
+ Cσ νΔt�un+1

h �
2
e + Δt

∣∣∣un+1
h

∣∣∣2
un

h,upw
≤ 1

2
‖uh

n‖2
L2 + Δt(f n+1, un+1

h ).

Observing that the first terms on both sides constitute a telescopic sum, we can obtain

1

2

∥∥∥uN+1
h

∥∥∥2

L2
+ Cσ νΔt

N+1∑
n=1

�un
h�

2
e + Δt

N+1∑
n=1

∣∣un
h

∣∣2
un−1

h ,upw ≤ 1

2

∥∥∥u0
h

∥∥∥2

L2
+

N+1∑
n=1

Δt(f n, un
h).

Using Cauchy–Schwarz inequality, (4.6) and Young’s inequality, we can get

1

2

∥∥∥uN+1
h

∥∥∥2

L2
+ Cσ νΔt

N+1∑
n=1

�un
h�

2
e + Δt

N+1∑
n=1

∣∣un
h

∣∣2
un−1

h ,upw ≤ ‖u0
h‖2

L2 + 3

2

(
N+1∑
n=1

Δt‖f n‖L2

)2

.

The existence and uniqueness of the velocity solution is proved with Lax–Milgram theorem, which
can be applied since (3.3) is a linear problem. In addition, the existence and uniqueness of the pressure
solution can be proved by the inf-sup condition (3.1). �

5. Semirobust analysis for the velocity

For the analysis of the Navier–Stokes problem, the RT interpolation operator (3.15) is used to make the
error splitting

u − uh =
(

u − Ih
Rtu
)

−
(

uh − Ih
Rtu
)

= η − eh. (5.1)
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Remark 2 Whether BDMk or RTk (k ≥ 1) elements are chosen to be the velocity space, we introduce
Ih
Rtu to make the error splitting, respectively. Because Ih

Rtu ∈ BDM0
k (T) = RT0

k (T), ∀ T ∈ Th, due to
Lemmas 3.1 and 3.2.

First, in order to make a better analysis for the convective term, we give an important lemma.

Lemma 5.1 Assume un ∈ W1,∞(Ω). There exists a C > 0, independent of h, such that

∫
Ω

[(
un·∇h

)
en+1

h ·ηn+1
]

dx ≤ C‖∇un‖L∞(‖ηn+1‖2
L2 + ‖en+1

h ‖2
L2).

Proof. Let 〈un〉T denote the mean value of un on each cell T ∈ Th

〈un〉T =
∫

T un dx

|T| .

On the one hand,

‖un − 〈un〉T‖L∞(T) � ChT‖∇un‖L∞(T), (5.2)

since un is Lipschitz continuous (Di Pietro & Ern, 2012, p. 59).
On the other hand, en+1

h = un+1
h − Ih

Rtu
n+1, where Ih

Rtu
n+1 ∈ RT0

k (T) from Lemma 3.1 and
un+1

h ∈ RT0
k (T) or un+1

h ∈ BDM0
k (T). Because of Lemma 3.2, we have en+1

h |T ∈ (Pk(T))d, so(〈un〉T ·∇h

)
en+1

h |T ∈ (Pk−1(T))d. Using (3.15), we have

∫
T

(〈un〉T ·∇h

)
en+1

h ·ηn+1 dx = 0, ∀ T ∈ Th. (5.3)

Using (5.2) and (5.3), Hölder’s inequality, inverse inequality and Cauchy–Schwarz inequality, we have

∫
Ω

(
un·∇h

)
en+1

h ·ηn+1 dx =
∑
T∈Th

∫
T

(
(un − 〈un〉T)·∇h

)
en+1

h ·ηn+1 dx

≤ C‖∇un‖L∞(‖ηn+1‖2
L2 + ‖en+1

h ‖2
L2).

�
Now, we present an error estimate for the convection term that allows for semirobust estimates for

the velocity.
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Lemma 5.2 There exists C > 0, independent of h such that for all 0 ≤ n ≤ N, the following estimate
holds:

ch

(
un, un+1, en+1

h

)
− ch

(
un

h, un+1
h , en+1

h

)
≤ C

{
‖∇un+1‖L∞‖ηn‖2

L2 + ‖∇un‖L∞‖ηn+1‖2
L2 + ‖∇un+1‖L∞(‖ηn+1‖2

L2 + h2‖∇ηn+1‖2
L2)

+ ‖∇un+1‖L∞‖en
h‖2

L2 + ‖∇un+1‖L∞‖en+1
h ‖2

L2 + ‖∇un‖L∞‖en+1
h ‖2

L2

+ ‖un‖W1,∞(h−1‖ηn+1‖2
L2 + h‖∇ηn+1‖2

L2)
}

.

Proof. First, by using (3.5) and �u�F = 0 for ∀ F ∈ F i
h, we have

I = ch

(
un, un+1, en+1

h

)
− ch

(
un

h, un+1
h , en+1

h

)

=
∫

Ω

[(
un·∇)un+1·en+1

h − (un
h·∇h

)
un+1

h ·en+1
h

]
dx −

∑
F∈F i

h

∫
F
(un

h · nF)�un+1 − un+1
h �{en+1

h } ds

+
∑

F∈F i
h

∫
F

1

2
|(un

h · nF)|�un+1 − un+1
h ��en+1

h � ds

= I1 + I2 + I3.
(5.4)

By using un+1 − un+1
h = ηn+1 − en+1

h , we make error splitting for I1, I2 and I3, respectively, as shown
below.

I1 =
∫

Ω

[(
un·∇)un+1·en+1

h − (un
h·∇
)
un+1·en+1

h + (un
h·∇
)
un+1·en+1

h − (un
h·∇h

)
un+1

h ·en+1
h

]
dx

=
∫

Ω

[(
(un − un

h)·∇
)
un+1·en+1

h

]
dx +

∫
Ω

(
un

h·∇h

)
ηn+1·en+1

h dx −
∫

Ω

(
un

h·∇h

)
en+1

h ·en+1
h dx

= I1,1 + I1,2 + I1,3, (5.5)

I2 = −
∑

F∈F i
h

∫
F
(un

h · nF)�ηn+1�{en+1
h } ds +

∑
F∈F i

h

∫
F
(un

h · nF)�en+1
h �{en+1

h } ds

= I2,1 + I2,2, (5.6)
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and

I3 =
∑

F∈F i
h

∫
F

1

2
|(un

h · nF)|�ηn+1��en+1
h � ds −

∑
F∈F i

h

∫
F

1

2
|(un

h · nF)|�en+1
h ��en+1

h � ds

= I3,1 −
∣∣∣en+1

h

∣∣∣2
un

h,upw
. (5.7)

Notice that

I1,3 + I2,2 = 0 (5.8)

and

I1,2 + I2,1 =
∫

Ω

(
un

h·∇h

)
ηn+1·en+1

h dx −
∑

F∈F i
h

∫
F
(un

h · nF)�ηn+1�{en+1
h } ds

= −
∫

Ω

(
un

h·∇h

)
en+1

h ·ηn+1 dx +
∑

F∈F i
h

∫
F
(un

h · nF)�en+1
h �{ηn+1} ds. (5.9)

Now, using the above identities (5.4)–(5.9), we can get

I =
{ ∫

Ω

[(
(un − un

h)·∇
)
un+1·en+1

h

]
dx −

∫
Ω

(
un

h·∇h

)
en+1

h ·ηn+1 dx
}

+
{ ∑

F∈F i
h

∫
F
(un

h · nF)�en+1
h �{ηn+1} ds +

∑
F∈F i

h

∫
F

1

2
|(un

h · nF)|�ηn+1��en+1
h � ds

−
∑

F∈F i
h

∫
F

1

2
|(un

h · nF)|�en+1
h ��en+1

h � ds
}

= Ivol + Ifac.

For the first and second integral terms in Ivol, first by writing un − un
h = ηn − en

h and un
h =

en
h + un − ηn, respectively, and then applying Hölder’s inequality, Cauchy–Schwarz inequality, inverse

inequality and Lemma 5.1, we have

Ivol =
∫

Ω

[(
ηn·∇)un+1·en+1

h − (en
h·∇
)
un+1·en+1

h

]
dx −

∫
Ω

(
en

h·∇h

)
en+1

h ·ηn+1 dx

−
∫

Ω

(
un·∇h

)
en+1

h ·ηn+1 dx +
∫

Ω

(
ηn·∇h

)
en+1

h ·ηn+1 dx

� C‖∇un+1‖L∞‖ηn‖2
L2 + C‖∇un‖L∞‖ηn+1‖2

L2 + C‖∇un+1‖L∞‖en+1
h ‖2

L2

+ C‖∇un‖L∞‖en+1
h ‖2

L2 + C‖∇un+1‖L∞‖en
h‖2

L2 . (5.10)
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For the face term,

Ifac =
∑

F∈F i
h

∫
F
(un

h · nF)�en+1
h �

{
ηn+1} ds +

∑
F∈F i

h

∫
F

1

2
|un

h · nF|�ηn+1��en+1
h � ds

−
∑

F∈F i
h

∫
F

1

2
|un

h · nF||�en+1
h �|2 ds

�
∑

F∈F i
h

∫
F

|(un
h · nF)||{ηn+1}|2 ds + 1

4

∑
F∈F i

h

∫
F

|(un
h · nF)||�ηn+1�|2 ds

= Ifac1 + Ifac2, (5.11)

where we apply Cauchy–Schwarz inequality to the first two terms on the right-hand side of the equal
sign to cancel out the third term.

For the facet term Ifac1, we apply un
h = en

h + Ih
Rtu

n, Hölder’s inequality, Cauchy–Schwarz inequality

and ‖Ih
Rtu

n‖L∞ ≤ C‖un‖W1,∞ from (3.17) to obtain

|Ifac1| ≤
∑

F∈F i
h

∫
F

|(en
h · nF)||{ηn+1}|2 ds +

∑
F∈F i

h

∫
F

|(Ih
Rtu

n · nF)||{ηn+1}|2 ds

≤ ‖ηn+1‖L∞
∑

F∈F i
h

‖en
h‖2

L2(F)
+ ‖ηn+1‖L∞

∑
F∈F i

h

‖{ηn+1}‖2
L2(F)

+ ‖Ih
Rtu

n‖L∞
∑

F∈F i
h

‖{ηn+1}‖2
L2(F)

≤ C‖∇un+1‖L∞‖en
h‖2

L2 + Ch‖∇un+1‖L∞(h−1‖ηn+1‖2
L2 + h‖∇ηn+1‖2

L2)

+ C‖un‖W1,∞(h−1‖ηn+1‖2
L2 + h‖∇ηn+1‖2

L2), (5.12)

where by applying a continuous trace inequality and quasi-uniformity of the mesh, we have

∑
F∈F i

h

‖{ηn+1}‖2
L2(F)

� 2
∑
T∈Th

‖ηn+1‖2
L2(∂T)

� C
∑
T∈Th

(h−1
T ‖ηn+1‖2

L2(T)
+ hT‖∇ηn+1‖2

L2(T)
)

� C(h−1‖ηn+1‖2
L2 + h‖∇ηn+1‖2

L2). (5.13)

Similarly, for the facet term Ifac2, it can be inferred that

|Ifac2| ≤ C‖∇un+1‖L∞‖en
h‖2

L2 + Ch‖∇un+1‖L∞(h−1‖ηn+1‖2
L2 + h‖∇ηn+1‖2

L2)

+ C‖un‖W1,∞(h−1‖ηn+1‖2
L2 + h‖∇ηn+1‖2

L2). (5.14)
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Therefore, by (5.12) and (5.14), we have

|Ifac| ≤ C‖∇un+1‖L∞‖en
h‖2

L2 + Ch‖∇un+1‖L∞(h−1‖ηn+1‖2
L2 + h‖∇ηn+1‖2

L2)

+ C‖un‖W1,∞(h−1‖ηn+1‖2
L2 + h‖∇ηn+1‖2

L2). (5.15)

By combining (5.10) and (5.15), we can finish the proof. �
Theorem 5.3 Let uh(0) = Ih

Rtu0, and assume the following regularities for the solution (u, p) of (2.2)

∂ttu ∈ L2
(
0, T; H1(Ω)

)
, ∂tu ∈ L4

(
0, T; L2(Ω)

)
,

∂tu ∈ L2(0, T; Hr(Ω)), p ∈ L2 (0, T; Hr (Ω)),
u ∈ L∞(0, T; Hr(Ω)), u ∈ L2

(
0, T; W1,∞ (Ω)

)
.

(5.16)

Then, with ru = min {r, k + 1} and a constant C independent of h and ν−1, when time step is sufficiently
small, αnΔt < 1, ∀ n = 1, . . . , N + 1, we have the following error estimate:

∥∥∥eN+1
h

∥∥∥2

L2
+ νΔt

N+1∑
n=1

�en
h�

2
e ≤ exp

(
Δt

N+1∑
n=1

αn

1 − Δtαn

)(
CΔt

N+1∑
n=1

Gn

)
,

where

αn = C(1 + ‖∇un+1‖L∞ + ‖∇un‖L∞ + ‖∇un−1‖L∞), ∀ n = 1, . . . , N,

αN+1 = C(1 + ‖∇uN+1‖L∞ + ‖∇uN‖L∞),
(5.17)

and

Gn =
∥∥∥∂t

(
un − Ih

Rtu
n
)∥∥∥2

L2
+ Δt

∥∥∥Ih
Rt

(
∂ttu
)∥∥∥2

L2
(
tn−1,tn;L2(Ω)

)
+ ‖∇un‖L∞‖ηn−1‖2

L2 + ‖∇un−1‖L∞‖ηn‖2
L2 + ‖∇un‖L∞(‖ηn‖2

L2 + h2‖∇ηn‖2
L2)

+ ‖un−1‖W1,∞(h−1‖ηn‖2
L2 + h‖∇ηn‖2

L2) + ν�ηn�2
e,


+ (Δt)3‖∇un‖L∞‖∂ttu‖2
L2(tn−1,tn;L2(Ω))

+ (Δt)2‖∇un‖L∞‖∂tu
n‖2

L2 . (5.18)

Proof. Due to the consistency property, we take arbitrary
(
vh, qh

) ∈ Xh × Qh as test functions in (2.2)
and subtract (3.3) from (2.2). One obtains the following error equation in the space Vh:

(
∂tu

n+1 − un+1
h − un

h

Δt
, vh

)
+ νah

(
un+1 − un+1

h , vh

)
+ ch

(
un+1, un+1, vh

)

− ch

(
un

h, un+1
h , vh

)
= 0, ∀ vh ∈ Vh. (5.19)
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Next, taking vh = en+1
h in (5.19) yields

(
∂tu

n+1 − un+1
h − un

h

Δt
, en+1

h

)
+ νah

(
ηn+1, en+1

h

)
− νah

(
en+1

h , en+1
h

)

+ ch

(
un+1, un+1, en+1

h

)
− ch

(
un

h, un+1
h , en+1

h

)
= 0. (5.20)

We expand the left argument of the first term of (5.20) in the form

∂tu
n+1 − un+1

h − un
h

Δt

= ∂tu
n+1 − ∂tI

h
Rtu

n+1 + ∂tI
h
Rtu

n+1 − Ih
Rtu

n+1 − Ih
Rtu

n

Δt

+ Ih
Rtu

n+1 − Ih
Rtu

n

Δt
− un+1

h − un
h

Δt

= ∂t

(
un+1 − Ih

Rtu
n+1
)

+ ∂tI
h
Rtu

n+1 − Ih
Rtu

n+1 − Ih
Rtu

n

Δt
− en+1

h − en
h

Δt
. (5.21)

Using (5.21), one can obtain the error equation

1

2Δt

(∥∥∥en+1
h

∥∥∥2

L2
+
∥∥∥en+1

h − en
h

∥∥∥2

L2
− ∥∥en

h

∥∥2
L2

)
+ νah(e

n+1
h , en+1

h )

=
(
∂t

(
un+1 − Ih

Rtu
n+1
)

, en+1
h

)
+
(

∂tI
h
Rtu

n+1 − Ih
Rtu

n+1 − Ih
Rtu

n

Δt
, en+1

h

)
+ νah

(
ηn+1, en+1

h

)

+ ch

(
un, un+1, en+1

h

)
− ch

(
un

h, un+1
h , en+1

h

)
− ch

(
un − un+1, un+1, en+1

h

)
. (5.22)

We estimate all terms on the right-hand side of (5.22). The first term on the right-hand side of (5.22)
is bounded by using Cauchy–Schwarz inequality

(
∂t

(
un+1 − Ih

Rtu
n+1
)

, en+1
h

)
≤ ∥∥∂t

(
un+1 − Ih

Rtu
n+1
)∥∥

L2

∥∥∥en+1
h

∥∥∥
L2

≤ ∥∥∂t

(
un+1 − Ih

Rtu
n+1
)∥∥2

L2 +
∥∥∥en+1

h

∥∥∥2

L2
.

For the estimate of the second term, we use the Cauchy–Schwarz inequality, Lemma 3.4 and the
commutation of temporal derivative and RT projection

(
∂tI

h
Rtu

n+1 − Ih
Rtu

n+1−Ih
Rtu

n

Δt , en+1
h

)

≤
∥∥∥∥∂tI

h
Rtu

n+1 − Ih
Rtu

n+1−Ih
Rtu

n

Δt

∥∥∥∥
L2

∥∥∥en+1
h

∥∥∥
L2

≤ C(Δt)1/2
∥∥∂ttI

h
Rtu
∥∥

L2
(
tn,tn+1;L2(Ω)

) ∥∥∥en+1
h

∥∥∥
L2

≤ CΔt
∥∥Ih

Rt

(
∂ttu
)∥∥2

L2
(
tn,tn+1;L2(Ω)

) +
∥∥∥en+1

h

∥∥∥2

L2
.
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Then, the triangle inequality and Lemma 3.4 are applied to get

‖(un+1 − un)‖2
L2 ≤ 2‖Δt∂tu

n+1 − (un+1 − un)‖2
L2 + 2(Δt)2‖∂tu

n+1‖2
L2

≤ 2(Δt)3‖∂ttu‖2
L2(tn,tn+1;L2(Ω))

+ 2(Δt)2‖∂tu
n+1‖2

L2 . (5.23)

So, for the sixth term on the right-hand side of (5.22), we have

ch

(
un − un+1, un+1, en+1

h

)
≤ ‖∇un+1‖L∞‖en+1‖2

L2 + ‖∇un+1‖L∞‖(un+1 − un)‖2
L2

≤ ‖∇un+1‖L∞‖en+1‖2
L2 + 2(Δt)3‖∇un+1‖L∞‖∂ttu‖2

L2(tn,tn+1;L2(Ω))

+ 2(Δt)2‖∇un+1‖L∞‖∂tu
n+1‖2

L2 . (5.24)

By the boundedness of ah and Young’s inequality, we have

νah

(
ηn+1, en+1

h

)
≤ Cν�ηn+1�

2
e,
 + Cσ ν

2
�en+1

h �
2
e .

From Lemma 5.2, we have

ch

(
un, un+1, en+1

h

)
− ch

(
un

h, un+1
h , en+1

h

)
≤ C

{
‖∇un+1‖L∞‖ηn‖2

L2 + ‖∇un‖L∞‖ηn+1‖2
L2 + ‖∇un+1‖L∞(‖ηn+1‖2

L2 + h2‖∇ηn+1‖2
L2)

+ ‖∇un+1‖L∞‖en
h‖2

L2 + ‖∇un+1‖L∞‖en+1
h ‖2

L2 + ‖∇un‖L∞‖en+1
h ‖2

L2

+ ‖un‖W1,∞(h−1‖ηn+1‖2
L2 + h‖∇ηn+1‖2

L2)
}

.

Inserting the above estimates in the right-hand side of (5.22), and using (3.8), one gets

1

2Δt

∥∥∥en+1
h

∥∥∥2

L2
+ Cσ ν

2
�en+1

h �
2
e

≤ 1

2Δt

∥∥en
h

∥∥2
L2 + C

[ ∥∥∥∂t

(
un+1 − Ih

Rtu
n+1
)∥∥∥2

L2
+ Δt

∥∥∥Ih
Rt

(
∂ttu
)∥∥∥2

L2
(
tn,tn+1;L2(Ω)

)
+ ‖∇un+1‖L∞‖ηn‖2

L2 + ‖∇un‖L∞‖ηn+1‖2
L2 + ‖∇un+1‖L∞(‖ηn+1‖2

L2 + h2‖∇ηn+1‖2
L2)

+ ‖un‖W1,∞(h−1‖ηn+1‖2
L2 + h‖∇ηn+1‖2

L2) + ν�ηn+1�
2
e,


+ (Δt)3‖∇un+1‖L∞‖∂ttu‖2
L2(tn,tn+1;L2(Ω))

+ (Δt)2‖∇un+1‖L∞‖∂tu
n+1‖2

L2

]

+ C
[
‖∇un+1‖L∞‖en

h‖2
L2 + (1 + ‖∇un+1‖L∞)‖en+1

h ‖2
L2 + ‖∇un‖L∞‖en+1

h ‖2
L2

]
.
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Summing over all discrete times, and by ‖e0
h‖2

L2 = 0, we can get

∥∥∥eN+1
h

∥∥∥2

L2
+ νΔt

N+1∑
n=1

�en
h�

2
e

≤ CΔt
N+1∑
n=1

[ ∥∥∥∂t

(
un − Ih

Rtu
n
)∥∥∥2

L2
+ Δt

∥∥∥Ih
Rt

(
∂ttu
)∥∥∥2

L2
(
tn−1,tn;L2(Ω)

)

+ ‖∇un‖L∞‖ηn−1‖2
L2 + ‖∇un−1‖L∞‖ηn‖2

L2 + ‖∇un‖L∞(‖ηn‖2
L2 + h2‖∇ηn‖2

L2)

+ ‖un−1‖W1,∞(h−1‖ηn‖2
L2 + h‖∇ηn‖2

L2) + ν�ηn�2
e,


+ (Δt)3‖∇un‖L∞‖∂ttu‖2
L2(tn−1,tn;L2(Ω))

+ (Δt)2‖∇un‖L∞‖∂tu
n‖2

L2

]

+ CΔt
N+1∑
n=1

[
‖∇un‖L∞‖en−1

h ‖2
L2 + (1 + ‖∇un‖L∞)‖en

h‖2
L2 + ‖∇un−1‖L∞‖en

h‖2
L2

]
.

So, we can have

∥∥∥eN+1
h

∥∥∥2

L2
+ νΔt

N+1∑
n=1

�en
h�

2
e

≤ CΔt
N+1∑
n=1

Gn + Δt
N+1∑
n=1

αn‖en
h‖2

L2 .

Thus, when αnΔt < 1, ∀ n = 1, . . . , N + 1, the discrete Gronwall Lemma 3.3 can be applied and one
gets

∥∥∥eN+1
h

∥∥∥2

L2
+ νΔt

N+1∑
n=1

�en
h�

2
e

≤ exp

(
Δt

N+1∑
n=1

αn
1−Δtαn

)(
CΔt

N+1∑
n=1

Gn

)
.

�
Corollary 5.4 Under the assumptions of the previous Theorem 5.3, with ru = min {r, k + 1} and a
constant C independent of h and ν, we have the following estimate:

∥∥∥uN+1 − uN+1
h

∥∥∥2

L2
+ νΔt

N+1∑
n=1

�(un − un
h)�

2
e,


� h2ru−2
(

A(u)B1(u) + C1(u)
)

+ (Δt)2A(u)D(u), (5.25)
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and when ν ≤ Ch, then we have

∥∥∥uN+1 − uN+1
h

∥∥∥2

L2
+ νΔt

N+1∑
n=1

�(un − un
h)�

2
e,


� h2ru−1
(

A(u)B2(u) + C2(u)
)

+ (Δt)2A(u)D(u), (5.26)

where

A(u) = C exp

(
Δt

N+1∑
n=1

αn

1 − Δtαn

)
,

B1(u) = h2
∥∥∂tu

∥∥2
L2(0,tN+1;Hru (Ω))

+
(
νT + (h2 + h)‖u‖L1(W1,∞)

)
‖u‖2

L∞(Hru ),

B2(u) = h
∥∥∂tu

∥∥2
L2(0,tN+1;Hru (Ω))

+
(

T + (h + 1)‖u‖L1(W1,∞)

)
‖u‖2

L∞(Hru ),

C1(u) = C(h2 + νT) ‖u‖2
L∞(Hru ),

C2(u) = C(h + T) ‖u‖2
L∞(Hru ),

D(u) = ‖∂ttu‖2
L2
(
0,tN+1;H1(Ω)

) + ∥∥∂tu
∥∥2
L4
(
0,tN+1;L2(Ω)

) ‖u‖L2
(
0,tN+1;W1,∞(Ω)

)
+ (Δt)

3
2
∥∥∂ttu

∥∥2
L2
(
0,tN+1;L2(Ω)

) ‖u‖L2
(
0,tN+1;W1,∞(Ω)

),

and αn is defined by (5.17).

Proof. The application of the triangle inequality and the norm equivalence (3.7) of � · �e and � · �e,

on Xh gives

∥∥∥uN+1 − uN+1
h

∥∥∥2

L2
+ νΔt

N+1∑
n=1

�(un − un
h)�

2
e,


≤ 2

(∥∥ηN+1
∥∥2

L2 + νΔt
N+1∑
n=1

�ηn �2
e,
 +

∥∥∥eN+1
h

∥∥∥2

L2
+ CνΔt

N+1∑
n=1

�en
h�

2
e

)

≤ 2
∥∥ηN+1

∥∥2
L2 + 2νΔt

N+1∑
n=1

�ηn �2
e,
 + exp

(
Δt

N+1∑
n=1

αn
1−Δtαn

)(
CΔt

N+1∑
n=1

Gn

)
.

The stability estimate of the RT projection yields

N+1∑
n=1

∥∥Ih
Rt

(
∂ttu
)∥∥2

L2
(
tn−1,tn;L2(Ω)

) = ∥∥Ih
Rt

(
∂ttu
)∥∥2

L2
(
0,tN+1;L2(Ω)

)
≤ C

∥∥∂ttu
∥∥2

L2
(
0,tN+1;H1(Ω)

).
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In addition,

Δt
N+1∑
n=1

∥∥∂tu
n
∥∥2

L2 ‖∇un‖L∞(Ω)

≤
(

N+1∑
n=1

Δt
∥∥∂tu

n
∥∥4

L2

)1/2 (
N+1∑
n=1

Δt ‖un‖2
W1,∞(Ω)

)1/2

= ∥∥∂tu
∥∥2
L4
(
0,tN+1;L2(Ω)

) ‖u‖L2
(
0,tN+1;W1,∞(Ω)

)

and

(Δt)1/2
N+1∑
n=1

∥∥∂ttu
∥∥2

L2
(
tn−1,tn;L2(Ω)

) ‖∇un‖L∞(Ω)

≤ ∥∥∂ttu
∥∥2

L2
(
0,tN+1;L2(Ω)

)
(

N+1∑
n=1

Δt ‖un‖2
W1,∞(Ω)

)1/2

= ∥∥∂ttu
∥∥2

L2
(
0,tN+1;L2(Ω)

) ‖u‖L2
(
0,tN+1;W1,∞(Ω)

).
At last, by using (3.16), the above stability estimates and (5.16), we can finish the proof. �

6. Error analysis for the pressure

Now, based on the previous error analysis for the velocity, we give error estimates for the pressure. To
this end, we firstly give the following two lemmas, which are crucial to proving the convergence rate of
the pressure. First, we give maximum norm estimate for the discrete velocity uh.

Lemma 6.1 (Maximum norm estimate) Under the hypothesis of the previous corollary, the following
error estimate holds: for any 1 ≤ n ≤ N + 1,

‖un − un
h‖L∞(Ω)

� C(h‖∇un‖L∞(Ω) + hru−1−d/2
√

A(u)B1(u) + C1(u) + Δth−d/2√A(u)D(u)).

In particular, for ν ≤ Ch,

‖un − un
h‖L∞(Ω)

� C(h‖∇un‖L∞(Ω) + hru−1/2−d/2
√

A(u)B2(u) + C2(u) + Δth−d/2√A(u)D(u)).

Proof. Using the triangle inequality, we have

‖un − un
h‖L∞(Ω) ≤ ‖un − Pkun‖L∞(Ω) + ‖Pkun − un

h‖L∞(Ω), (6.1)

where Pkun denotes the L2-projection of un onto Pk
d(Th). Due to (3.11), we can get

‖un − Pkun‖L∞(Ω) � Ch‖∇un‖L∞(Ω). (6.2)
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For the second term on the right-hand side of (6.1), we use the inverse inequality (3.13), which yields

‖Pkun − un
h‖L∞(Ω) ≤ Ch− d

2 ‖Pkun − un
h‖L2 . (6.3)

Using again the triangle inequality, (5.25) and ‖un − Pkun‖L2 ≤ Chru |un|Hru (Ω), we get

‖Pkun − un
h‖L2 ≤ ‖un − un

h‖L2 + ‖un − Pkun‖L2

≤ Chru−1
√

A(u)B1(u) + C1(u) + Δt
√

A(u)D(u).
(6.4)

Using (6.1)–(6.4), we can obtain

‖un − un
h‖L∞(Ω)

� C(h‖∇un‖L∞(Ω) + hru−1−d/2
√

A(u)B1(u) + C1(u) + Δth−d/2√A(u)D(u)).

�
Remark 3 We remark that the L2 projection Pk can be also replaced by the RT interpolation operator
Ih
Rt in the proof of Lemma 6.1.

Next, we present an estimate for the difference of the convective terms.

Lemma 6.2 For the difference of the convective terms, the following estimate holds true:

ch

(
un+1, un+1, vh

)− ch

(
un

h, un+1
h , vh

)
�vh�e

≤ C‖un
h‖L∞(‖en+1

h ‖L2 + h‖∇hη
n+1‖L2 + ‖ηn+1‖L2)

+ C‖∇un+1‖L∞(‖en
h‖L2 + ‖ηn‖L2)

+ C‖∇un+1‖L∞
(
(Δt)

3
2 ‖∂ttu‖L2(tn,tn+1;L2(Ω)) + Δt‖∂tu

n+1‖L2

)
.

Proof. First, let us denote K = ch

(
un+1, un+1, vh

)− ch

(
un

h, un+1
h , vh

)
, then we have

K =
(

ch

(
un, un+1, vh

)
− ch

(
un

h, un+1
h , vh

) )
− ch

(
un − un+1, un+1, vh

)
= K1 + K2.
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For K1, we add or subtract one term and use integration by parts to obtain

K1 = ch

(
un, un+1, vh

)
− ch

(
un

h, un+1
h , vh

)

=
∫

Ω

[(
(un − un

h)·∇
)
un+1·vh dx − (un

h·∇h

)
vh·(un+1 − un+1

h )
]

dx

+
∑

F∈F i
h

∫
F
(un

h · nF)�vh�{un+1 − un+1
h } ds +

∑
F∈F i

h

∫
F

1

2
|(un

h · nF)|�un+1 − un+1
h ��vh� ds. (6.5)

Applying Hölder’s inequality and using un+1 − un+1
h = ηn+1 − en+1

h in (6.5), we can get

K1 ≤ ‖∇un+1‖L∞‖un − un
h‖L2‖vh‖L2 + ‖un

h‖L∞‖un+1 − un+1
h ‖L2‖∇vh‖L2

+ ‖un
h‖L∞

⎛
⎜⎝∑

F∈F i
h

hF‖{ηn+1}‖2
L2(F)

⎞
⎟⎠

1
2
⎛
⎜⎝∑

F∈F i
h

h−1
F ‖�vh�‖2

L2(F)

⎞
⎟⎠

1
2

+ ‖un
h‖L∞

⎛
⎜⎝∑

F∈F i
h

hF‖{en+1
h }‖2

L2(F)

⎞
⎟⎠

1
2
⎛
⎜⎝∑

F∈F i
h

h−1
F ‖�vh�‖2

L2(F)

⎞
⎟⎠

1
2

+ ‖un
h‖L∞

⎛
⎜⎝∑

F∈F i
h

hF‖�ηn+1�‖2
L2(F)

⎞
⎟⎠

1
2
⎛
⎜⎝∑

F∈F i
h

h−1
F ‖�vh�‖2

L2(F)

⎞
⎟⎠

1
2

+ ‖un
h‖L∞

⎛
⎜⎝∑

F∈F i
h

hF‖�en+1
h �‖2

L2(F)

⎞
⎟⎠

1
2
⎛
⎜⎝∑

F∈F i
h

h−1
F ‖�vh�‖2

L2(F)

⎞
⎟⎠

1
2

.

Applying trace inequality, (3.6) and ‖vh‖L2 ≤ C�vh�e from (3.14), we have

K1

�vh�e
≤ C

{
‖∇un+1‖L∞‖un − un

h‖L2 + ‖un
h‖L∞‖un+1 − un+1

h ‖L2

+ ‖un
h‖L∞(h‖∇hη

n+1‖L2 + ‖ηn+1‖L2) + ‖un
h‖L∞‖en+1

h ‖L2

}
≤ C‖un

h‖L∞(‖en+1
h ‖L2 + h‖∇hη

n+1‖L2 + ‖ηn+1‖L2)

+ C‖∇un+1‖L∞(‖en
h‖L2 + ‖ηn‖L2).
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So, applying Hölder’s inequality, ‖vh‖L2 ≤ C�vh�e and (5.23) yields

K2

�vh�e
≤ C‖∇un+1‖L∞

(
(Δt)

3
2 ‖∂ttu‖L2(tn,tn+1;L2(Ω)) + Δt‖∂tu

n+1‖L2

)
.

Then, the proof is finished by collecting the above estimates. �
Now, we end this section with an a priori error estimate for the pressure. First, we make error

splitting as follows:

p − ph = (p − Pop
)− (ph − Pop

) = ηp − ep,

where Pop denotes the L2-projection of p onto Qh.

Theorem 6.3 Assume that Δt ≤ Chd/2 and ru ≥ d+2
2 (ru ≥ d+1

2 when ν ≤ Ch), and under the
assumptions of Theorem 5.3, then the following error estimate holds:

‖Δt
N+1∑
n=1

(pn − pn
h)‖L2

≤ C
{(

1 + Δt
N+1∑
n=1

K(un)
)

max
1≤n≤N+1

‖en
h‖L2 + T1/2

∥∥∂tη
∥∥
L2
(
0,tN+1;L2(Ω)

)

+ Δt
N+1∑
n=1

K(un)(h‖∇hη
n‖L2 + ‖ηn‖L2 + ‖ηn−1‖L2)

+ T1/2
∥∥∥ηp

∥∥∥
L2
(
0,tN+1;L2(Ω)

) + ν1/2T1/2

(
νΔt

N+1∑
n=1

�un − un
h�

2
e,


)1/2

+ Δt
∥∥∂tu

∥∥
L2
(
0,tN+1;L2(Ω)

) ‖u‖L2
(
0,tN+1;W1,∞(Ω)

) + (Δt)3/2
∥∥∂ttu

∥∥
L2
(
0,tN+1;H1(Ω)

)
+ (Δt)2

∥∥∂ttu
∥∥

L2
(
0,tN+1;L2(Ω)

) ‖u‖L2
(
0,tN+1;W1,∞(Ω)

) },

where K(un) = K1(u
n) (K(un) = K2(u

n) when ν ≤ Ch), K1(u
n) and K2(u

n) given by (6.8) and (6.9),
respectively.

Proof. First, we have

bh(vh, en+1
p )

=
(
∂t

(
un+1 − Ih

Rtu
n+1
)

, vh

)
+
(

∂tI
h
Rtu

n+1 − Ih
Rtu

n+1 − Ih
Rtu

n

Δt
, vh

)
−
(

en+1
h − en

h

Δt
, vh

)

+ νah

(
un+1 − un+1

h , vh

)
+ ch

(
un+1, un+1, vh

)
− ch

(
un

h, un+1
h , vh

)
+ bh(vh, ηn+1

p ). (6.6)
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Let us denote ΠN+1
h = Δt

N+1∑
n=1

en
p and Π̈N+1

h = Δt
N+1∑
n=1

ηn
p. Then, we have the following error equation:

bh(vh, ΠN+1
h )

= Δt
N+1∑
n=1

(
∂t

(
un − Ih

Rtu
n
)

, vh

)
+ Δt

N+1∑
n=1

(
∂tI

h
Rtu

n − Ih
Rtu

n − Ih
Rtu

n−1

Δt
, vh

)

− (eN+1
h − e0

h, vh) + νΔt
N+1∑
n=1

ah

(
un − un

h, vh

)

+ Δt
N+1∑
n=1

(
ch

(
un, un, vh

)− ch

(
un−1

h , un
h, vh

) )
+ bh(vh, Π̈N+1

h ).

Applying the discrete inf-sup condition (3.1), Cauchy–Schwarz inequality, boundedness of ah,
‖e0

h‖L2 = 0 and ‖vn+1
h ‖L2 ≤ C‖vn+1

h ‖e from (3.14), we can get

β‖ΠN+1
h ‖L2 ≤ sup

vh∈Xh\0

bh(vh, ΠN+1
h )

�vh�e

≤ C

{
‖eN+1

h ‖L2 + ‖Π̈N+1
h ‖L2 + CνΔt

N+1∑
n=1

�un − un
h�e,


+ Δt
N+1∑
n=1

∣∣ch

(
un, un, vh

)− ch

(
un−1

h , un
h, vh

)∣∣
�vh�e

+ Δt
N+1∑
n=1

∥∥∥∂t

(
un − Ih

Rtu
n
)∥∥∥

L2
+ Δt

N+1∑
n=1

∥∥∥∥∂tI
h
Rtu

n − Ih
Rtu

n − Ih
Rtu

n−1

Δt

∥∥∥∥
L2

}

= C
{

T1 + T2 + T3 + T4 + T5 + T6

}
. (6.7)

Next, we estimate all the terms on the right-hand side of (6.7). For the first term T1, it was already
bounded in the derivation of the velocity error bound. Using Cauchy–Schwarz inequality, we can obtain

T2 + T3 + T5 ≤ T1/2

(
Δt

N+1∑
n=1

‖ηn
p‖2

L2

)1/2

+ Cν1/2T1/2

(
νΔt

N+1∑
n=1

�un − un
h�

2
e,


)1/2

+T1/2

(
Δt

N+1∑
n=1

‖∂t

(
un − Ih

Rtu
n
) ‖2

L2

)1/2

= T1/2
∥∥∥ηp

∥∥∥
L2
(
0,tN+1;L2(Ω)

) + Cν1/2T1/2

(
νΔt

N+1∑
n=1

�un − un
h�

2
e,


)1/2

+T1/2
∥∥∂tη

∥∥
L2
(
0,tN+1;L2(Ω)

).
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From Lemma 6.2, we can get

T4 ≤ CΔt
N+1∑
n=1

‖∇un‖L∞(‖en−1
h ‖L2 + ‖ηn−1‖L2)

+CΔt
N+1∑
n=1

‖∇un‖L∞
(
(Δt)

3
2 ‖∂ttu‖L2(tn−1,tn;L2(Ω)) + Δt‖∂tu

n‖L2

)
+CΔt

N+1∑
n=1

‖un−1
h ‖L∞(‖en

h‖L2 + h‖∇hη
n‖L2 + ‖ηn‖L2)

≤ CΔt max
1≤n≤N+1

‖en
h‖L2

N+1∑
n=1

(‖∇un‖L∞ + ‖un−1
h ‖L∞)

+CΔt
N+1∑
n=1

(‖∇un‖L∞ + ‖un−1
h ‖L∞)(h‖∇hη

n‖L2 + ‖ηn‖L2 + ‖ηn−1‖L2)

+CΔt
N+1∑
n=1

‖∇un‖L∞
(
(Δt)

3
2 ‖∂ttu‖L2(tn−1,tn;L2(Ω)) + Δt‖∂tu

n‖L2

)
.

By Lemma 6.1, ru ≥ d+2
2 and Δt ≤ Chd/2, we have

‖∇un‖L∞ + ‖un−1
h ‖L∞

≤ ‖∇un‖L∞ + C(‖un−1‖W1,∞(Ω) +√A(u)B1(u) + C1(u) +√A(u)D(u))

= K1(u
n). (6.8)

In particular, when ν ≤ Ch, ru ≥ d+1
2 and Δt ≤ Chd/2, we similarly have

‖∇un‖L∞ + ‖un−1
h ‖L∞

≤ ‖∇un‖L∞ + C(‖un−1‖W1,∞(Ω) +√A(u)B2(u) + C2(u) +√A(u)D(u))

= K2(u
n). (6.9)

In addition,

Δt
N+1∑
n=1

‖∇un‖L∞
(
(Δt)

3
2 ‖∂ttu‖L2(tn−1,tn;L2(Ω)) + Δt‖∂tu

n‖L2

)

≤ Δt

(
N+1∑
n=1

Δt
∥∥∂tu

n
∥∥2

L2

)1/2 (N+1∑
n=1

Δt
∥∥∇un

∥∥2
L∞(Ω)

)1/2

+ (Δt)2
∥∥∂ttu

∥∥
L2
(
0,tN+1;L2(Ω)

)
(

N+1∑
n=1

Δt
∥∥∇un

∥∥2
L∞(Ω)

)1/2

≤ Δt
∥∥∂tu

∥∥
L2
(
0,tN+1;L2(Ω)

) ‖u‖L2
(
0,tN+1;W1,∞(Ω)

)
+ (Δt)2

∥∥∂ttu
∥∥

L2
(
0,tN+1;L2(Ω)

) ‖u‖L2
(
0,tN+1;W1,∞(Ω)

). (6.10)
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Now, defining K(un) = K1(u
n) (K(un) = K2(u

n) when ν ≤ Ch), we can have

T4 ≤ CΔt max
1≤n≤N+1

‖en
h‖L2

N+1∑
n=1

K(un)

+CΔt
N+1∑
n=1

K(un)(h‖∇hη
n‖L2 + ‖ηn‖L2 + ‖ηn−1‖L2)

+CΔt
∥∥∂tu

∥∥
L2
(
0,tN+1;L2(Ω)

) ‖u‖L2
(
0,tN+1;W1,∞(Ω)

)
+C(Δt)2

∥∥∂ttu
∥∥

L2
(
0,tN+1;L2(Ω)

) ‖u‖L2
(
0,tN+1;W1,∞(Ω)

).

Using Lemma 3.4, the commutation of temporal derivative and RT projection, the stability estimate of
the RT projection yields

T6 ≤ (Δt)3/2
N+1∑
n=1

∥∥∂ttI
h
Rtu
∥∥

L2
(
tn−1,tn;L2(Ω)

)
= (Δt)3/2

∥∥Ih
Rt

(
∂ttu
)∥∥

L2
(
0,tN+1;L2(Ω)

)
≤ C(Δt)3/2

∥∥∂ttu
∥∥

L2
(
0,tN+1;H1(Ω)

).

By applying the triangle inequality and inserting the above inequalities in (6.7), we obtain

∥∥∥∥∥Δt
N+1∑
n=1

(pn − pn
h)

∥∥∥∥∥
L2

≤ ‖ΠN+1
h ‖L2 + ‖Π̈N+1

h ‖L2

≤ C
{(

1 + Δt
N+1∑
n=1

K(un)
)

max
1≤n≤N+1

‖en
h‖L2 + T1/2

∥∥∂tη
∥∥
L2
(
0,tN+1;L2(Ω)

)

+Δt
N+1∑
n=1

K(un)(h‖∇hη
n‖L2 + ‖ηn‖L2 + ‖ηn−1‖L2)

+T1/2
∥∥∥ηp

∥∥∥
L2
(
0,tN+1;L2(Ω)

) + ν1/2T1/2

(
νΔt

N+1∑
n=1

�un − un
h�

2
e,


)1/2

+Δt
∥∥∂tu

∥∥
L2
(
0,tN+1;L2(Ω)

) ‖u‖L2
(
0,tN+1;W1,∞(Ω)

) + (Δt)3/2
∥∥∂ttu

∥∥
L2
(
0,tN+1;H1(Ω)

)
+(Δt)2

∥∥∂ttu
∥∥

L2
(
0,tN+1;L2(Ω)

) ‖u‖L2
(
0,tN+1;W1,∞(Ω)

) }.

�
Remark 4 For estimating the pressure, we need to use the two error bounds max

1≤n≤N+1
‖en

h‖L2 and

νΔt
N+1∑
n=1

�un − un
h�

2
e,
 in the error analysis for the velocity. Assume the solution (u, p) of (2.2) is

sufficiently smooth. From Theorem 6.3, when polynomials of degree ku and kp are used to approximate
the velocity and pressure, respectively, then we have

∥∥∥∥∥Δt
N+1∑
n=1

(pn − pn
h)

∥∥∥∥∥
L2

≤ C
(
u, ∂tu, ∂ttu, p, T

) (
ν

1
2 hku + hku+ 1

2 + hkp+1 + Δt
)

. (6.11)
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Corollary 5.4 shows that whether RTk/Pk or BDMk/Pk−1 elements are used for the velocity–pressure
approximation, the L2 error bound of the velocity has a rate of convergence k+1/2 in the case of ν ≤ Ch.
Theorem 6.3 shows that for the RTk/Pk, the convergence rate of the pressure is k + 1/2 when ν ≤ Ch,
while an optimal convergence rate k is obtained for the BDMk/Pk−1.

7. Extension to full-implicit and IMEX time-marching schemes

For the time integration, we also consider the full-implicit and IMEX Euler methods in time,
respectively. For the L2 error of the velocity, we will comment on whether the current analysis still
works for the full-implicit and IMEX Euler methods.

Full-implicit Euler method:

(
un+1

h − un
h

Δt
, vh

)
+ νah

(
un+1

h , vh

)
+ bh(vh, pn+1

h ) + ch

(
un+1

h , un+1
h , vh

)
=
(

f n+1, vh

)
,

bh(u
n+1
h , qh) = 0.

IMEX Euler method:

(
un+1

h − un
h

Δt
, vh

)
+ νah

(
un+1

h , vh

)
+ bh(vh, pn+1

h ) =
(

f n+1, vh

)
− ch

(
un

h, un
h, vh

)
,

bh(u
n+1
h , qh) = 0.

For the full-implicit Euler method, it is easy to prove that the L2 error bound of the velocity has a
convergence rate of k + 1/2 by following the proofs of this paper. For the IMEX Euler method, we
notice that in the error analysis, the most important term to deal with is

ch

(
un+1, un+1, en+1

h

)
− ch

(
un

h, un
h, en+1

h

)
=
[
ch

(
un+1, un+1, en+1

h

)
− ch

(
un, un, en+1

h

)]
+
[
ch

(
un, un, en+1

h

)
− ch

(
un

h, un
h, en+1

h

)]
= Θ1 + Θ2.

For Θ1, by using (5.24), we have

Θ1 = ch

(
un+1 − un, un+1, en+1

h

)
+ ch

(
un, un+1 − un, en+1

h

)
≤ (‖∇un+1‖L∞ + ‖un‖L∞)

[
‖en+1‖2

L2 + 2(Δt)3‖∂ttu‖2
L2(tn,tn+1;H1(Ω))

+ 2(Δt)2‖∂tu
n+1‖2

H1

]
,
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where for the second term of Θ1, similar to (5.24), we have

ch

(
un, un+1 − un, en+1

h

)

≤ ‖un‖L∞‖en+1‖2
L2 + ‖un‖L∞‖∇(un+1 − un)‖2

L2

≤ ‖un‖L∞‖en+1‖2
L2 + 2(Δt)3‖un‖L∞‖∂ttu‖2

L2(tn,tn+1;H1(Ω))

+ 2(Δt)2‖un‖L∞‖∂tu
n+1‖2

H1 .

For Θ2, we follow the proof of Lemma 5.2 word by word, and we can remark that the corresponding
term Ifac (see (5.11)) can be written in the following form:

Ifac =
∑

F∈F i
h

∫
F
(un

h · nF)�en+1
h �

{
ηn} ds +

∑
F∈F i

h

∫
F

1

2
|un

h · nF|�ηn��en+1
h � ds

−
∑

F∈F i
h

∫
F

1

2
|un

h · nF|�en
h��en+1

h � ds. (7.1)

The third term of (7.1) prevents the error bound of order k+1/2 for the facet terms, so the L2 error bound
of the velocity does not have a convergence rate of k + 1/2. For the higher-order full-implicit/semi-
implicit/IMEX time-marching schemes, similar results can be obtained in the analytical framework.
From the point of view of practical application, we can refer to some recent literature (Guzmán et al.,
2017; Schroeder et al., 2018; Schroeder & Lube, 2018; Schroeder et al., 2019; Lube & Schroeder,
2020) about the related performance of the H(div)-DG method with different time discrete schemes for
incompressible flows.

8. Numerical studies

In this section, we carry out numerical experiments to support our analytical results. We will concentrate
on the convergence with respect to the mesh size and test the rate of convergence. Numerical simulations
were performed at a problem defined in the domain Ω = (0, 1)2 with the exact solution

u = cos(2π t)

(
sin(πx − 0.7) sin(πy + 0.2)

cos(πx − 0.7) cos(πy + 0.2)

)
,

p = cos(2π t)(sin(x) cos(y) + (cos(1) − 1) sin(1)).

The right-hand side, the Dirichlet boundary condition and the initial condition are derived from the exact
solution.

In our implementation, the penalty parameter σ is equal to 10k2. As for temporal discretization,
the semi-implicit Euler scheme (3.3) was applied. We set the time interval small enough to ensure that
the spatial error dominates over the temporal error. We choose the small time step �t = 5E − 4 and
the final time T = 1.0. All numerical examples have been run on regular triangulations with diagonals
(from bottom right to top left), with the same number of subdivisions on each coordinate direction using
the high-order finite element library NGSolve (Schöberl, 2014).
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Table 1 BDM1 /P0 pair of finite element spaces, T = 1.0, behavior of errors with respect to ν

ν ‖u − uh‖L2 ‖∇(u − uh)‖L2 ‖p − ph‖L2 ‖∇ · uh‖L2

100 1.05E–2 4.24E–1 8.14E–1 2.32E–15
10−2 8.23E–3 4.28E–1 2.28E–2 1.89E–15
10−4 1.13E–2 4.61E–1 2.07E–2 1.85E–15
10−6 1.14E–2 4.63E–1 2.07E–2 1.85E–15
10−8 1.14E–2 4.63E–1 2.07E–2 1.86E–15
10−10 1.14E–2 4.63E–1 2.07E–2 1.87E–15

Table 2 RT1 /P1 pair of finite element spaces, T = 1.0, behavior of errors with respect to h

N × N ndof ‖u − uh‖L2 Rate ‖∇(u − uh)‖L2(L2(Ω)) Rate ‖p − ph‖L2(L2(Ω)) Rate

ν = 1
4 × 4 272 5.30E–2 — 7.19E–1 — 1.43E+0 —
8 × 8 1056 1.58E–2 1.75 3.73E–1 0.95 8.24E–1 0.80
16 × 16 4160 4.25E–3 1.89 1.88E–1 0.99 4.34E–1 0.92
32 × 32 16512 1.10E–3 1.95 9.42E–2 1.00 2.21E–1 0.97
ν = 10−8

4 × 4 272 5.48E–2 — 7.96E–1 — 1.70E–2 —
8 × 8 1056 1.70E–2 1.69 4.15E–1 0.94 5.47E–3 1.64
16 × 16 4160 4.69E–3 1.86 2.11E–1 0.98 1.54E–3 1.83
32 × 32 16512 1.23E–3 1.93 1.07E–1 0.98 4.29E–4 1.84

We use the mesh with N = 10 subdivisions in each coordinate direction to observe the variation of
the error with respect to ν. We use BDM1/P0 pair for the velocity and the pressure. The mesh in space
consisted of 200 mesh cells (640 velocity degrees of freedom, 200 pressure degrees of freedom). From
Table 1, we can observe that when the viscosity is small enough, the velocity and pressure errors hold
unchanged, that is to say, they are independent of the viscosity. This is consistent with our theoretical
results.

Next, we test the rates of convergence for the velocity and pressure for ν = 1 and 1E − 8,
respectively. The meshes with N = 4, 8, 16 and 32 subdivisions in each coordinate direction are used.
We use RT1/P1 pair for the velocity and the pressure. From Table 2, we observe that both ‖u − uh‖L2

and ‖∇(u − uh)‖L2(L2(Ω)) are optimal. For the pressure, the convergence rate of the pressure error in
Theorem 6.3 is similar to that of ‖p − ph‖L2(L2(Ω)) in Table 2, so we omit it here. We observe that the
convergence rate of the pressure error increases by one order at small viscosity ν = 1E − 8. We notice
that if the optimal and semirobust L2 error bound of the velocity can be proved at small viscosity, the
optimal convergence rate of the pressure is easily proved from Theorem 6.3. It may be an open question
whether the optimal and semirobust L2 error bound for the velocity can be proved at small viscosity.

9. Conclusions

In this paper, we present a fully discrete analysis of H(div)-conforming finite element method with
semi-implicit time-marching for the evolutionary incompressible Navier–Stokes equations. The stability
analysis and a priori error estimates are given. For inf-sup stable finite element pairs, the L2 error bound
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of the velocity is pressure-robust, semirobust and has a convergence rate of k + 1/2 (ν ≤ Ch). In
particular, for the inf-sup stable finite element pair RTk/Pk, the convergence rate of the pressure is also
k + 1/2 in the case of ν ≤ Ch.

Funding

National Nature Science Foundation of China (Grant No.11971378 & 11571274).

References

Arndt, D., Dallmann, H. & Lube, G. (2015) Local projection FEM stabilization for the time-dependent
incompressible Navier–Stokes problem. Numer. Methods Partial Differential Equations, 31, 1224–1250.

Ahmed, N., Rebollo, T. C., John, V. & Rubino, S. (2017) Analysis of a full space–time discretization of the
Navier–Stokes equations by a local projection stabilization method. IMA J. Numer. Anal., 37, 1437–1467.

Boffi, D., Brezzi, F. & Fortin, M. (2013) Mixed Finite Element Methods and Applications. Heidelberg: Springer.
Burman, E. & Fernández, M. A. (2007) Continuous interior penalty finite element method for the time-dependent

Navier–Stokes equations: space discretization and convergence. Numer. Math., 107, 39–77.
De Frutos, J., García-Archilla, B., John, V. & Novo, J. (2016) Grad-div stabilization for the evolutionary

Oseen problem with inf-sup stable finite elements. J. Sci. Comput., 66, 991–1024.
De Frutos, J., García-Archilla, B., John, V. & Novo, J. (2018) Analysis of the grad-div stabilization for

the time-dependent Navier–Stokes equations with inf-sup stable finite elements. Adv. Comput. Math., 44,
195–225.

De Frutos, J., García-Archilla, B., John, V. & Novo, J. (2019) Error analysis of non inf-sup stable
discretizations of the time-dependent Navier–Stokes equations with local projection stabilization. IMA J.
Numer. Anal., 39, 1747–1786.

Di Pietro, D. A. & Ern, A. (2012) Mathematical Aspects of Discontinuous Galerkin Methods. Mathématiques &
Applications (Berlin) [Mathematics & Applications], vol. 69. Heidelberg: Springer, pp. xviii+384.

Di Pietro, D. A. & Droniou, J. (2020) The Hybrid High-Order Method for Polytopal Meshes. Number 19 in
Modeling, Simulation and Application. Springer International Publishing.

Ern, A. & Guermond, J. L. (2004) Theory and Practice of Finite Elements. Applied Mathematical Sciences, vol.
159. New York: Springer, pp. xiv+524.

Evans, J. A. & Hughes, T. J. R. (2013) Isogeometric divergence-conforming B-splines for the unsteady Navier–
Stokes equations. J. Comput. Phys., 241, 141–167.

Guzmán, J., Shu, C. W. & Sequeira, F. A. (2017) H(div) conforming and DG methods for incompressible Euler’s
equations. IMA J. Numer. Anal., 37, 1733–1771.

Heywood, J. G. & Rannacher, R. (1990) Finite-element approximation of the nonstationary Navier–Stokes
problem. Part IV: error analysis for second-order time discretization. SIAM J. Numer. Anal., 27, 353–384.

John, V. (2016) Finite Element Methods for Incompressible Flow Problems. Cham: Springer International
Publishing.

Lube, G. & Schroeder, P. W. (2020) Implicit LES with high-order H(div)-conforming FEM for incompressible
Navier–Stokes flows. In Boundary and Interior Layers, Computational and Asymptotic Methods BAIL 2018.
Cham: Springer, pp. 157-170.

Schöberl, J. (2014) C++ 11 implementation of finite elements in NGSolve. Institute for Analysis and Scientific
Computing, Vienna University of Technology.

Schroeder, P. W. & Lube, G. (2017) Pressure-robust analysis of divergence-free and conforming FEM for
evolutionary incompressible Navier–Stokes flows. J. Numer. Math., 25, 249–276.

Schroeder, P. W. & Lube, G. (2018) Divergence-free H(div)-FEM for time-dependent incompressible flows with
applications to high Reynolds number vortex dynamics. J. Sci. Comput., 75, 830–858.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/article/42/2/1568/6133991 by guest on 21 April 2022



H(div)-CONFORMING DG METHOD FOR NAVIER-STOKES EQUATIONS 1597

Schroeder, P. W., Lehrenfeld, C., Linke, A. & Lube, G. (2018) Towards computable flows and robust estimates
for inf-sup stable FEM applied to the time-dependent incompressible Navier–Stokes equations. SeMA J., 75,
629–653.

Schroeder, P. W., John, V., Lederer, P. L., Lehrenfeld, C., Lube, G. & Schöberl, J. (2019) On reference
solutions and the sensitivity of the 2D Kelvin–Helmholtz instability problem. Comput. Math. Appl., 77, 1010–
1028.

Wang, J. & Ye, X. (2007) New finite element methods in computational fluid dynamics by H(div) elements. SIAM
J. Numer. Anal., 45, 1269–1286. D

ow
nloaded from

 https://academ
ic.oup.com

/im
ajna/article/42/2/1568/6133991 by guest on 21 April 2022


	Semirobust analysis of an Hdiv-conforming DG method with semi-implicit time-marching for the evolutionary incompressible Navier--Stokes equations
	1. Introduction
	2. Navier--Stokes problem
	3. Hdiv-conforming DG finite element method
	3.1 Numerical scheme

	4. Existence and uniqueness of solutions and stability analysis
	5. Semirobust analysis for the velocity
	6. Error analysis for the pressure
	7. Extension to full-implicit and IMEX time-marching schemes
	8. Numerical studies
	9. Conclusions


