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Abstract
In this paper, the a prior error estimates of an embedded-hybridized discontinuous Galerkin
method for the time-dependent Navier–Stokes equations are presented. It is proved that the
velocity error in the L2(�)norm,where the constants are independent of theReynolds number
Re (or ν−1), is quasi-optimal with pre-asymptotic convergence order of k + 1/2 in case of
ν ≤ Ch‖u‖L∞(L∞(�)), with k the polynomial order of the velocity space. In addition, we
also provide a Reynolds-dependent error bound with asymptotic convergence order of k + 1
for the case of the low mesh Reynolds number Reh , which is denoted as h‖u‖L∞(L∞(�))/ν.
Finally, numerical experiments are carried out to confirm the rates of convergence.

Keywords Reynolds-robust · Quasi-optimal · Embedded-hybridized discontinuous
Galerkin method · Time-dependent Navier–Stokes equations

1 Introduction

In many applications, numerical simulation of high Reynolds number flows is a difficult
problem. For this reason, the development of error estimates has been an interesting topic for
high Reynolds number flows, in which the constants are independent of the Reynolds number.
The robust error bounds have been proved for the velocity error in the L2(�) norm for some
finite element methods [18–20, 27, 28], but they are sup-optimal with convergence order of
k. It is to be remarked that there are very few quasi-optimal error bounds in the literature. In
[1], the quasi-optimal error bound is proved for the L2(�) error of the velocity, whereas the
analysis in [1] was restricted to piecewise linear approximations in space and in time. In [17],
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based on equal-order approximations for the velocity and the pressure, a continuous interior
penalty method is considered, in which the error bound is quasi-optimal. In [2], for one of
the local projection stabilization methods with non inf-sup stable finite elements, the robust
error bound is proved to be quasi-optimal. Recalling the existing literature, these numerical
methods are restricted to the H1-conforming finite element methods with equal-order finite
element spaces. For getting the quasi-optimal estimates, some stabilization terms must be
added, which are the jumps of the gradient of the approximate solutions over the internal
faces. In addition, the quasi-optimal error bounds are dependent on the pressure, namely,
they aren’t pressure-robust.

By giving up H1-conforming finite elements, H(div)-conforming discontinuous Galerkin
(DG)methods are pressure-robust.Meanwhile, due to the natural incorporation of upwinding
at element boundaries, it is ideally suited for convection dominatedflows [7, 10, 34].Bymeans
of the Raviart-Thomas interpolation, it is proved that the velocity error in the L2-norm has the
quasi-optimal error bound for the evolutionary Navier–Stokes equations [25]. Unfortunately,
DGmethods are known to be computationally expensive. To lower the computational cost of
theDGmethods, the hybridized discontinuousGalerkin (HDG)methods have been developed
in [22], by introducing new trace unknowns defined on cell boundaries. H(div)-conforming
HDG methods have been popular for numerically solving the Navier-Stokes equations, see
[11, 13, 16, 29]. In [29], the HDG method introduces discontinuous trace velocity and trace
pressure approximations. If we use continuous trace velocity and discontinuous trace pressure
approximations, this results in an embedded-hybridized discontinuous Galerkin (E-HDG)
method [24]. The HDG and E-HDGmethods provide an exactly divergence-free and H(div)-
conforming velocity field, in which the velocity error bounds are pressure-robust. For the
E-HDGmethod, the facet velocity functions are continuous, so it has fewer degrees of freedom
than the HDGmethod on a givenmesh, and it is better suited to fast iterative solver [24]. If the
continuous facet function spaces for the trace velocity and pressure approximations are used,
it was well-known as an embedded discontinuous Galerkin (EDG) method. Unfortunately,
the EDG method is not pressure-robust [24]. In [33, 35], the space-time HDG, E-HDG and
EDG methods have been introduced for the Navier–Stokes equations on time-dependent
domains.

As we can see, the HDG, E-HDG and EDG methods mentioned above were analyzed
for the steady-state Stokes, Oseen and Navier–Stokes equations, see [3, 23, 24, 30]. The
fully discrete analysis of the space-time HDG method for the Navier–Stokes equations on
fixed domains were presented in [31, 32]. In [31], it was proved that the discrete solution
converges to a weak solution as the time step and mesh size tend to zero. In [32], it provided
a rigourous study of well-posedness for the space-time HDGmethods applied to the Navier–
Stokes equations, and the a priori error estimates for the velocity were derived under a small
data assumption.

In this paper, we analyze the semi-discrete embedded-hybridized discontinuous Galerkin
method for the time-dependentNavier–Stokes equations on fixed domains. Firstly, it is proved
that the L2(�) error of the velocity isReynolds-robustwith pre-asymptotic convergence order
of k+1/2 in case of ν ≤ Ch‖u‖L∞(L∞(�)). Secondly, we obtain a Reynolds-dependent error
bound with optimal convergence order of k + 1 for the velocity L2 error, which is applicable
for the case of the low mesh Reynolds number. By a careful inspection, all the results in
the paper hold true verbatim for the HDG method for the Navier–Stokes equations [29].
Notice that the space-time HDGmethod in [32] is based on the spatial discretization of [29].
Comparing our analysis results to that of [32], the velocity L2 error derived under a small
data assumption in [32] isn’t strictly Reynolds-robust, in which the spatial convergence order
is only suboptimal with convergence order of k. In addition, we can use ODE theory to prove
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well-posedness for the semi-discrete case, however well-posedness for the fully-discrete
space-time case is more complicated [32].

The structure of the paper is as follows: In Sect. 2, we introduce the E-HDG method for
the time-dependent Navier–Stokes equations. Some preliminaries are presented in Sect. 3.
The error estimates for the velocity are present in Sect. 4. In Sect. 5, we carry out numerical
experiments to verify our analytical results.

2 Embedded-Hybridized Discontinuous Galerkin Method

In this section, we present the E-HDG method, which is identical to the HDG method of
[29] using the E-HDG spaces of [24], for the time-dependent incompressible Navier–Stokes
equations

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂t u − νΔu + (u · ∇)u + ∇ p = f , (0, T ] × Ω,

∇ · u = 0, (0, T ] × Ω,

u = 0, (0, T ] × �,

u(0, x) = u0(x), Ω,

(1)

in a polygonal (d = 2) or polyhedral (d = 3) domain � with boundary �. Introduce

V = [H1
0 (�)]d , Q = L2

0(�) = {q ∈ L2(�),

∫

�

qdx = 0}.

Theweak formulation of theNavier–Stokes equations reads as follows: find (u, p) : (0, T ] →
(V , Q), satisfying

{
(∂t u, v) + νa(u, v) + o(u, u, v) + b(p, v) = ( f , v), ∀v ∈ V ,

b(q, u) = 0, ∀q ∈ Q,
(2)

where

a(u, v) =
∫

Ω

∇u:∇v dx, o(u, u, v) =
∫

Ω

(u·∇)u·v dx,

b(q, u) = −
∫

Ω

q(∇ ·u) dx .

In addition, for the well-posedness of (2), we can refer to [4, 5].

2.1 Notation

Let {Th}0<h≤1 be a family of triangulations of the domain � without hanging nodes. For
each triangulation Th , define mesh size h = maxK∈Th hK , where hK denotes the diameter of
each element K ∈ Th . Assume that the family of triangulation {Th}0<h≤1 is shape-regular
and quasi-uniform, i.e., there exists constants � and �1 such that

hK
ρK

< � and
h

hK
< �1, ∀K ∈ Th,∀h ∈ (0, 1],

where ρK is the diameter of the largest ball that can be inscribed in K . LetFh and Γ 0 denote
the set of all facets and the mesh skeleton, respectively. Fh = FI ∪ FB , where FI and FB

are the subset of interior facets and boundary facets, respectively. Let hF denote the diameter
of each face F ∈ Fh . We denote the boundary of a cell by ∂K , and the outward unit normal
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vector on ∂K by n. Let Pl(M) (l ≥ 0) denote the space of all polynomials on a domain M
with degree less than or equal to l.

Next, we use the following finite element spaces on Ω:

Vh =
{
vh ∈ [

L2(Ω)
]d : vh ∈ [

Pk(K )
]d

,∀K ∈ Th
}

,

Qh =
{
qh ∈ L2(Ω) : qh ∈ Pk−1(K ),∀K ∈ Th

}
,

and the following facet finite element spaces on Γ 0:

V̄h =
{
v̄h ∈ [

L2(Γ 0)
]d : v̄h ∈ [

Pk(F)
]d

,∀F ∈ Fh, v̄h = 0 on Γ
}

∩ C0 (
Γ 0) ,

Q̄h =
{
q̄h ∈ L2(Γ 0) : q̄h ∈ Pk(F),∀F ∈ Fh

}
.

Here, k ≥ 1.We set V �
h = Vh × V̄h , Q�

h = Qh × Q̄h and X�
h = V �

h ×Q�
h , and denote function

pairs in V �
h and Q�

h by boldface, for example, vh = (vh, v̄h) ∈ V �
h and qh = (qh, q̄h) ∈ Q�

h .

2.2 Weak Formulation

Now, we present the E-HDG method under consideration. The space-semidiscrete weak
formulation of (1) reads as follows: given f ∈ [

L2(0, T ; L2(�))
]d , find (uh, ph) ∈ X�

h such
that

(∂t uh, vh) + ah(uh, vh) + oh(uh; uh, vh) + bh( ph, vh) = ( f , vh), ∀vh ∈ V �
h ,

bh(qh, uh) = 0, ∀qh ∈ Q�
h,

(3)

where

ah(u, v) =
∑

K∈Th

∫

K
ν∇u : ∇vdx +

∑

K∈Th

∫

∂K

αν

hK
(u − ū) · (v − v̄)ds

−
∑

K∈Th

∫

∂K
[ν(u − ū) · ∂nv + ν∂nu · (v − v̄)] ds,

bh( p, v) = −
∑

K∈Th

∫

K
p∇ · vdx +

∑

K∈Th

∫

∂K
v · n p̄ds,

and

oh(w; u, v) = −
∑

K∈Th

∫

K
(u ⊗ w) : ∇vdx +

∑

K∈Th

∫

∂K

1

2
w · n(u + ū) · (v − v̄)ds

+
∑

K∈Th

∫

∂K

1

2
|w · n| (u − ū) · (v − v̄)ds.

(4)

To ensure stability, we need to choose a sufficiently large penalty parameter α > 0 in the
term ah [3].

Remark 1 Notice that for the HDG method, V̄h is set to be the following discontinuous facet
velocity space

V̄h =
{
v̄h ∈ [

L2(Γ 0)
]d : v̄h ∈ [

Pk(F)
]d

,∀F ∈ Fh, v̄h = 0 on Γ
}

.

The E-HDG and HDG formulations yield the approximate velocities that are exactly
divergence-free on cells and H(div)-conforming, see [24, 29].
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3 Preliminaries

Given a domain M , for scalar-valued functions p, q ∈ L2(M), we denote the inner-product
(p, q)M = ∫

M pqdx with norm ‖p‖M = √
(p, p)M . Similar definitions hold for vector-

valued and tensor-valued functions. We use the Sobolev spaces Wl,p(M) for scalar-valued
functions with associated norms ‖·‖Wl,p(M) and seminorms |·|Wl,p(M) for l ≥ 0 and p ≥ 1. In
the case l = 0,W 0,p(M) = L p(M), and when l = 2,Wl,2(M) = Hl(M). ‖·‖Wl,p(�) is used

to denote the norm both inWl,p(�) or
[
Wl,p(�)

]d . ‖·‖l (resp. |·|l ) is used to denote the norm
(resp. seminorm) both in Hl(�) or

[
Hl(�)

]d . ‖ · ‖L p is ofen used to denote the norm both in

L p(�) or
[
L p(�)

]d . The inner product of L2(�) or
[
L2(�)

]d will be denoted by (·, ·). The
exact meaning will be clear by the context. Introduce the Bochner space L p(0, T ; Y )(1 ≤
p ≤ ∞), where Y is a Banach space, the abbreviation L p(Y ) = L p(0, T ; Y ) is often used.
Introduce the Hilbert space H0(div,Ω) = {v ∈ H(div,Ω) : v · n = 0 on Γ }. Define the
trace operator γ : Hl(Ω) → Hl−1/2(Fh) (l ≥ 1), which restricts functions in Hl(Ω) to
Fh . Define the broken Sobolev space Hl(Th) = {w ∈ L2(Ω) : w|K ∈ Hl(K ),∀K ∈ Th}.
Throughout this paper, the broken gradient ∇h : [H1 (Th)]d → [

L p(�)
]d×d is defined such

that for all v ∈ [H1 (Th)]d ,
∀K ∈ Th, (∇hv)|K = ∇(v|K ).

We will drop the index h in the broken gradient whenever the operator appears inside an
integral over a mesh element K ∈ Th .

Introduce the following extended function spaces

V (h) = Vh + [
H1
0 (Ω) ∩ H2(Ω)

]d
, Q(h) = Qh + L2

0(Ω) ∩ H1(Ω),

V̄ (h) = V̄h + [
H3/2
0 (Γ 0)

]d
, Q̄(h) = Q̄h + H1/2

0 (Γ 0),

in which
[
H3/2
0

(
Γ 0

)]d and H1/2
0

(
Γ 0

)
are the trace spaces of

[
H1
0 (�) ∩ H2(�)

]d
and

L2
0(�) ∩ H1(�) on Γ 0, respectively. Set V �(h) = V (h) × V̄ (h), Q�(h) = Q(h) × Q̄(h).

For φ = (φ, φ̄) ∈ V �
h (h) or φ = (φ, φ̄) ∈ Q�

h(h), we define the jump [[·]] and average { · }
operators across the cell boundary ∂K ,∀K ∈ Th , by

[[φ]] = φ − φ̄, {φ}= φ + φ̄

2
.

Let RT k(K ) = [
Pk(K )

]d + x(Pk(K )/Pk−1(K )),∀K ∈ Th . Define the following space

V div
h ={v ∈ H0(div,�) : v|K ∈ RT k(K ),∀K ∈ Th}.

We define two norms on V �(h)

|||v|||2v =
∑

K∈Th

‖∇v‖2K +
∑

K∈Th

αh−1
K ‖v̄ − v‖2∂K ,

|||v|||2v′ = |||v|||2v +
∑

K∈Th

hK
α

‖ ∂v

∂n
‖2∂K ,

where ||| · |||v′ and ||| · |||v are equivalent on V �
h , namely, |||vh |||v ≤ |||vh |||v′ ≤ c|||vh |||v, with c

independent of h, see [3, Eq.(28)]. Define the following norm on Q�
h

|||q|||2p =
∑

K∈Th

||q||2K + |q|2p,
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with |q|2p = ∑

K∈Th

hK ‖q̄ − q‖2∂K . Moreover, we introduce the following seminorm

|v|2u,up =
∑

K∈Th

∫

∂K
|u · n| |v − v̄|2ds.

Let 0 ≤ j ≤ � and 1 ≤ p, q ≤ ∞, then we have the local inverse inequality [6, Lemma
1.138]

‖vh‖W �,p(K ) ≤ Cinvh
j−�+d( 1

p − 1
q )

K ‖vh‖W j,q (K ), ∀vh ∈ Pk(K ),∀K ∈ Th . (5)

We will use the following continuous and discrete trace inequalities

‖v‖∂K ≤ C(h
− 1

2
K ‖v‖K + h

1
2
K ‖∇v‖K ), ∀v ∈ H1(K ),∀K ∈ Th,

and

‖v‖∂K ≤ Ch
− 1

2
K ‖v‖K , ∀v ∈ Pk(K ),∀K ∈ Th . (6)

The following Sobolev’s embedding [21] will be used: For 1 ≤ p < d/s, let q be such that
1
q = 1

p − s
d . There exists a constant C > 0 such that

‖v‖Lq′
(�)

≤ C‖v‖Ws,p(�),
1

q ′ ≥ 1

q
, v ∈ Ws,p(�). (7)

If p > d/s, the above inequality is valid for q ′ = ∞.
Next, we present the stability and boundedness of the multilinear forms, and the consis-

tency of the method.

Lemma 1 [3, Lemmas 4.2 and 4.3](Coercivity and boundedness of ah) For sufficiently large
α, there exist constants Cc

a > 0 andCb
a > 0, independent of h and ν, such that for all vh ∈ V �

h
and u ∈ V �(h),

ah(vh, vh) ≥ νCc
a |||vh |||2v and |ah(u, vh)| ≤ νCb

a |||u|||v′ |||vh |||v. (8)

Lemma 2 [24, Lemma 8](Stability of bh) There exists a constant βp > 0, independent of h,
such that for all qh ∈ Q�

h,

βp|||q|||p ≤ sup
wh∈V �

h

bh
(
qh, wh

)

|||wh |||v
. (9)

Lemma 3 [12, Proposition 3.6](Stability of oh) For all wh ∈ Vh and vh ∈ V �
h , then we have

oh(wh; vh, vh) = 1

2
|vh |2wh ,up.

(10)

Lemma 4 (Consistency) If (u, p) ∈ ([
H1
0 (Ω) ∩ H2(Ω)

]d) × (
L2
0(Ω) ∩ H1(Ω)

)
, letting

u = (u, γ (u)) and p = (p, γ (p)), then

(∂t u, vh) + ah(u, vh) + oh(u; u, vh) + bh( p, vh) = ( f , vh), ∀vh ∈ V �
h ,

bh(qh, u) = 0, ∀qh ∈ Q�
h .

(11)

For the proofs of Lemmas 3 and 4, we can follow (18) and (20) in [23], respectively.
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For w, u, v ∈ [
H1(Th)

]d and ū, v̄ ∈ [
L2(�0)

]d , let u = (u, ū) and v = (v, v̄), then we
have

∑

K∈Th

∫

∂K
(w · n)

[[[u]] · {v} + [[v]] · {u} + ū · v̄
]
ds

=
∑

K∈Th

∫

(w · ∇)u · v + (w · ∇)v · u + (∇ · w)uvdx,
(12)

where the equal sign is due to u ·v− ū · v̄ = [[u]] · {v}+[[v]] · {u} and elementwise integration
by parts. Provided w ∈ H(div,�), ∇ · w = 0 and v̄ = 0 on Γ , by using (12), we can give
an equivalent form of oh(w; u, v):

oh(w; u, v) =
∑

K∈Th

∫

K
(w · ∇)u · vdx −

∑

K∈Th

∫

∂K

1

2
w · n(u − ū) · (v + v̄)ds

+
∑

K∈Th

∫

∂K

1

2
|w · n| (u − ū) · (v − v̄)ds,

(13)

which will be used in the following analysis.
Let Ihu denote the Lagrange interpolant of order k of a continuous function u. We have

the following bound [9, Theorem 4.4.4]:

|u − Ihu|W j,p(K ) ≤ Chs− j |u|Ws,p(K ), 0 ≤ j ≤ s ≤ k + 1, (14)

where s > d/p when 1 < p ≤ ∞ and s ≥ d when p = 1.
In what follows, we define the broken polynomial space

Pk (Th) = {v ∈ L2(�) : v|K ∈ Pk(K ),∀K ∈ Th},
and πk

h is the corresponding L2-orthogonal projector on Pk (Th). There exists a constant
C > 0, independent of h, such that for 0 ≤ l ≤ k + 1 and 1 ≤ p ≤ ∞ [6, Proposition 1.135]

‖w − πk
hw‖L p(�) ≤ Chl |w|Wl,p(�), ∀w ∈ Wl,p(�). (15)

The Raviart-Thomas interpolation operator will be used in the sequel. It is defined as
follows: Πdiv : [

H1(�)
]d ∩ H0(div,�) → V div

h where Πdivv is the unique function of V div
h

satisfying
∫

K
(Πdivv − v) · wdx = 0, for all w ∈ [

Pk−1(K )
]d

, and all K ∈ Th,
∫

F
(Πdivv − v) · nwds = 0, for all w ∈ Pk(F), and all F ∈ Fh .

(16)

Remark 2 For the following analysis, it is crucial that the term u − Πdivu is L2-orthogonal
to the polynomial space

[
Pk−1(K )

]d , ∀K ∈ Th , see (29) and (30). This is also why the
Raviart-Thomas interpolation of the velocity is used instead of the Brezzi-Douglas-Marini
interpolation [15].

The operator Πdiv satisfies the following commutative property [15, Proposition 2.5.2]

divΠdivv = πk
h div v.

Let Πdivv ∈ V div
h with divΠdivv = 0 on �, then Πdivv|K ∈ [

Pk(K )
]d [15, Corollary

2.3.1]. Thus, for Πdivv with div v = 0, we have divΠdivv = 0 and Πdivv|K ∈ [
Pk(K )

]d .
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The Raviart-Thomas interpolation operator satisfies the following approximation proper-
ties. Let j and k be integers such that 0 ≤ j ≤ k + 1. Then there exists C > 0 independent
of h such that [14, Lemma 3.16]

|w − Πdivw| j,K ≤ Chk+1− j
K |w|k+1,K , ∀w ∈ [Hk+1(K )]d .

And, the following maximum norm bounds hold [34, (2.9)]:

‖w − Πdivw‖L∞(K ) + hK ‖∇(w − Πdivw)‖L∞(K ) ≤ ChK ‖∇w‖L∞(K ). (17)

For each fixed time t ∈ [0, T ], consider a Stokes problem with right-hand side −ν�u +
∇ p, where (u, p) is the solution of (1). We will denote by

(
sh,ψh

) ∈ X�
h with sh = (sh, s̄h)

and ψh = (ψh, ψ̄h), the E-HDG approximation satisfying

ah(sh, vh) + bh(ψh, vh) = (−ν�u + ∇ p, vh), ∀vh ∈ V �
h ,

bh(qh, sh) = 0, ∀qh ∈ Q�
h .

(18)

Then, the following bounds hold [3, 24]:

‖u − sh‖L2 + h|||u − sh |||v ≤ Ch j‖u‖ j , 1 ≤ j ≤ k + 1,

||| p − ψh |||p ≤ Ch j−1(‖u‖ j + ‖p‖ j−1), 1 ≤ j ≤ k + 1,
(19)

where u = (u, γ (u)) and p = (p, γ (p)).

Lemma 5 Assume that u ∈ [
H1
0 (�) ∩ H2(�)

]d
is the velocity solution of (1). Let sh =

(sh, s̄h) be the velocity solution of (18). Then, there exists a constant C independent of h such
that

‖u − sh‖L∞(�) + ‖u − s̄h‖L∞(Fh) ≤ C‖u‖2. (20)

Remark 3 Lemma 5 will be used to prove the optimal error estimates for the velocity, which
is applicable for the case of the low mesh Reynolds number.

Proof By using the triangle inequality, shape-regular and quasi-uniformity of the mesh, the
inverse inequality (5), (15), (19) and (7), we obtain

‖u − sh‖L∞(�) ≤ ‖u − πk
h u‖L∞(�) + ‖πk

h u − sh‖L∞(�)

≤ C‖u‖L∞(�) + Ch− d
2 ‖πk

h u − sh‖L2(�)

≤ C‖u‖L∞(�) + Ch− d
2 (‖u − sh‖L2(�) + ‖u − πk

h u‖L2(�))

≤ C‖u‖2,

(21)

and
‖u − s̄h‖L∞(Fh) ≤ ‖u − s+

h ‖L∞(F) + ‖s+
h − s̄h‖L∞(F)

≤ ‖u − sh‖L∞(K ) + Ch
− d−1

2
F ‖s+

h − s̄h‖L2(F)

≤ ‖u − sh‖L∞(�) + Ch
− d−1

2
F ‖s+

h − s̄h‖L2(F)

≤ ‖u − sh‖L∞(�) + Ch− d
2 +1(

∑

K∈Th

h−1
K ‖s̄h − sh‖2∂K )

1
2

≤ C‖u‖2,
where F ∈ ∂K stands for the face where the maximum value is taken. Here, notice that

‖u − s+
h ‖L∞(F) ≤ ‖u − sh‖L∞(K ), (22)
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where the well-known embedding H2(K ) ⊂ C0(K̄ ) is used, such that u − sh ∈ [C0(K̄ )]d ,
see Theorem B.46 in [6]. ��
Lemma 6 (Well-posedness and velocity energy estimate) Assume that u0h is an approxima-
tion of u0. Then, there exists an unique solution (uh, ph) to (3), which satisfies the following
energy estimate:

1

2
‖uh(T )‖2L2 +

∫ T

0
νCc

a |||uh |||2v + 1

2
|uh |2uh ,up dt ≤ ‖u0h‖2L2 + 3

2
‖ f ‖2L1(0,T ;L2(�))

.

(23)

Proof First, we basically follow the proof of Lemma 3.1 in [26] to obtain the energy estimate.
The well-posedness of the velocity and the pressure solutions follows from the theorem of
Carathéodory [4, Theorem A.50] and the discrete inf-sup condition (9), respectively. ��
Remark 4 Here and in what follows, we shall set u0h = s0h , where s0h is the E-HDG approx-
imation of a Stokes problem (18) with the right-hand side −ν�u +∇ p replaced by −ν�u0.

4 Error Estimates for the Velocity

We introduce the following approximation and discretization errors for the velocity and the
pressure, respectively:

ζu = u − Πdivu, ωu = uh − Πdivu, ζ̄u = γ (u) − Īhu, ω̄u = ūh − Īhu,

ζp = p − ΠQ p, ωp = ph − ΠQ p, ζ̄p = γ (p) − Π̄Q p, ω̄p = p̄h − Π̄Q p,
(24)

whereΠQ and Π̄Q are the standard L2-projection operators ontoQh and Q̄h , respectively, and
Īhu = Ihu|Fh

∈ V̄h . Set ζ u = (ζu, ζ̄u), ωu = (ωu, ω̄u), ζ p = (ζp, ζ̄p) and ωp = (ωp, ω̄p).
Next, the result that the L∞(0, T ; L2(�)) error of the velocity is Reynolds-robust with

pre-asymptotic convergence order of k + 1/2 in case of ν ≤ Ch‖u‖L∞(L∞(�)), is presented
in the following theorem.

Theorem 1 Assume that (u, p) is the solution of (1), and (uh, ph) ∈ X�
h the solution of

(3). Set u = (u, γ (u)) and p = (p, γ (p)), and u0h is an approximation of u0. Let u ∈
[
L1

(
0, T ;W 1,∞(�)

) ∩ L∞(0, T ; Hr (Ω))
]d
, ∂t u ∈ [

L2(0, T ; Hr (Ω))
]d
, with 2 ≤ r ≤

k + 1, and assume that ν ≤ Ch‖u‖L∞(L∞(�)), then we have the following estimate:

‖u − uh‖2L∞(0,T ;L2(�))
+

∫ T

0
ν|||u − uh |||2v dt

≤ �1(u)‖ωu(0)‖2L2 + h2r−1
(
�1(u)�2(u) + �3(u)

)
,

where

�1(u) = Ceϒ(u),

�2(u) = h ‖∂t u‖2L2(0,T ;Hr (�))
+

(
T + (h + 1)‖u‖L1(0,T ;W 1,∞(�))

)
‖u‖2L∞(0,T ;Hr (�)) ,

�3(u) = C(h + T ) ‖u‖2L∞(0,T ;Hr (�)) ,

with ωu(0) = u0 h − Πdivu0 and ϒ(u) = ∫ T
0 C(1 + ‖∇u‖L∞) dt .
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Proof Firstly, by subtracting (3) from (11),

(∂t (u − uh), vh) + ah(u − uh, vh) + bh( p − ph, vh) − bh(qh, u − uh)

+ oh(u, u, vh) − oh(uh, uh, vh) = 0.
(25)

By using (24) and taking (vh, qh) = (ωu,ωp) in (25), we have

1

2

d

dt
‖ωu‖2L2 + ah(ωu,ωu)

= (∂tζu, ωu) + ah(ζ u,ωu) + bh(ζ p, ωu) − bh(ωp, ζu)

+ oh(u − uh; u,ωu) + oh(uh; ζ u,ωu) − oh(uh;ωu,ωu).

(26)

Furthermore, we note that bh(ζ p, ωu) = bh(ωp, ζu) = 0withωu and ζu , which are pointwise
divergence-free and H(div)-conforming. Then, we have

1

2

d

dt
‖ωu‖2L2 + ah(ωu,ωu) + oh(uh;ωu,ωu)

= (∂tζu, ωu) + ah(ζ u,ωu) + oh(u − uh; u,ωu) + oh(uh; ζ u,ωu).

(27)

On the left-hand side of (27), we apply the discrete coercivity of ah in (8) and the stability of
oh (10). On the right-hand side of (27), applying the boundedness of ah in (8) and Cauchy-
Schwarz inequality, we have

d

dt
‖ωu‖2L2 + νCc

a |||ωu |||2v + |ωh |2uh ,up
≤ ‖∂tζu‖2L2 + ‖ωu‖2L2 + νC |||ζ u |||2v′ + 2Λ,

(28)

with Λ = oh(u − uh; u,ωu)+ oh(uh; ζ u,ωu). Next, we give a bound for the term Λ, which
is crucial to derive the Reynolds-robust error bound for the velocity. By using the equivalent
forms (13) and (4) of the convective term, we have

Λ = oh(u − uh; u,ωu) + oh(uh; ζ u,ωu)

=
∫

Ω

((u − uh)·∇)u·ωu dx −
∫

Ω

(uh ·∇h)ωu ·ζu dx
︸ ︷︷ ︸

Λ1

+
∑

K∈Th

∫

∂K
(uh · n)[[ωu]]{ζ u} ds +

∑

K∈Th

∫

∂K

1

2
|(uh · n)|[[ζ u]][[ωu]] ds

︸ ︷︷ ︸
Λ2

.

Recall ωu = uh − Πdivu where Πdivu|K ∈ [
Pk(K )

]d , ∀K ∈ Th . Then we have ωu |K ∈
[
Pk(K )

]d and
(
π0
h u·∇h

)
ωu |K ∈ [

Pk−1(K )
]d . Then, by using (16), we have

∫

K

(
π0
h u·∇)

ωu ·ζu dx = 0, ∀K ∈ Th . (29)
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For the term Λ1, inserting uh = ωu + u − ζu , (29) and applying Hölder’s inequality, (17),
inverse inequality and Cauchy-Schwartz inequality, we have

Λ1 =
∫

Ω

(ζu ·∇)u·ωu − (ωu ·∇)u·ωu dx −
∫

Ω

(ωh ·∇h)ωu ·ζu dx −
∫

Ω

(u·∇h)ωu ·ζu dx

+
∫

Ω

(ζu ·∇h)ωu ·ζu dx

=
∫

Ω

(ζu ·∇)u·ωu − (ωu ·∇)u·ωu dx −
∫

Ω

(ωh ·∇h)ωu ·ζu dx +
∫

Ω

(ζu ·∇h)ωu ·ζu dx

−
∑

K∈Th

∫

K

(
(u − π0

h u)·∇)
ωu ·ζu dx

≤ C‖∇u‖L∞‖ζu‖2L2 + C‖∇u‖L∞‖ωu‖2L2 .

(30)
For Λ2, we apply Young’s inequality to obtain

Λ2 =
∑

K∈Th

∫

∂K
(uh · n)[[ωu]]

{
ζ u

}
ds +

∑

K∈Th

∫

∂K

1

2
|uh · n|[[ζ u]][[ωu]] ds

≤
∑

K∈Th

∫

∂K
|uh · n||{ζ u}|2 ds

︸ ︷︷ ︸
Λ21

+ 1

2

∑

K∈Th

∫

∂K
|uh · n||[[ζ u]]|2 ds

︸ ︷︷ ︸
Λ22

+ 3

8

∑

K∈Th

∫

∂K
|uh · n||[[ωu]]|2 ds

︸ ︷︷ ︸
Λ23

.

Applying uh = ωu + u − ζu , Hölder’s inequality and the trace inequality, we have

Λ21 ≤
∑

K∈Th

∫

∂K
|ωu · n||{ζ u}|2 ds +

∑

K∈Th

∫

∂K
|ζu · n||{ζ u}|2 ds

+
∑

K∈Th

∫

∂K
|u · n||{ζ u}|2 ds

≤ 1

2

∑

K∈Th

‖{ζ u}‖L∞(∂K )‖ωu‖2L2(∂K )
+ 1

2

∑

K∈Th

‖{ζ u}‖L∞(∂K )‖{ζ u}‖2L2(∂K )

+ ‖ζu‖L∞
∑

K∈Th

‖{ζ u}‖2L2(∂K )
+ ‖u‖L∞

∑

K∈Th

‖{ζ u}‖2L2(∂K )

≤ C‖∇u‖L∞‖ωu‖2L2 + C(‖u‖L∞ + h‖∇u‖L∞)
∑

K∈Th

‖{ζ u}‖2L2(∂K )
.

(31)

Here, notice that the inequalities (14) with p = ∞ and (17) are used. For Λ22, we similarly
have

Λ22 ≤ C‖∇u‖L∞‖ωu‖2L2 + C(‖u‖L∞ + h‖∇u‖L∞)
∑

K∈Th

‖[[ζ u]]‖2L2(∂K )
. (32)
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Then, by combining (31) and (32), we obtain

Λ2 ≤ C(‖u‖L∞ + h‖∇u‖L∞)(
∑

K∈Th

‖{ζ u}‖2L2(∂K )
+

∑

K∈Th

‖[[ζ u]]‖2L2(∂K )
)

+ C‖∇u‖L∞‖ωu‖2L2 + 3

8
|ωh |2uh ,up.

(33)

Collecting the above estimates, we can obtain

Λ ≤C‖∇u‖L∞‖ζu‖2L2 + C(‖u‖L∞ + h‖∇u‖L∞)(
∑

K∈Th

‖{ζ u}‖2L2(∂K )
+

∑

K∈Th

‖[[ζ u]]‖2L2(∂K )
)

+ C‖∇u‖L∞‖ωu‖2L2 + 3

8
|ωh |2uh ,up

≤C(1 + h−1)‖u‖W 1,∞(�)(‖ζu‖2L2 + h
∑

K∈Th

‖{ζ u}‖2L2(∂K )
+ h

∑

K∈Th

‖[[ζ u]]‖2L2(∂K )
)

+ C‖∇u‖L∞‖ωu‖2L2 + 3

8
|ωh |2uh ,up.

(34)
Using (34) on the right-hand side of (28), we have

d

dt
‖ωu‖2L2 + νCc

a |||ωu |||2v + |ωh |2uh ,up
≤ ‖∂tζu‖2L2 + νC |||ζ u |||2v′ + C(1 + ‖∇u‖L∞)‖ωu‖2L2 + 3

4
|ωh |2uh ,up

+ C(1 + h−1)‖u‖W 1,∞(�)(‖ζu‖2L2 + h
∑

K∈Th

‖{ζ u}‖2L2(∂K )
+ h

∑

K∈Th

‖[[ζ u]]‖2L2(∂K )
).

By applying Gronwall’s Lemma, we can obtain

‖ωu‖2L∞(0,T ;L2(�))
+

∫ T

0
Cc
aν|||ωu |||2v + 1

4
|ωh |2uh ,up dt

≤ eϒ(u)‖ωu(0)‖2L2 + Ceϒ(u)

∫ T

0
‖∂tζu‖2L2 + ν|||ζ u |||2v′

+ (1 + h−1)‖u‖W 1,∞(�)(‖ζu‖2L2 + h
∑

K∈Th

‖{ζ u}‖2L2(∂K )
+ h

∑

K∈Th

‖[[ζ u]]‖2L2(∂K )
) dt,

(35)
with ϒ(u) = ∫ T

0 C(1 + ‖∇u‖L∞) dt . By means of triangle inequality and (35), we can
conclude the proof. ��

Next, based on the above analysis framework, a Reynolds-dependent error bound is easily
obtained here, which has an optimal convergence order k + 1. It is applicable for the case
of the low mesh Reynolds number. For completeness, we present and prove the optimal
results. To this end, we introduce the following approximation and discretization errors for
the velocity and the pressure, respectively:

ζ ′
u = u − sh, ω′

u = uh − sh, ζ̄ ′
u = γ (u) − s̄h, ω̄′

u = ūh − s̄h,

ζ ′
p = p − ψh, ω′

p = ph − ψh, ζ̄ ′
p = γ (p) − ψ̄h, ω̄′

p = p̄h − ψ̄h,
(36)

and set ζ ′
u = (ζ ′

u, ζ̄
′
u), ω

′
u = (ω′

u, ω̄
′
u), ζ

′
p = (ζ ′

p, ζ̄
′
p) and ω′

p = (ω′
p, ω̄

′
p).
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Remark 5 It is interesting to explain why one can choose sh = (sh, s̄h) and ψh = (ψh, ψ̄h)

as the discrete approximations for the velocity and the pressure, respectivly, to get the optimal
convergence order. It allows us to obtain the super-convergence between uh and sh in some
norms, by avoiding some terms in the truncation error, see (39) and (44).

Theorem 2 Assume that (u, p) is the solution of (1), and (uh, ph) ∈ X�
h the solution of (3).

Set u = (u, γ (u)) and p = (p, γ (p)). Let u ∈ [
L1

(
0, T ;W 1,∞(�)

)∩L∞(0, T ; Hr (Ω))
]d
,

∂t u ∈ [
L2(0, T ; Hr (Ω))

]d
, with 2 ≤ r ≤ k + 1 and u0 h be an approximation of u0. Then

the following error estimates hold:

‖u − uh‖2L∞(0,T ;L2(�))
≤ �′

1(u)‖ω′
u(0)‖2L2 + h2r

(
�′

1(u)�′
2(u) + �′

3(u)
)
,

∫ T

0
ν|||u − uh |||2v dt ≤ �′

1(u)‖ω′
u(0)‖2L2 + h2r−2

(
h2�′

1(u)�′
2(u) + νT�′

3(u)
)
,

(37)

with ω′
u(0) = u0 h − sh(0), ϒ ′(u) = ∫ T

0 C( 1
ν
‖u‖22 + ‖∇u‖L∞ + 1) dt , and

�′
1(u) = Ceϒ ′(u),

�′
2(u) =

(1

ν
‖u‖2L2(0,T ;H2(�))

+ ‖u‖L1(0,T ;W 1,∞(�))

)
‖u‖2L∞(0,T ;Hr (�))

+ ‖∂t u‖2L2(0,T ;Hr (�))
,

�′
3(u) = C ‖u‖2L∞(0,T ;Hr (�)) .

Proof Firstly, by using (36) and taking (vh, qh) = (ω′
u,ω

′
p), we have

1

2

d

dt
‖ω′

u‖2L2 + ah
(
ω′
u,ω

′
u

) + oh(uh;ω′
u,ω

′
u)

= (
∂tζ

′
u, ω

′
u

) + oh(u − uh; u,ω′
u) + oh(uh; ζ ′

u,ω
′
u),

(38)

where, by (18), we have

ah(ζ
′
u,ω

′
u) + bh(ζ

′
p, ω

′
u) − bh(ω

′
p, ζ

′
u) = 0. (39)

Then, we have

d

dt
‖ω′

u‖2L2 + 2νCc
a |||ω′

u |||2v + ∣
∣ω′

h

∣
∣2
uh ,up

≤ ‖∂tζ ′
u‖2L2 + ‖ω′

u‖2L2 + 2�, (40)

with � = oh(u − uh; u,ω′
u) + oh(uh; ζ ′

u,ω
′
u). By using the forms (4) and (13) of the

convective term, we have

� =
∫

Ω

((u − uh)·∇)u·ω′
u dx −

∫

Ω

(uh ·∇h)ω
′
u ·ζ ′

u dx
︸ ︷︷ ︸

�1

+
∑

K∈Th

∫

∂K
(uh · n)[[ω′

u]]{ζ ′
u} ds +

∑

K∈Th

∫

∂K

1

2
|(uh · n)|[[ζ ′

u]][[ω′
u]] ds

︸ ︷︷ ︸
�2

.
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For the term �1, inserting uh = ω′
u + sh and applying Hölder’s inequality, (20) and Young’s

inequality, we have

�1 =
∫

Ω

[(
ζ ′
u ·∇

)
u·ω′

u − (
ω′
u ·∇

)
u·ω′

u

]
dx −

∫

Ω

(
ω′
u ·∇h

)
ω′
u ·ζ ′

u dx −
∫

Ω

(sh ·∇h)ω
′
u ·ζ ′

u dx

≤ ‖∇u‖L∞‖ζ ′
u‖2L2 + ‖∇u‖L∞‖ω′

u‖2L2 + C
1

ν
‖sh‖2L∞‖ζ ′

u‖2L2 + C
1

ν
‖u‖22‖ω′

u‖2L2

+ Cc
aν

4
‖∇hω

′
u‖2L2 .

(41)
For the term �2, applying uh = ω′

u + sh , Hölder’s inequality, Young’s inequality, (20) and
the trace inequality, we can obtain

�2 =
∑

K∈Th

∫

∂K
(uh · n)[[ω′

u]]{ζ ′
u} ds +

∑

K∈Th

∫

∂K

1

2
|(uh · n)|[[ζ ′

u]][[ω′
u]] ds

≤
∑

K∈Th

∫

∂K
(ω′

u · n)[[ω′
u]]{ζ ′

u} ds +
∑

K∈Th

∫

∂K

1

2
|(ω′

u · n)|[[ζ ′
u]][[ω′

u]] ds

+
∑

K∈Th

∫

∂K
(sh · n)[[ω′

u]]{ζ ′
u} ds +

∑

K∈Th

∫

∂K

1

2
|(sh · n)|[[ζ ′

u]][[ω′
u]] ds

≤ C
∑

K∈Th

hK
ν

∫

∂K

∣
∣ω′

u · n∣
∣2

∣
∣{ζ ′

u}
∣
∣2 ds + C

∑

K∈Th

hK
ν

∫

∂K

∣
∣ω′

u · n∣
∣2

∣
∣[[ζ ′

u]]
∣
∣2 ds

+ C
∑

K∈Th

hK
ν

∫

∂K
|(sh · n)|2 ∣

∣[[ζ ′
u]]

∣
∣2 ds + C

∑

K∈Th

hK
ν

∫

∂K
|(sh · n)|2 ∣

∣{ζ ′
u}

∣
∣2 ds

+ 1

4

∑

K∈Th

Cc
aνα

hK

∫

∂K

∣
∣[[ω′

u]]
∣
∣2 ds

≤ C
1

ν
‖u‖22‖ω′

u‖2L2 + C
1

ν
‖sh‖2L∞(

∑

K∈Th

hK

∫

∂K

∣
∣{ζ ′

u}
∣
∣2 ds +

∑

K∈Th

hK

∫

∂K

∣
∣[[ζ ′

u]]
∣
∣2 ds)

+ 1

4

∑

K∈Th

Cc
aνα

hK
‖[[ω′

u]]‖2L2(∂K )
.

By using the triangle inequality, we have

∑

K∈Th

hK

∫

∂K

∣
∣{ζ ′

u}
∣
∣2 ds +

∑

K∈Th

hK

∫

∂K

∣
∣[[ζ ′

u]]
∣
∣2 ds

≤ 3

2

∑

K∈Th

hK

∫

∂K

∣
∣[[ζ ′

u]]
∣
∣2 ds + 2

∑

K∈Th

hK

∫

∂K

∣
∣ζ ′
u

∣
∣2 ds.

(42)

Then, by using (42) and the trace inequality, we have

�2 ≤ C
1

ν
‖u‖22‖ω′

u‖2L2 + C
1

ν
‖sh‖2L∞(‖ζ ′

u‖2L2 + h2‖∇hζ
′
u‖2L2 +

∑

K∈Th

hK

∫

∂K

∣
∣[[ζ ′

u]]
∣
∣2 ds)

+ 1

4

∑

K∈Th

Cc
aνα

hK
‖[[ω′

u]]‖2L2(∂K )
.
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Collecting the above estimates, we can obtain

� ≤C(
1

ν
‖u‖22 + ‖∇u‖L∞)(‖ζ ′

u‖2L2 + h2‖∇hζ
′
u‖2L2 +

∑

K∈Th

hK

∫

∂K

∣
∣[[ζ ′

u]]
∣
∣2 ds)

+ C(
1

ν
‖u‖22 + ‖∇u‖L∞)‖ω′

u‖2L2 + 1

2
νCc

a |||ω′
u |||2v.

(43)

Inserting (43) into (40), we have

d

dt
‖ω′

u‖2L2 + νCc
a |||ω′

u |||2v + ∣
∣ω′

h

∣
∣2
uh ,up

≤ C(
1

ν
‖u‖22 + ‖∇u‖L∞)(‖ζ ′

u‖2L2 + h2‖∇hζ
′
u‖2L2 +

∑

K∈Th

hK

∫

∂K

∣
∣[[ζ ′

u]]
∣
∣2 ds)

+ C(1 + 1

ν
‖u‖22 + ‖∇u‖L∞)‖ω′

u‖2L2 + ‖∂tζ ′
u‖2L2 .

Then, applying Gronwall’s Lemma, we can obtain

‖ω′
u‖2L∞(0,T ;L2(�))

+
∫ T

0
νCc

a |||ω′
u |||2v dt + ∣

∣ω′
h

∣
∣2
uh ,up

dt

≤ eϒ ′(u)‖ω′
u(0)‖2L2 + Ceϒ ′(u)

∫ T

0
‖∂tζ ′

u‖2L2

+ (
1

ν
‖u‖22 + ‖∇u‖L∞)(‖ζ ′

u‖2L2 + h2‖∇hζ
′
u‖2L2 +

∑

K∈Th

hK

∫

∂K

∣
∣[[ζ ′

u]]
∣
∣2 ds) dt,

(44)

with ϒ ′(u) = ∫ T
0 C( 1

ν
‖u‖22 + ‖∇u‖L∞ + 1) dt . Finally, we can obtain the velocity errors

by combining (44) and the triangle inequality. ��

Remark 6 Notice that Theorem 1 only provides pre-asymptotic rate of convergence k + 1/2
in case of ν ≤ Ch‖u‖L∞(L∞(�)). For a given viscosity, the relationship between ν and
Ch‖u‖L∞(L∞(�)) reflects the size of the local mesh Reynolds number. When h tends to zero,
from Theorem 2, the velocity error has the asymptotic convergence order k + 1, in which
the constants are dependent on the Reynolds number. Thus, for small values of ν, it would
be interesting to see the transition from pre-asymptotic to asymptotic rate of convergence as
the mesh size tends to 0.

5 Numerical Studies

In this section, we present a numerical example with a known solution to check the analytical
results of the previous section, which is implemented in the NGSolve software [8]. For
other numerical performences of these types of numerical methods, we can refer to some
literature [24, 29]. In the implementation, after cellwise static condensation, only the degrees
of freedom related to the facet spaces appear in the global coupled system. The velocity
penalty parameter α is set to be 10k2.
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Table 1 Velocity errors in the L2-norm with varying ν,k = 1 and T = 2.5

E-HDG ν = 100 ν = 10−2 ν = 10−4 ν = 10−6 ν = 10−8 ν = 10−10

ndof ‖u − uh‖L2 ‖u − uh‖L2 ‖u − uh‖L2 ‖u − uh‖L2 ‖u − uh‖L2 ‖u − uh‖L2
564 2.89E–02 8.15E–02 2.52E–01 2.58E–01 2.58E–01 2.58E–01

2208 7.59E–03 1.86E–02 1.02E–01 1.09E–01 1.09E–01 1.09E–01

8700 1.86E–03 4.17E–03 2.85E–02 3.19E–02 3.19E–02 3.19E–02

33,870 4.65E–04 1.01E–03 7.24E–03 8.81E–03 8.83E–03 8.83E–03

EOC 1.99 2.11 1.71 1.62 1.62 1.62

266 5.66E–02 1.41E–01 3.01E–01 3.08E–01 3.08E–01 3.08E–01

1010 1.55E–02 3.91E–02 9.99E–02 1.05E–01 1.05E–01 1.05E–01

3922 3.81E–03 9.36E–03 2.95E–02 3.45E–02 3.45E–02 3.45E–02

15,162 9.52E–04 2.32E–03 8.74E–03 1.21E–02 1.21E–02 1.21E–02

EOC 1.98 1.97 1.73 1.56 1.56 1.56

Table 2 Velocity errors in the
L2-norm with ν = 10−8, k = 1
and T = 2.5

h ndof ‖u − uh‖L2 Rate

1/5 266 3.08E–01 –

1/10 1010 1.05E–01 1.55

1/20 3922 3.45E–02 1.61

1/40 15,162 1.21E–02 1.51

1/80 60,042 3.36E–03 1.85

1/160 238,386 8.97E–04 1.91

1/320 949,954 2.28E–04 1.98

Table 3 Velocity errors in the L2-norm with varying ν,k = 2 and T = 6

HDG ν = 100 ν = 10−2 ν = 10−4 ν = 10−6 ν = 10−8 ν = 10−10

ndof ‖u − uh‖L2 ‖u − uh‖L2 ‖u − uh‖L2 ‖u − uh‖L2 ‖u − uh‖L2 ‖u − uh‖L2
1269 6.90E–03 6.16E–03 5.26E–01 5.52E–01 5.53E–01 5.53E–01

4968 6.33E–04 6.26E–04 6.73E–02 8.65E–02 8.68E–02 8.68E–02

18,603 7.38E–05 7.41E–05 5.92E–03 1.53E–02 1.55E–02 1.55E–02

72,900 8.74E–06 8.90E–06 3.23E–04 1.93E–03 1.98E–03 1.98E–03

EOC 3.21 3.15 3.56 2.72 2.71 2.71

E-HDG ν = 100 ν = 10−2 ν = 10−4 ν = 10−6 ν = 10−8 ν = 10−10

ndof ‖u − uh‖L2 ‖u − uh‖L2 ‖u − uh‖L2 ‖u − uh‖L2 ‖u − uh‖L2 ‖u − uh‖L2
817 9.61E–03 8.47E–03 7.76E–01 7.94E–01 7.94E–01 7.94E–01

3162 8.51E–04 8.44E–04 1.22E–01 2.06E–01 2.07E–01 2.07E–01

11,779 9.53E–05 9.60E–05 1.15E–02 3.96E–02 4.01E–02 4.01E–02

46,030 1.11E–05 1.12E–05 5.71E–04 6.28E–03 6.46E–03 6.46E–03

EOC 3.25 3.19 3.57 2.33 2.32 2.32
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Let the domain Ω = (0, 1)2 and choose the exact solution given by

u(x, y, t) = 6 + 4 cos(4t)

10

[
8 sin2(πx)(2y(1 − y)(1 − 2y))

−8π sin(2πx)(y(1 − y))2

]

,

p(x, y, t) = 6 + 4 cos(4t)

10
sin(πx) cos(π y).

(45)

We derive the initial condition and the Dirichlet boundary condition from the exact solution.
For temporal discretization, we use an implicit/explicit (IMEX) BDF2 scheme, in which

oh
(
2un−1

h − un−2
h , unh, vh

)
is used in the convection term, except using oh

(
un−1
h , unh, vh

)

in the first time step.We take the small time step�t = 10−3, which can ensure that the spatial
error is dominant. Here, ‘EOC’ represents the average estimated orders of convergence. We
test the convergence orders of the velocity errors in the L2-norm for the HDG and E-HDG
methods with varying viscosity, respectively.

We take the polynomial order k = 1 and the final time T = 2.5. The quasi-uniform
unstructured triangular meshes are used with mesh size h = 1/5, 1/10, 1/20, 1/40. From
Table 1, for the E-HDG method, the velocity error has the optimal and quasi-optimal con-
vergence rates for large values and small values of ν, respectively. In addition, by fixing the
mesh size, it can be observed that the velocity errors become larger and larger as the viscosity
decreases, and when the viscosity is small enough, the velocity errors are independent of the
small viscosity. These are consitent with the theoretical estimates, see Theorems 1 and 2. For
the HDG method, we can observe the similar convergence and error behaviors as that of the
E-HDG method.

Notice that for small values of ν, we present the above results, in which the finest grid
is too big. Because Theorem 1 only provides pre-asymptotic rate of convergence for large
values of h, it would still be useful to see the transition from pre-asymptotic to asymptotic
rate of convergence as the mesh size tends to zero. To the end, we contiue to take the smaller
mesh size h = 1/80, 1/160, 1/320 for the E-HDG method with ν = 10−8. To ensure that
the spatial error is dominant, we take the smaller time step �t = 10−4. From Table 2, we
can see the transition, as expected in Remark 6.

In addition, we take the higher polynomial order k = 2 and the final time T = 6. We use
the quasi-uniform unstructured triangularmesheswithmesh size h = 1/6, 1/12, 1/24, 1/48.
Similar numerical results can be also obtained from Table 3. Finally, from Tables 1 and 3,
we can notice that the HDG method has been better in terms of accuracy and convergence
rate than the E-HDG method for small values of ν.

Funding Thisworkwas supported by theNationalKeyR&DProgram (No. 2022YFA1004402), the Innovative
FundsPlan ofHenanUniversity ofTechnology (No. 2021ZKCJ11), theDoctor Foundation ofHenanUniversity
of Technology (No. 2022BS027) and the National Natural Science Foundation of China (No. 11971378).

Data availability The datasets generated during and/or analysed during the current study are available from
the corresponding author on reasonable request.

Declarations

Competing Interests The authors have not disclosed any competing interests.

123



56 Page 18 of 19 Journal of Scientific Computing (2023) 97 :56

References

1. Hansbo, P., Szepessy, A.: A velocity-pressure streamline diffusion finite element method for the incom-
pressible Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. 84(2), 175–192 (1990)

2. De Frutos, J., García-Archilla, B., John, V., et al.: Error analysis of non inf-sup stable discretizations of
the time-dependent Navier–Stokes equations with local projection stabilization[J]. IMA J. Numer. Anal.
39(4), 1747–1786 (2019)

3. Rhebergen, S., Wells, G.: Analysis of a hybridized/interface stabilized finite element method for the
Stokes equations. SIAM J. Numer. Anal. 55(4), 1982–2003 (2017)

4. John, V.: Finite element methods for incompressible flow problems. Springer, Cham (2016)
5. Boyer, F., Fabrie, P.: Mathematical Tools for the Study of the Incompressible Navier–Stokes Equations

and Related Models. Springer, Berlin (2012)
6. Ern, A., Guermond, J.L.: Theory and practice of finite elements. Springer, New York (2004)
7. Schroeder, P.W., Lube, G.: Divergence-free H(div)-FEM for time-dependent incompressible flows with

applications to high Reynolds number vortex dynamics[J]. J. Sci. Comput. 75(2), 830–858 (2018)
8. Schöberl, J.: C++ 11 implementation of finite elements in NGSolve[J]. Vienna University of Technology,

Institute for analysis and scientific computing (2014)
9. Brenner, S., Scott, R.: The mathematical theory of finite element methods. Springer, Berlin (2007)

10. Cockburn, B., Kanschat, G., Schötzau, D.: A note on discontinuous Galerkin divergence-free solutions
of the Navier–Stokes equations. J. Sci. Comput. 31(1), 61–73 (2007)

11. Lehrenfeld, C., Schöberl, J.: High order exactly divergence-free hybrid discontinuous Galerkin methods
for unsteady incompressible flows. Comput. Methods Appl. Mech. Eng. 307, 339–361 (2016)

12. Cesmelioglu, A., Cockburn, B., Qiu, W.: Analysis of a hybridizable discontinuous Galerkin method for
the steady-state incompressible Navier–Stokes equations. Math. Comput. 86(306), 1643–1670 (2017)

13. Lederer, P.L., Lehrenfeld, C., Schöberl, J.: Hybrid Discontinuous Galerkin methods with relaxed H(div)-
conformity for incompressible flows. Part II. ESAIM:Math. Model. Numer. Anal. 53(2), 503–522 (2019)

14. Gatica, G.N.: A Simple Introduction to the Mixed Finite Element Method: Theory and Applications[M].
Springer, Berlin (2014)

15. Boffi, D., Brezzi, F., Fortin, M.: Mixed finite element methods and applications. Springer, Heidelberg
(2013)

16. Fu, G.: An explicit divergence-free DG method for incompressible flow. Comput. Methods Appl. Mech.
Eng. 345, 502–517 (2019)

17. Burman, E., Fernández, M.A.: Continuous interior penalty finite element method for the time-dependent
Navier–Stokes equations: space discretization and convergence[J]. Numer. Math. 107(1), 39–77 (2007)

18. Schroeder, P.W., Lehrenfeld, C., Linke, A., et al.: Towards computable flows and robust estimates for
inf-sup stable FEM applied to the time-dependent incompressible Navier-Stokes equations[J]. SeMA J.
75(4), 629–653 (2018)

19. Schroeder, P.W., Lube, G.: Pressure-robust analysis of divergence-free and conforming FEM for evolu-
tionary incompressible Navier–Stokes flows[J]. J. Numer. Math. 25(4), 249–276 (2017)

20. De Frutos, J., García-Archilla, B., Novo, J.: Fully Discrete Approximations to the Time-Dependent
Navier–Stokes Equationswith a ProjectionMethod in Time andGrad-Div Stabilization[J]. J. Sci. Comput.
80(2), 1330–1368 (2019)

21. Adams, R.A., Fournier, J.J.F.: Sobolev Spaces. Elsevier, Amsterdam (2003)
22. Cockburn, B., Gopalakrishnan, J., Lazarov, R.: Unified hybridization of discontinuous Galerkin, mixed,

and continuous Galerkin methods for second order elliptic problems[J]. SIAM J. Numer. Anal. 47(2),
1319–1365 (2009)

23. Kirk, K.L.A., Rhebergen, S.: Analysis of a pressure-robust hybridized discontinuous Galerkin method
for the stationary Navier–Stokes equations. J. Sci. Comput. 81(2), 881–897 (2019)

24. Rhebergen, S., Wells, G.N.: An embedded-hybridized discontinuous Galerkin finite element method for
the Stokes equations. Comput. Methods Appl. Mech. Eng. 358, 112619 (2020)

25. Han, Y., Hou, Y.: Semirobust analysis of an H(div)-conforming DG method with semi-implicit time-
marching for the evolutionary incompressible Navier-Stokes equations. IMA J. Numer. Anal. 42(2),
1568–1597 (2022)

26. Dallmann, H., Arndt, D., Lube, G.: Local projection stabilization for the Oseen problem. IMA J. Numer.
Anal. 36(2), 796–823 (2016)

27. De Frutos, J., García-Archilla, B., John, V., et al.: Analysis of the grad-div stabilization for the time-
dependent Navier–Stokes equations with inf-sup stable finite elements. Adv. Comput. Math. 44(1), 195–
225 (2018)

28. De Frutos, J., García-Archilla, B., John, V., et al.: Grad-div stabilization for the evolutionary Oseen
problem with inf-sup stable finite elements. J. Sci. Comput. 66(3), 991–1024 (2016)

123



Journal of Scientific Computing (2023) 97 :56 Page 19 of 19 56

29. Rhebergen, S., Wells, G.N.: A hybridizable discontinuous Galerkin method for the Navier–Stokes equa-
tions with pointwise divergence-free velocity field. J. Sci. Comput. 76(3), 1484–1501 (2018)

30. Han, Y., Hou, Y.: An embedded discontinuous Galerkin method for the Oseen equations. ESAIM: Math.
Model. Numer. Anal. 55(5), 2349–2364 (2021)
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