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ANALYSIS OF DIVERGENCE-FREE H1 CONFORMING FEM

WITH IMEX-SAV SCHEME FOR THE NAVIER-STOKES

EQUATIONS AT HIGH REYNOLDS NUMBER

YONGBIN HAN, YANREN HOU, AND MIN ZHANG

Abstract. In this paper, we analyze the first-order implicit-explicit type
scheme based on the scalar auxiliary variable (SAV) with divergence-free H1

conforming finite element method (FEM) in space for the evolutionary incom-
pressible Navier-Stokes equations at high Reynolds number. The stability and
a priori error estimates are given, in which the constants are independent of the
Reynolds number. The velocity energy estimate is given without any condi-
tion on the time step, however, the a priori error estimates for the velocity are
obtained with severe time step restrictions. In addition, a Reynolds-dependent
error bound with convergence order of k + 1 in space is also obtained for the
velocity error in the L2 norm with no time step restrictions. Here, k is the
polynomial order of the velocity space. Some numerical experiments are car-
ried out to verify the analytical results.

1. Introduction

As we know, a large number of works have been devoted to construct efficient
and stable numerical methods for solving the evolutionary Navier-Stokes equations
[15,16,26], in which the velocity and the pressure are often coupled together by the
incompressibility constraint. A coupled approach often requires solving a saddle
point problem at each time step, which makes it difficult to solve numerically. It is
highly desirable to be implicit with respect to the linear Stokes terms and explicit
with respect to the nonlinear terms, so that we only need to solve the linear Stokes
problem with constant coefficients at each time step. Thus, the setup of linear
systems and solvers or preconditioners can be done once and reused at each time
step. Further, if a decoupled method can be used to solve the Stokes problem,
such that we only need to solve a series of Poisson-type equations, it will be more
efficient.

However, the completely explicit treatment of the nonlinear terms would in-
troduce severe time step restrictions to obtain the energy stability. Recently, the
developed method [20] based on the IMEX-scalar auxiliary variable (SAV) scheme
with the spectral method in space for the Navier-Stokes equations is uncondition-
ally energy stable without any condition on the time step. It is decoupled and only
needs to solve a sequence of Poisson-type equations. Subsequently, the IMEX-SAV
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scheme combined with the finite difference method in space was analyzed in [18]. It
is proved that the velocity and pressure errors have the second-order convergence
rates in time and space. Furthermore, the IMEX-SAV scheme combined with finite
element method (FEM) in space has been developed for the Navier-Stokes equations
in [27], in which the rigorous unconditional stability and optimal error estimates
are given. However, the above IMEX-SAV schemes need to solve a nonlinear al-
gebraic equation for the SAV, which is very difficult to show that it always has a
positive solution. Later, the new SAV-pressure correction methods in [19] and the
high-order IMEX-SAV schemes with Fourier-Galerkin method in space proposed in
[14] are constructed, in which one only needs to solve a linear algebraic equation
for the SAV. In [19], a rigorous error analysis for the first-order scheme is carried
out to prove that the velocity and pressure errors are first-order accurate in time
without any condition on the time step. In [14], a rigorous error analysis for the
high-order IMEX-SAV schemes is carried out in a unified form, in which the time
step is only required to be bounded by a constant independent of the mesh size h.

We notice that in a fully discrete formulation, the error analysis results in [14,18,
27] are dependent on the inverse of the viscosity, which may be only applicable to the
case of low Reynolds number. Recently, for the high Reynolds number problem, an
enormous amount of work has proved that the constants in the velocity error bounds
are independent of the inverse of the viscosity, see the recent review article [11].
And, it is well-known that the IMEX type schemes have a severe time step constraint
for the high Reynolds number problem. As we can see, a variable step IMEX BDF2
method combining inf-sup stable FEM with grad-div stabilization is analyzed in
[12]. It is proved that a stronger CFL condition is needed, which relaxes the CFL
condition in [9] for the high Reynolds number problem. However, so far there is no
strict error analysis for the IMEX-SAV schemes at high Reynolds number. We were
motivated by the question that in view of the fact that the IMEX-SAV schemes
are unconditionally energy stable, whether they have the Reynolds-robust error
bounds for the velocity without any condition on the time step for the high Reynolds
number problem. In this paper, we consider a divergence-free H1 conforming FEM
in space combined with the IMEX-SAV scheme proposed in [19] for the Navier-
Stokes equations. Notice that the divergence-free H1 conforming FEM to approach
the evolutionary Navier-Stokes equations was analyzed in a space semidiscretization
formulation, where the error estimates for the velocity are independent of both the
Reynolds number and the pressure [24].

In this paper, we analyze the divergence-free H1 conforming FEM with the first-
order IMEX-SAV scheme for the Navier-Stokes equations at high Reynolds number.
The stability and a priori error estimates are given, in which the constants are
independent of the negative powers of the viscosity. The velocity energy estimate
is obtained with no time step restrictions, however, the a priori error estimates for
the velocity are given under the CFL condition of the form Δt ≤ Ch2. As we
can see, error analysis of the IMEX-SAV methods in the literature stresses that
the error bounds are obtained with almost no time step restrictions. However, a
careful review of the proofs of those error bounds reveals that they depend strongly
on the Reynolds number. To the best of our knowledge, it might be the first time
in the literature to prove that the IMEX-SAV type schemes have the Reynolds-
robust error bound O(hk + Δt) of the velocity under the CFL condition for the
Navier-Stokes equations at high Reynolds number.
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In addition, readers should not be misled to think that this is a worse method
than those previously published in the literature where errors bounds are obtained
with almost no time step restrictions. To avoid this, we continue to complete
the error analysis with the error bounds obtained with no time step restrictions
similar to that in [19] for the two-dimensional case, in which the error constants
are dependent on the negative powers of the viscosity. We obtain the Reynolds-
dependent error bound O(hk+1 + Δt) for the velocity L2 error. Notice that the
error analysis results in [27] are suboptimal with convergence order of k in space.
Furthermore, we also give some comments on the three-dimensional case. Finally,
we carry out some numerical experiments to demonstrate our analytical results.

The outline of the paper is as follows: In Section 2, we present some preliminaries
and notations. In Section 3, we present the divergence-free H1 conforming FEM
with the first-order IMEX-SAV scheme and give the unconditional energy stability
estimate. In Section 4, we carry out a rigorous error analysis for the velocity.
Numerical experiments are presented in Section 5 to validate our theoretical results.

2. Preliminaries and notations

Consider a domain D, the Sobolev spaces W j,p(D) for scalar-valued functions
are defined with associated norms ‖ · ‖W j,p(D) and seminorms | · |W j,p(D) for j � 0

and p � 1. When j = 0, W 0,p(D) = Lp(D), and when j = 2, W j,2(D) = Hj(D).
For simplicity, ‖ · ‖W j,p(Ω) is used to denote the norm both in W j,p(Ω) and in[
W j,p(Ω)

]d
. We use ‖ · ‖j (resp. | · |j) to denote the norm (resp. seminorm) both

in Hj(Ω) and in
[
Hj(Ω)

]d
. We use ‖ · ‖Lp to denote the norm both in Lp(Ω) and

in
[
Lp(Ω)

]d
. The inner product and norm of L2(Ω) or

[
L2(Ω)

]d
will be denoted

by (·, ·) and ‖ · ‖, respectively. The norm of the dual space H−1(Ω) of H1
0 (Ω) is

denoted by ‖ · ‖−1. The exact meaning will be clear by the context. Vector- and
tensor-valued functions or spaces will be indicated with bold letters. In addition,
introduce the Bochner space Lp(0, T ;Y )(1 ≤ p ≤ ∞), where Y is a Banach space.
‖v‖Lp(0,T ;Y ) represents a discrete approximation of ‖v‖Lp(0,T ;Y ).

Assume that Ω ⊂ R
d (d = 2, 3), is a bounded convex polygonal or polyhedral

domain. We consider the following incompressible Navier-Stokes equations:

(1)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂tu− νΔu+ (u · ∇)u+∇p = f , (0, T ]×Ω,

∇ · u = 0, (0, T ]×Ω,

u = 0, (0, T ]× ∂Ω,

u(0,x) = u0(x), Ω,

where u is the velocity field, p the kinematic pressure, ν > 0 the kinematic viscosity,
u0 an initial velocity and f represents the external body force. We introduce the
following spaces

V = H1
0 (Ω), Q = L2

0(Ω) = {q ∈ L2(Ω),

∫
Ω

qdx = 0}.

The weak formulation of (1) can be written as follows: find (u, p) : (0, T ] → (V , Q),
such that

(2)
(∂tu,v) + νa(u,v) + c(u,u,v) + b(v, p) = (f ,v), ∀v ∈ V ,

b(u, q) = 0, ∀q ∈ Q.
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Here, the multilinear forms are defined by

a(u,v) =

∫
Ω

∇u:∇v dx, c(u,u,v) =

∫
Ω

(u·∇)u·v dx,

b(u, q) =−
∫
Ω

q(∇ ·u) dx.

The weakly divergence-free space is denoted by V div = {v ∈ V : ∇ · v = 0}.
Let Th be a shape-regular and quasi-uniform simplicial mesh of Ω with mesh size

h = max
K∈Th

hK , where hK denotes the diameter of the element K ∈ Th. We consider

the Scott-Vogelius pair of order k ∈ N for the velocity and the pressure, as follows:

Vh = [Pk]
d ∩ V , Qh = P

disc
k−1 ∩Q,

with
Pk = {vh ∈ C(Ω̄) : vh|K ∈ Pk(K), ∀K ∈ Th},

P
disc
k−1 = {qh ∈ L2(Ω) : qh|K ∈ Pk−1(K), ∀K ∈ Th},

where Pl(D) denotes the space of polynomials of degree l > 0 on a domain D.
The spaces Vh and Qh form an inf-sup stable FE pair on meshes without singular
vertices for k � 4 (d = 2) and k � 6 (d = 3), and on barycenter-refined meshes for
k � d, see [2,4,13,25]. Namely, there exists β > 0, independent of the mesh size h,
such that

(3) inf
qh∈Qh\{0}

sup
vh∈Vh\{0}

b(vh, qh)

|vh|1‖qh‖L2

� β.

The global spaces Vh and Qh are divergence-conforming, namely, ∇ ·Vh ⊆ Qh.
Introduce the exactly divergence-free space

V div
h = {vh ∈ Vh : b(vh, qh) = 0, ∀qh ∈ Qh}.

We will use the Poincaré-Friedrichs inequality

‖v‖ ≤ C‖∇v‖, ∀v ∈ H1
0 (Ω).

Notice

c(u,v,w) = −c(u,w,v), ∀v,w ∈ V , ∀u ∈ V div,

therefore c(u,w,w) = 0, ∀w ∈ V , ∀u ∈ V div. Let u ∈ V div,v,w ∈ V , then for
d = 2, it holds [3]

(4) c(u,v,w) ≤ C‖u‖ 1
2 ‖∇u‖ 1

2 ‖∇v‖‖w‖ 1
2 ‖∇w‖ 1

2 .

Define the discrete Stokes operator Ah : V div
h → V div

h :

(Ahvh,wh) = (∇vh,∇wh), ∀vh,wh ∈ V div
h .

It is symmetric and positive definite, see [15, 24]. Note that from the definition, it
follows that for ∀vh ∈ V div

h ,
(5)

‖(Ah)
1/2vh‖=‖∇vh‖, ‖∇(Ah)

−1/2vh‖=‖vh‖, ‖∇(Ah)
−1vh‖=‖(Ah)

−1/2vh‖.
Let Ihu ∈ Vh be the Lagrange interpolant of a continuous function u. The

following bound can be found in [4, Theorem 4.4.4]

(6) |u− Ihu|Wm,p(K) ≤ cinth
n−m
K |u|Wn,p(K), 0 ≤ m ≤ n ≤ k + 1,
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where n > d/p when 1 < p ≤ ∞, and n ≥ d when p = 1. Let P lw denote the
L2-projection of w onto Qh, then there exists C, independent of h such that for
0 ≤ j ≤ s ≤ l + 1, 1 ≤ p ≤ ∞ [10, Theorem 1.45],

(7) |w − P lw|W j,p(Ω) ≤ Chs−j |w|W s,p(Ω), ∀w ∈ W s,p(Ω) ∩Q.

We have the following inverse inequality such that for 0 ≤ n ≤ m ≤ 1, 1 ≤ q ≤
p ≤ ∞ [6, Theorem 3.2.6],

(8) ‖vh‖Wm,p(K) ≤ Cinvh
n−m−d( 1

q−
1
p )

K ‖vh‖Wn,q(K), ∀vh ∈ Vh.

We use the following Sobolev’s embedding [1]: For 1 ≤ p < d/s, let q be such that
1
q = 1

p − s
d . There exists a constant C such that

‖v‖Lq′ (Ω) ≤ C‖v‖W s,p(Ω),
1

q′
≥ 1

q
, ∀v ∈ W s,p(Ω).

If p > d/s, the above inequality is valid for q′ = ∞.
For the following analysis, the discrete Stokes projection will be used to split the

velocity error [24]. The following Stokes problem is given by

(9)

⎧⎪⎨
⎪⎩
−νΔus +∇ps = g, Ω,

∇ · us = 0, Ω,

us = 0, ∂Ω,

with g = f − ∂tu − (u · ∇)u −∇p = −νΔu, in which (u, p) is the solution of (1)
with u ∈ V ∩ Hk+1(Ω) and p ∈ Q ∩ Hk(Ω)(k ≥ 1), thus, the pair (u, 0) is the
solution of (9). The Scott-Vogelius FEM reads as follows: find (ush, psh) ∈ Vh×Qh

such that for ∀(vh, qh) ∈ Vh ×Qh,

νa(ush,vh) + b(vh, psh) + b(ush, qh) = (g,vh).

Then, ush is defined as the discrete Stokes projection πsu of u, which is exactly
divergence-free. It is straightforward that a(u − πsu,vh) = 0, ∀vh ∈ V div

h . We
have the following estimate [11, 24]:

(10) ‖u− πsu‖L2 + h|u− πsu|1 ≤ Csh inf
vh∈Vh

‖u− vh‖1.

In addition, the following maximum norm estimates hold [5]:

‖u− πsu‖L∞ ≤ C∞h

(
ln

1

h

)
|u|W 1,∞ ,(11)

|πsu|W 1,∞ ≤ C∞|u|W 1,∞ ,(12)

where C∞ does not depend on ν. Assume that the solution (u, p) of (1) is sufficiently
smooth in time such that we can take g = ∂t(−νΔu) in (9). Then, we have

(13) ‖∂t(u− πsu)‖L2 + h|∂t(u− πsu)|1 ≤ Ch inf
vh∈Vh

‖∂tu− vh‖1.

Introduce the following two essential lemmas, which are frequently used in fully
discrete analysis of the Navier-Stokes equations.

Lemma 2.1 ([15, Lemma A.56]). Let Δt, B, an, bn, cn be non-negative numbers
such that

aN+1 +Δt

N+1∑
n=0

bn ≤ B +Δt

N+1∑
n=0

cn +Δt

N∑
n=0

γnan, for N ≥ 0,
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is given, then it holds

aN+1 +Δt

N+1∑
n=0

bn ≤ exp(Δt

N∑
n=0

γn)(B +Δt

N+1∑
n=0

cn), for N ≥ 0.

Lemma 2.2 ([15, Lemma 7.67]). Let v, ∂tv, ∂ttv ∈ L2(tn, tn+1;L2(Ω)), then

(14) ‖∂tvn+1 − vn+1 − vn

Δt
‖2L2(Ω) ≤ Δt‖∂ttv‖2L2(tn,tn+1;L2(Ω)).

3. The IMEX-SAV scheme

In this section, we present the divergence-free H1 conforming FEM with the
IMEX-SAV scheme based on the SAV-pressure correction method in [19] for the
Navier-Stokes equations. Nevertheless, it is noted that the following analytical ideas
are quite different from that in [19].

Firstly, the Navier-Stokes equations can be rewritten into the following equivalent
system:

(15)
∂tu+

q(t)

exp(− t
T )

u · ∇u− νΔu+∇p = f ,

∇ · u = 0,

and

(16)
dq(t)

dt
= − 1

T
q(t) +

1

exp(− t
T )

c(u,u,u),

with the scalar auxiliary variable q(t) = exp(− t
T ), see [19]. We consider a uniform

partition of the time interval [0, T ] with step-size Δt. Set Δt = T/(N+1), tn = nΔt,
0 ≤ n ≤ N + 1. Let u0

h be an approximation of u0 and q0 = 1. The IMEX-SAV

scheme can be written as follows: find (un+1
h , pn+1

h , qn+1) such that for ∀(vh, qh) ∈
Vh ×Qh,
(17)

(
un+1
h −un

h

Δt
,vh)+νa(un+1

h ,vh)+b(vh, p
n+1
h )+

qn+1

exp(− tn+1

T )
c(un

h,u
n
h,vh)=(fn+1,vh),

b(un+1
h , qh) = 0,

and

(18)
qn+1 − qn

Δt
= − 1

T
qn+1 +

1

exp(− tn+1

T )
c(un

h,u
n
h,u

n+1
h ).

Now, by similarly following [19], we show how to solve (17)-(18) efficiently. Set

(19)
un+1
h = un+1

1,h +Wn+1un+1
2,h ,

pn+1
h = pn+1

1,h +Wn+1pn+1
2,h ,

with Wn+1 = exp( t
n+1

T )qn+1. We can insert (19) in (17) to obtain

(20)
(
un+1
1,h − un

h

Δt
,vh) + νa(un+1

1,h ,vh) + b(vh, p
n+1
1,h ) = (fn+1,vh), ∀vh ∈ Vh,

b(un+1
1,h , qh) = 0, ∀ qh ∈ Qh,
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and

(21)
(
un+1
2,h

Δt
,vh) + νa(un+1

2,h ,vh) + b(vh, p
n+1
2,h ) + c(un

h,u
n
h,vh) = 0, ∀vh ∈ Vh,

b(un+1
2,h , qh) = 0, ∀ qh ∈ Qh.

Once un+1
i,h and pn+1

i,h (i = 1, 2) are solved, we can obtain Wn+1 from (18) by(
T +Δt

TΔt
− exp(

2tn+1

T
)c(un

h,u
n
h,u

n+1
2,h )

)
exp(− tn+1

T
)Wn+1

= exp(
tn+1

T
)c(un

h,u
n
h,u

n+1
1,h ) +

1

Δt
qn.

Thus, un+1
h and pn+1

h can be obtained from (19). In addition, the high-order IMEX-
BDF SAV schemes in time can be similarly constructed.

We notice that at each time step, (20) and (21) can be solved by the iterative
penalty method, see [4, Chapter 13] and [21]. Thus, we only need to solve a series
of positive-definite Poisson-type problems with constant coefficients.

Next, the velocity energy estimate is given without any condition on the time
step, in which the constants are independent of the negative powers of the viscosity.

Lemma 3.1. Let f ∈ L2(0, T ;L2(Ω)), u0 ∈ L2(Ω), and u0
h is an approximation

of u0. Then, we have the following stability estimate: for 0 ≤ n ≤ N ,

(22)

1

2
‖un+1

h ‖2L2 +
n+1∑
j=1

1

4
‖uj

h − uj−1
h ‖2L2 +

1

2
|qn+1|2 +

n+1∑
j=1

1

2
|qj − qj−1|2

+

n+1∑
j=1

1

T
Δt|qj |2 + νΔt

n+1∑
j=1

|uj
h|

2

1

≤ exp(1)(
1

2
‖u0

h‖2L2 +
1

2
|q0|2 + 3

2
TΔt

n+1∑
j=1

‖f j‖2L2).

Proof. Firstly, taking (vh, qh) = (un+1
h , pn+1

h ) in (17) yields
(23)

(
un+1
h −un

h

Δt
,un+1

h )+νa(un+1
h ,un+1

h )+
qn+1

exp(− tn+1

T )
c(un

h,u
n
h,u

n+1
h )=(fn+1,un+1

h ).

Due to

(24) (un+1
h − un

h,u
n+1
h ) =

1

2
(‖un+1

h ‖2L2 + ‖un+1
h − un

h‖2L2 − ‖un
h‖2L2).

Inserting (24) in (23), we can get
(25)
1

2
‖un+1

h ‖2L2 +
1

2
‖un+1

h − un
h‖2L2 + νΔt|un+1

h |2
1
+Δt

qn+1

exp(− tn+1

T )
c(un

h,u
n
h,u

n+1
h )

=
1

2
‖un

h‖2L2 +Δt(fn+1,un+1
h ).

Multiplying (18) by qn+1Δt, we have
(26)
1

2
|qn+1|2− 1

2
|qn|2+1

2
|qn+1−qn|2=− 1

T
Δt|qn+1|2+Δt

qn+1

exp(− tn+1

T )
c(un

h,u
n
h,u

n+1
h ).
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Combining (25) and (26), we can obtain
(27)

1

2
‖un+1

h ‖2L2 +

n+1∑
j=1

1

2
‖uj

h − uj−1
h ‖2L2 +

1

2
|qn+1|2 +

n+1∑
j=1

1

2
|qj − qj−1|2

+
n+1∑
j=1

1

T
Δt|qj |2 + νΔt

n+1∑
j=1

|uj
h|

2

1

≤ 1

2
‖u0

h‖2L2 +
1

2
|q0|2 +

n+1∑
j=1

Δt(f j ,uj
h − uj−1

h ) +

n+1∑
j=1

Δt(f j ,uj−1
h )

≤ 1

2
‖u0

h‖2L2 +
1

2
|q0|2 +

n+1∑
j=1

(Δt)2‖f j‖2L2 +
1

2
TΔt

n+1∑
j=1

‖f j‖2L2

+

n+1∑
j=1

1

4
‖uj

h − uj−1
h ‖2L2 +

n∑
j=0

Δt

T

1

2
‖uj

h‖2L2

≤ 1

2
‖u0

h‖2L2 +
1

2
|q0|2 + 3

2
TΔt

n+1∑
j=1

‖f j‖2L2 +

n+1∑
j=1

1

4
‖uj

h − uj−1
h ‖2L2 +

n∑
j=0

Δt

T

1

2
‖uj

h‖2L2 .

Then, using Lemma 2.1, we can finish the proof. �

Remark 3.2. In the absence of the external force f , from the first inequality of
(27), we have the following energy estimate: for 0 ≤ n ≤ N ,

1

2
‖un+1

h ‖2L2 +
n+1∑
j=1

1

2
‖uj

h − uj−1
h ‖2L2 +

1

2
|qn+1|2 +

n+1∑
j=1

1

2
|qj − qj−1|2

+

n+1∑
j=1

1

T
Δt|qj |2 + νΔt

n+1∑
j=1

|uj
h|

2

1 ≤ 1

2
‖u0

h‖2L2 +
1

2
|q0|2.

4. Error analysis for the velocity

In this section, we present the error estimates for the velocity in Theorems 4.1
and 4.3. Let

(
un+1
h , pn+1

h , qn+1
)
be the solution of (17)-(18) and (u, p, q) be the

solution of (15)-(16). Then from Lemma 3.1, we have

(28) ‖um
h ‖ ≤ c0, |qm| ≤ c1, ∀0 ≤ m ≤ N + 1,

where the constants ci (i = 0, 1) are independent of h and ν−1. Assume u ∈
L∞ (

0, T ;W 1,∞(Ω)
)
, then we have

(29) ‖um‖1,∞ ≤ C, ∀0 ≤ m ≤ N + 1.

In the following error analysis, we will frequently use (28) and (29). We set

un − un
h = (un − πsu

n)− (un
h − πsu

n) = ηn − enh,

enq = q(tn)− qn.
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Theorem 4.1. Let u0
h = πsu0 and q0 = 1, and assume the following regularities

for the velocity solution u of (2):

(30)
∂ttu ∈ L2(0, T ;H1(Ω)), ∂tu ∈ L2(0, T ;Hk+1(Ω)),

u ∈ L∞(0, T ;Hk+1(Ω)), u ∈ L∞(0, T ;W 1,∞(Ω)).

Let the time step satisfy

(31) Δt‖u‖2L∞(0,T ;L∞(Ω)) ≤ h2.

Then, for small enough h, there holds the following error estimate: for 0 ≤ n ≤ N ,
(32)

‖un+1 − un+1
h ‖2L2 + |en+1

q |2 + νΔt
n+1∑
j=1

|uj − uj
h|21 ≤ C(u, ∂tu, ∂ttu, T )(h

2k + (Δt)2),

with a constant C(u, ∂tu, ∂ttu, T ) independent of n, h and ν−1.

Proof. The proof can be divided into Steps 1–5.

Step 1. Firstly, we have the following error equation with the test function en+1
h ∈

V div
h :

(33)

(∂tu
n+1 − un+1

h − un
h

Δt
, en+1

h ) + νa(ηn+1, en+1
h )− νa(en+1

h , en+1
h )

+
q(tn+1)

exp(− tn+1

T )
c(un+1,un+1, en+1

h )− qn+1

exp(− tn+1

T )
c(un

h,u
n
h, e

n+1
h ) = 0.

We expand the left argument of the first term of (33) in the form

(34)
∂tu

n+1 − un+1
h − un

h

Δt

= ∂t(u
n+1 − πsu

n+1) + ∂tπsu
n+1 − πsu

n+1 − πsu
n

Δt
− en+1

h − enh
Δt

.

Using (34), one can obtain
(35)
1

2Δt
(‖en+1

h ‖2L2 + ‖en+1
h − enh‖2L2 − ‖enh‖2L2) + νa(en+1

h , en+1
h )

=(∂t(u
n+1−πsu

n+1), en+1
h )+(∂tπsu

n+1−πsu
n+1−πsu

n

Δt
, en+1

h )+νa(ηn+1, en+1
h )

+
{ q(tn+1)

exp(− tn+1

T )
c(un+1,un+1, en+1

h )− qn+1

exp(− tn+1

T )
c(un

h,u
n
h, e

n+1
h )

}
.

Next, we estimate all terms on the right-hand side of (35). For the first term on
the right-hand side of (35), we have
(36)

(∂t(u
n+1 − πsu

n+1), en+1
h ) ≤ C(1 + Δt)‖∂t(un+1 − πsu

n+1)‖2L2 +
‖en+1

h − enh‖2L2

16Δt

+ ‖enh‖2L2

≤ C‖∂t(un+1−πsu
n+1)‖2L2+

‖en+1
h −enh‖2L2

16Δt
+ ‖enh‖2L2 .
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Using Lemma 2.2, the commutation of temporal derivative and projection, and the
stability estimate of the projection, we have

(37)

‖∂tπsu
n+1 − πsu

n+1 − πsu
n

Δt
‖2 ≤ Δt‖∂ttπsu‖2L2(tn,tn+1;L2(Ω))

= Δt‖πs(∂ttu)‖2L2(tn,tn+1;L2(Ω))

≤ CΔt‖∂ttu‖2L2(tn,tn+1;H1(Ω)).

For the estimate of the second term, we use (37) to obtain

(38)

(∂tπsu
n+1 − πsu

n+1 − πsu
n

Δt
, en+1

h )

≤ C(1 + Δt)‖∂tπsu
n+1 − πsu

n+1 − πsu
n

Δt
‖2L2 +

‖en+1
h − enh‖2L2

16Δt
+ ‖enh‖2L2

≤ CΔt‖∂ttu‖2L2(tn,tn+1;H1(Ω)) +
‖en+1

h − enh‖2L2

16Δt
+ ‖enh‖2L2 .

For the estimate of the third term, it is straightforward that νa(ηn+1, en+1
h ) = 0.

Step 2. We notice that in the error analysis, the most important term to deal with
is the fourth term on the right-hand side of (35), which can be rewritten as follows:

c(un+1,un+1, en+1
h )− qn+1

exp(− tn+1

T )
c(un

h,u
n
h, e

n+1
h )

= c(un+1,un+1, en+1
h )− c(un,un, en+1

h )︸ ︷︷ ︸
Θ1

+ c(un,un, en+1
h )− c(un

h,u
n
h, e

n+1
h )︸ ︷︷ ︸

Θ2

+
en+1
q

exp(− tn+1

T )
c(un

h,u
n
h, e

n+1
h )

︸ ︷︷ ︸
Θ3

.

First, we have
(39)
c(un+1 − un,un+1, en+1

h )

≤ ‖en+1
h − enh‖2L2

32Δt
+ ‖enh‖2L2 + C(1 + Δt)‖∇un+1‖2L∞‖un+1 − un‖2L2

≤ ‖en+1
h − enh‖2L2

32Δt
+ ‖enh‖2L2 + C(1 + Δt)Δt‖∇un+1‖2L∞‖∂tu‖2L2(tn,tn+1;L2(Ω)).

Then, similar to (39), we have

(40)

c(un,un+1 − un, en+1
h )

≤ ‖en+1
h − enh‖2L2

32Δt
+ ‖enh‖2L2 + C(1 + Δt)Δt‖un‖2L∞‖∂tu‖2L2(tn,tn+1;H1(Ω)).

By combining (39) and (40), we can obtain

Θ1 = c(un+1 − un,un+1, en+1
h ) + c(un,un+1 − un, en+1

h )

≤ ‖en+1
h − enh‖2L2

16Δt
+ C(‖enh‖2L2 +Δt‖∂tu‖2L2(tn,tn+1;H1(Ω))).
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Denote

Θ2 = c(un,un, enh)− c(un
h,u

n
h, e

n
h)︸ ︷︷ ︸

Θ21

+ c(un,un, en+1
h − enh)− c(un

h,u
n
h, e

n+1
h − enh)︸ ︷︷ ︸

Θ22

.

By writing un − un
h = ηn − enh and un

h = enh + un − ηn, respectively, and then
applying Hölder’s inequality, and Young’s inequality, we have
(41)
Θ21 = c(un − un

h,u
n, enh) + c(un

h,u
n − un

h, e
n
h)

= c(ηn,un, enh)− c(enh,u
n, enh) + c(enh,η

n, enh) + c(un,ηn, enh)− c(ηn,ηn, enh)

≤ ‖∇un‖L∞‖ηn‖2 + 2‖∇un‖L∞‖enh‖2 + 2‖∇ηn‖L∞‖enh‖2 + ‖un‖L∞‖enh‖2

+ ‖un‖L∞‖∇ηn‖2 + ‖∇ηn‖L∞‖ηn‖2

≤ C(‖ηn‖2L2 + ‖∇ηn‖2L2 + ‖enh‖2L2),

where we use c(un
h, e

n
h, e

n
h) = 0. By applying Hölder’s inequality, the inverse in-

equality (8) and Young’s inequality, we have

Θ22 = c(un,un, en+1
h − enh)− c(un

h,u
n
h, e

n+1
h − enh)

= c(un − un
h,u

n, en+1
h − enh) + c(un

h,u
n − un

h, e
n+1
h − enh)

= c(un − un
h,u

n, en+1
h − enh) + c(un

h,η
n, en+1

h − enh)− c(un
h, e

n
h, e

n+1
h − enh)

≤ (1 +
Δt‖un

h‖2L∞

h2
)
‖en+1

h − enh‖2L2

64Δt
+ CΔt‖ηn‖2L2 + Ch2‖∇ηn‖2L2

+ C(Δt+ 1)‖enh‖2L2 .

Now, we assume that for 0 ≤ n ≤ N ,

(42) Δt ≤ 4h2

‖un
h‖2L∞

.

At the end of the proof, we will verify the reasonableness of (42). With the restric-
tion condition on the time step (42), we have

Θ2 ≤ 5‖en+1
h − enh‖2L2

64Δt
+ C(‖ηn‖2L2 + ‖∇ηn‖2L2 + ‖enh‖2L2).

Combining the above estimates, we can obtain
(43)

c(un+1,un+1, en+1
h )− qn+1

exp(− tn+1

T )
c(un

h,u
n
h, e

n+1
h )

≤3‖en+1
h −enh‖2L2

16Δt
+C(‖ηn‖2L2+‖∇ηn‖2L2+‖enh‖2L2+Δt‖∂tu‖2L2(tn,tn+1;H1(Ω)))+Θ3.

Step 3. Next, we give an error estimate for the scalar auxiliary variable. We notice
that the last term on the right-hand side of (43) can’t be easily bounded, while it
can be balanced with a term from (49).

Firstly, subtracting (18) from (16) leads to

(44)

en+1
q − enq

Δt
+

1

T
en+1
q

=
−1

exp(− tn+1

T )
(c(un

h,u
n
h,u

n+1
h )− c(un+1,un+1,un+1)) +En+1

q ,
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with En+1
q = q(tn+1)−q(tn)

Δt − qt(t
n+1). Multiplying both sides of (44) by en+1

q yields

(45)

|en+1
q |2 − |enq |2

2Δt
+

|en+1
q − enq |2

2Δt
+

1

T
|en+1

q |2

=
−en+1

q

exp(− tn+1

T )
(c(un

h,u
n
h, e

n+1
h )− c(un

h,u
n
h,η

n+1)

− c(un
h,u

n+1 − un
h,u

n+1)− c(un+1 − un
h,u

n+1,un+1)) +En+1
q en+1

q

=
−en+1

q

exp(− tn+1

T )
c(un

h,u
n
h, e

n+1
h ) +

en+1
q

exp(− tn+1

T )
c(un

h,u
n
h,η

n+1)

+
en+1
q

exp(− tn+1

T )
c(un

h,u
n+1 − un

h,u
n+1) +En+1

q en+1
q ,

where we use c(un+1−un
h,u

n+1,un+1) = 0. Using un
h = enh +un − ηn, the second

term on the right-hand side of (45) can be bounded by

(46)

en+1
q

exp(− tn+1

T )
c(un

h,u
n
h,η

n+1)

=
en+1
q

exp(− tn+1

T )
(c(un

h,u
n,ηn+1) + c(un

h, e
n
h,η

n+1)− c(un
h,η

n,ηn+1))

=
en+1
q

exp(− tn+1

T )
(c(un

h,u
n,ηn+1)− c(un

h,η
n+1, enh)− c(un

h,η
n,ηn+1))

≤C|en+1
q |‖un

h‖‖∇un‖L∞‖ηn+1‖ + C|en+1
q |‖un

h‖‖enh‖‖∇ηn+1‖L∞

+ C|en+1
q |‖un

h‖‖ηn+1‖‖∇ηn‖L∞

≤ 1

4T
|en+1

q |2 + C‖enh‖2 + C‖ηn+1‖2.

The third term on the right-hand side of (45) can be bounded by

(47)

en+1
q

exp(− tn+1

T )
c(un

h,u
n+1 − un

h,u
n+1)

≤C‖un
h‖‖un+1 − un

h‖‖∇un+1‖L∞ |en+1
q |

≤ 1

4T
|en+1

q |2 + C‖enh‖2 + C‖ηn‖2 + CΔt‖∂tu‖2L2(tn,tn+1;L2(Ω)).

For the last term on the right-hand side of (45), we have

(48) En+1
q en+1

q ≤ 1

4T
|en+1

q |2 + CΔt‖qtt‖2L2(tn,tn+1).

By combining (46)-(48), we can obtain

(49)

|en+1
q |2 − |enq |2

2Δt
+

|en+1
q − enq |2

2Δt
+

1

4T
|en+1

q |2

≤
−en+1

q

exp(− tn+1

T )
c(un

h,u
n
h, e

n+1
h ) + C(‖enh‖2 + C‖ηn‖2 + C‖ηn+1‖2

+Δt‖∂tu‖2L2(tn,tn+1;L2(Ω)) +Δt‖qtt‖2L2(tn,tn+1)).

Notice that we can use the first term on the right-hand side of (49) to balance
the last term on the right-hand side of (43).
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Step 4. Next, we can conclude (32) with the a priori assumption (42). To the end,
we combine (35) and (49), and use (36), (38) and (43) to obtain

1

2Δt
‖en+1

h ‖2L2 +
|en+1

q |2

2Δt
+ ν|en+1

h |21

≤ 1

2Δt
‖enh‖2L2 +

|enq |2

2Δt
+ C

{
‖∂tηn+1‖2L2 + ‖ηn‖2L2 + ‖ηn+1‖2L2 + ‖∇ηn‖2L2

+Δt‖∂ttu‖2L2(tn,tn+1;H1(Ω)) +Δt‖∂tu‖2L2(tn,tn+1;H1(Ω)) +Δt‖qtt‖2L2(tn,tn+1)

}
+ C‖enh‖2L2 .

Summing over all discrete times, and by ‖e0h‖2L2 = 0 and |e0q |2 = 0, we can get

‖en+1
h ‖2L2 + |en+1

q |2 + νΔt
n+1∑
j=1

|ejh|
2

1
≤ CΔt

n+1∑
j=1

Gj +Δt
n+1∑
j=1

C‖ej−1
h ‖2L2 ,

with

Gj = ‖∂tηj‖2L2 + ‖ηj−1‖2L2 + ‖ηj‖2L2 + ‖∇ηj−1‖2L2

+Δt‖∂ttu‖2L2(tj−1,tj ;H1(Ω)) +Δt‖∂tu‖2L2(tj−1,tj ;H1(Ω)) +Δt‖qtt‖2L2(tj−1,tj).

Thus, the discrete Gronwall Lemma 2.1 can be applied, and one gets

(50) ‖en+1
h ‖2L2 + |en+1

q |2 + νΔt
n+1∑
j=1

|ejh|
2

1
≤ exp(CT )(CΔt

n+1∑
j=1

Gj).

The application of the triangle inequality gives

‖un+1 − un+1
h ‖2L2 + |en+1

q |2 + νΔt

n+1∑
j=1

|uj − uj
h|21

≤ 2‖ηn+1‖2L2 + 2νΔt
n+1∑
j=1

|ηj |21 + exp(CT )(CΔt
n+1∑
j=1

Gj).

Then, by using (10) and (13), we can conclude (32) with the a priori assumption
(42). So, before we complete the proof, we need to verify the reasonableness of
(42).

Step 5. Finally, we can check that due to (31), the a priori assumption (42) always
holds for small enough h. To the end, we will prove that for small enough h, it
holds that

(51) ‖un
h‖L∞ ≤ 2‖u‖L∞(0,T ;L∞(Ω)),

for 0 ≤ n ≤ N , so that the CFL condition (31) implies (42).
First, there exists h1 such that if h ≤ h1, the right-hand sides of (10) and

(11) are bounded by 3
8Cinv

h
d
2 ‖u‖L∞(0,T ;L∞(Ω)) and

1
4‖u‖L∞(0,T ;L∞(Ω)), respectively.

Furthermore, by the triangle inequality, we have

‖πsu‖L∞(0,T ;L∞(Ω)) ≤
5

4
‖u‖L∞(0,T ;L∞(Ω)).

Then, due to (31), there exists h2 < h1 such that if h ≤ h2, the right-hand side of

(32) is bounded by 9hd

64C2
inv

‖u‖2L∞(0,T ;L∞(Ω)).



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

570 YONGBIN HAN, YANREN HOU, AND MIN ZHANG

Now, we prove (51) by mathematical induction. For h ≤ h2, (51) holds for
n = 0 with u0

h = πsu0. Supposing (51) holds for n ≤ m, we can show that this
assumption is also true for n = m + 1. Indeed, if (51) holds for n ≤ m, then (32)
holds for n = m. By using the inverse inequality (8), for h ≤ h2, we have

∥∥um+1
h

∥∥
L∞ ≤

∥∥um+1
h − πsu

m+1
∥∥
L∞ +

∥∥πsu
m+1

∥∥
L∞

≤ Cinvh
−d/2

∥∥um+1
h − πsu

m+1
∥∥+

∥∥πsu
m+1

∥∥
L∞

≤ Cinvh
−d/2

∥∥um+1 − um+1
h

∥∥+ Cinvh
−d/2

∥∥um+1 − πsu
m+1

∥∥
+

5

4
‖u‖L∞(0,T ;L∞(Ω))

≤ 2‖u‖L∞(0,T ;L∞(Ω)).

Consequently, (51) also holds for n = m+1. Thus, we have completed the proof. �

Remark 4.2. In the above proof, we first conclude (32) with the a priori as-
sumption (42). Then, at the end of the proof, we verify the reasonableness of
(42). Furthermore, to check the effectiveness of (42), we use the inverse inequality

‖un
h‖L∞ ≤ Cinvh

− d
2 ‖un

h‖ to obtain

hd+2

C2
inv‖un

h‖2
≤ h2

‖un
h‖2L∞

.

Thus, it will be more convenient to compute the value of hd+2

‖un
h‖2 at each time step

in the following numerical experiments.

Next, based on the above analysis framework, we present the error analysis with
error bounds obtained with no time step restrictions for the two-dimensional case,
which is similar to that in [19]. It is proved that a Reynolds-dependent error bound
O(hk+1 + Δt) for the velocity L2 error is obtained with no time step restrictions.
Notice that for the SAV scheme combined with the FEM [27], the velocity L2 error
is only suboptimal with convergence order of k in space.

Theorem 4.3. Let Ω ⊂ R
2, u0

h = πsu0 and q0 = 1, and assume the regularities
(30) of the velocity solution. Then, we have the following error estimates: for
0 ≤ n ≤ N ,

‖un+1 − un+1
h ‖2L2 + |en+1

q |2 ≤ C(u, ∂tu, ∂ttu, T, ν
−1)(h2k+2 + (Δt)2),

νΔt

n+1∑
j=1

|uj − uj
h|21 ≤ C(u, ∂tu, ∂ttu, T, ν

−1)(h2k + (Δt)2),

with a constant C(u, ∂tu, ∂ttu, T, ν
−1) independent of n and h.

Proof. The proof follows that of Theorem 4.1 with the changes that we will comment
on. Notice that much of our previous analysis can be reused for the new error
bounds, except for the handling of the nonlinear term Θ2.
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For Θ21, we have

Θ21 = c(ηn,un, enh)− c(enh,u
n, enh) + c(enh,η

n, enh) + c(un,ηn, enh)− c(ηn,ηn, enh)

≤ ‖∇un‖L∞‖ηn‖2 + 2‖∇un‖L∞‖enh‖2 + 2‖∇ηn‖L∞‖enh‖2 +
1

8
ν‖∇enh‖2

+
2

ν
‖un‖2L∞‖ηn‖2 + ‖∇ηn‖L∞‖ηn‖2

≤ C(‖ηn‖2L2 +
1

ν
‖ηn‖2 + ‖enh‖2L2) +

1

8
ν‖∇enh‖2,

where only the handling of the term c(un,ηn, enh) is different from that of (41). By
writing un

h = enh + un − ηn, we have

Θ22 = c(un − un
h,u

n, en+1
h − enh) + c(un

h,u
n − un

h, e
n+1
h − enh)

= c(un − un
h,u

n, en+1
h − enh)− c(un, en+1

h − enh,η
n) + c(enh,η

n, en+1
h − enh)

− c(ηn,ηn, en+1
h − enh)− c(un

h, e
n
h, e

n+1
h − enh)︸ ︷︷ ︸

Θ221

≤ ‖en+1
h − enh‖2L2

32Δt
+ CΔt‖∇un‖2L∞‖ηn‖2L2 + CΔt‖∇un‖2L∞‖enh‖2L2

+ C
1

ν
‖un‖2L∞‖ηn‖2L2 +

1

8
ν‖∇en+1

h ‖2L2 +
1

8
ν‖∇enh‖2L2

+ CΔt‖∇ηn‖2L∞‖ηn‖2L2 + CΔt‖∇ηn‖2L∞‖enh‖2L2 −Θ221.

For the term Θ221, by writing un
h = enh + un − ηn, and using (4), (10) and the

inverse inequality (8), we can obtain

Θ221 = c(un, enh, e
n+1
h − enh) + c(enh, e

n
h, e

n+1
h − enh)− c(ηn, enh, e

n+1
h − enh)

= −c(un, en+1
h , enh)− c(enh, e

n+1
h , enh) + c(ηn, en+1

h , enh)

≤‖un‖L∞‖∇en+1h ‖L2‖enh‖L2+C‖enh‖L2

1
2 ‖∇enh‖L2

1
2 ‖∇en+1h ‖L2‖enh‖L2

1
2 ‖∇enh‖L2

1
2

+ C‖ηn‖L2

1
2 ‖∇ηn‖L2

1
2 ‖∇en+1

h ‖L2‖enh‖L2

1
2 ‖∇enh‖L2

1
2

≤ ‖un‖L∞‖∇en+1
h ‖L2‖enh‖L2 + C‖enh‖L2‖∇enh‖L2‖∇en+1

h ‖L2

+ C‖∇un‖L2‖∇en+1
h ‖L2‖enh‖L2

≤ C

ν
(1 + ‖∇un

h‖2L2)‖enh‖2L2 +
1

8
ν‖∇en+1

h ‖2L2 ,

where we use the classical embedding inequality ‖∇un‖L2 ≤ C‖∇un‖L∞ . With no
time step restrictions, we can obtain

Θ2 ≤ ‖en+1
h − enh‖2L2

32Δt
+ C(1 +

1

ν
)‖ηn‖2L2 +

1

4
ν‖∇enh‖2L2 +

1

4
ν‖∇en+1

h ‖2L2

+ C(1 +
1

ν
)‖enh‖2L2 +

C

ν
‖∇un

h‖2L2‖enh‖2L2 .

Then, following Steps 1-4 of the proof of Theorem 4.1, we can conclude the proof.
Notice that when the discrete Gronwall lemma is applied, the stability estimate
Δt

∑n+1
j=1 ‖∇uj

h‖2L2 ≤ C
ν from (22) will be used. �
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Remark 4.4. Notice that the estimate of Θ221 is only limited to the case of d = 2.
For the three-dimensional case, we have

Θ221 = c(un
h, e

n
h, e

n+1
h − enh) ≤

‖en+1
h − enh‖2L2

16Δt
+

4Δt

ν
‖un

h‖2L∞ν‖∇enh‖2L2 .

As before, we first assume that for 0 ≤ n ≤ N ,

(52)
Δt

ν
‖un

h‖
2
L∞ ≤ 1

16
.

We can show that for small enough h, (52) always holds with the time step con-
straint

(53) Δt ≤ min { ν

64‖u‖2L∞(0,T ;L∞(Ω))

, h
3
2+ε}(ε > 0).

Arguing as in Step 5 of the proof of Theorem 4.1, it is easily proved that for small
enough h, we have

‖un
h‖L∞ ≤ 2‖u‖L∞(0,T ;L∞(Ω)).

Thus, (52) will be a consequence of (53). So, with the time step constraint (53),
the similar error estimates can be also obtained for the three-dimensional case.

Remark 4.5. Here, for the two-dimensional case, the Reynolds-dependent error
estimates don’t require any time step constraint, as in [19], but for the three-
dimensional case, the error estimates are obtained with the time step constraint
(53). Notice that for the SAV pressure-correction scheme, the error analysis does
not require any time-step constraint, which is only limited to the two-dimensional
case. For the three-dimensional case, it has some technical difficulties, see [19].
For the three-dimensional case, error estimates obtained without any time step
constraint will be our future research direction.

5. Numerical studies

In this section, we present some numerical examples to check our analytical
results, which were implemented in the NGSolve software [23]. We use the Scott-
Vogelius pair with k = 2 in Example 5.1 and Example 5.2, and k = 4 in Example
5.3. For applying the Scott-Vogelius pair with k = 2, we use a sequence of the un-
structured regular and quasi-uniform triangulations with mesh size h = 1/M , then
an additional barycentric refinement of the triangulations was applied to guaran-
tee the satisfaction of the discrete inf-sup condition. For k = 4, we use a general
shape-regular mesh without the additional barycentric refinement [13].

Example 5.1. In this example, we test an analytical solution with a small value
of ν to check the effectiveness of the CFL condition. Furthermore, the optimal and
suboptimal convergence rates in space are observed for large and small values of ν,
respectively.

Let the domain Ω = (0, 1)
2
and choose the exact solutions of (1) [7] given by

u(x, y, t) =
6 + 4 cos(4t)

10

[
8 sin2(πx)(2y(1− y)(1− 2y))

−8π sin(2πx)(y(1− y))2

]
,

p(x, y, t) =
6 + 4 cos(4t)

10
sin(πx) cos(πy).

We take the small viscosity ν = 10−8, and the final time T = 1.6. We use the
above-mentioned mesh with M = 10 to observe the variation of the errors with
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respect to Δt. For temporal discretization, to compare the IMEX-SAV scheme, we
use the semi-implicit and IMEX schemes without the SAV, in which c(un

h,u
n+1
h ,vh)

and c(un
h,u

n
h,vh) are used as the discrete convection terms, respectively. From

Table 1, we can observe that the IMEX scheme is conditionally energy stable and
has the matched errors, which are comparable to that of the semi-implicit scheme.
The semi-implicit scheme is better in the respect that there is almost no restriction
on the time step. The IMEX-SAV scheme is unconditionally energy stable, however
conditionally has the matched errors with restriction on the time step. These are
consistent with our theoretical results.

We can compute the value of Δtn = h4

‖un
h‖2

L2
(see Remark 4.2) at each time step.

From Figure 1, we can observe that whenever the actual time step Δt (solid line)
is smaller than the computed time steps (dotted line), or whenever the actual time
step is close to the minimum value of the computed time steps, the IMEX-SAV
method has the matched errors, in which the errors are comparable to that of the
semi-implicit scheme, see the actual time step Δt = 1

320 ,
1

640 ,
1

1280 ,
1

2560 in Figure 1
and Table 1. On the contrary, the IMEX-SAV method hasn’t the matched errors,
see the actual time step Δt = 1

20 ,
1
40 ,

1
80 ,

1
160 in Figure 1 and Table 1.

Table 1. Behavior of errors for the IMEX, IMEX-SAV and semi-
implicit schemes with respect to the time step

Δt ‖uh‖L2 ‖u− uh‖L2 ‖∇(u− uh)‖L2 ‖p− ph‖L2 ‖∇ · uh‖L2 |q(T )− qN+1|
IMEX

1
20

nan nan nan nan nan —
1
40

nan nan nan nan nan —
1
80

nan nan nan nan nan —
1

160
1.85e+00 1.63e+00 1.26e+02 3.42e+00 2.02e-14 —

1
320

9.69e-01 8.52e-02 7.30e+00 5.77e-02 8.12e-15 —
1

640
9.68e-01 6.87e-02 5.58e+00 4.07e-02 1.55e-14 —

1
1280

9.68e-01 6.79e-02 5.51e+00 3.98e-02 5.63e-15 —
1

2560
9.68e-01 6.76e-02 5.48e+00 3.95e-02 3.62e-15 —

IMEX-SAV
1
20

1.14e+00 6.18e-01 4.67e+01 6.93e-01 7.50e-15 3.68e-01
1
40

1.16e+00 6.58e-01 4.86e+01 6.84e-01 1.68e-14 3.62e-01
1
80

1.07e+00 5.26e-01 3.66e+01 6.86e-01 5.80e-15 3.63e-01
1

160
1.02e+00 3.28e-01 2.83e+01 6.28e-01 4.13e-15 3.32e-01

1
320

9.69e-01 8.50e-02 7.26e+00 5.95e-02 5.45e-15 5.39e-03
1

640
9.68e-01 6.87e-02 5.58e+00 4.07e-02 2.88e-15 4.22e-05

1
1280

9.68e-01 6.79e-02 5.51e+00 3.98e-02 2.53e-14 2.38e-05
1

2560
9.68e-01 6.76e-02 5.48e+00 3.95e-02 1.23e-14 1.67e-05

Semi-Implicit
1
20

9.63e-01 6.19e-02 5.06e+00 3.50e-02 6.26e-15 —
1
40

9.57e-01 6.50e-02 5.32e+00 3.68e-02 4.41e-15 —
1
80

9.63e-01 6.54e-02 5.35e+00 3.76e-02 2.87e-15 —
1

160
9.67e-01 6.57e-02 5.35e+00 3.81e-02 2.91e-15 —

1
320

9.68e-01 6.64e-02 5.40e+00 3.86e-02 2.94e-15 —
1

640
9.67e-01 6.69e-02 5.44e+00 3.90e-02 9.89e-15 —

1
1280

9.68e-01 6.71e-02 5.45e+00 3.91e-02 3.15e-14 —
1

2560
9.68e-01 6.72e-02 5.46e+00 3.92e-02 2.73e-15 —
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Figure 1. Time evolution of the computed time steps (dotted
line) and actual time step (solid line), from left to right: Δt = 1

20 ,
1
40 ,

1
80 ,

1
160 (see first row) and Δt = 1

320 ,
1

640 ,
1

1280 ,
1

2560 (see second
row)

Furthermore, we can give the first-order IMEX-SAV-Adaptation (ISA) scheme,
which can be written as follows: find (un+1

h , pn+1
h , qn+1) such that for ∀(vh, qh) ∈

Vh ×Qh,

(
un+1
h −un

h

Δtn
,vh)+νa(un+1

h ,vh)+b(vh, p
n+1
h )+

qn+1

exp(− tn+1

T )
c(un

h,u
n
h,vh)=(fn+1,vh),

b(un+1
h , qh) = 0,

and

qn+1 − qn

Δtn
= − 1

T
qn+1 +

1

exp(− tn+1

T )
c(un

h,u
n
h,u

n+1
h ),

with the adaptive time step Δtn = h4

‖un
h‖2

L2
(here, tn+1 = tn +Δtn).

Table 2. Errors of the IMEX-SAV-Adaptation and semi-implicit
schemes with the adaptive time step Δtn and the mesh with M =
10

Δt ‖uh‖L2 ‖u− uh‖L2 ‖∇(u− uh)‖L2 ‖p− ph‖L2 ‖∇ · uh‖L2 |q(T )− qN+1|
Semi-Implicit Δtn 9.84e-01 6.76e-02 5.59e+00 4.17e-02 7.76e-15 –

ISA Δtn 9.84e-01 6.99e-02 5.80e+00 4.58e-02 5.13e-14 3.15e-04
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Figure 2. Time evolution of the adaptive time step

For the semi-implicit scheme, we use the same time-step size as that of the
ISA scheme. From Table 2, we can observe that the errors of the ISA scheme are
comparable to that of the semi-implicit scheme. From Figure 2, we can see the time
evolution of adaptive time step.

Next, we test the convergence rates of the velocity, pressure and scalar auxiliary
variable errors. As for temporal discretization, the IMEX-SAV scheme was applied.
We set the time step small enough to ensure that the spatial error dominates over
the temporal error. We take the small time step t = 0.1(1/M)3. The above-
mentioned meshes are used with M = 4, 8, 16, 32. From Table 3, the velocity,
pressure and scalar auxiliary variable errors have the error bounds, as predicted
by the theoretical estimates in Theorems 4.1 and A.1. With the same settings, for
large value of ν, ν = 10−1, the optimal convergence rates in space for the velocity
L2 errors can be observed from Table 4.

Table 3. Errors and convergence rates with the IMEX-SAV
scheme (17)-(18) with ν = 10−8

M ‖u− uh‖L2 Rate ‖p− ph‖L2(0,T ;L2(Ω)) Rate |q(T )− qN+1| Rate

4 1.56e-01 – 7.56e-02 – 4.61e-04 –

8 4.35e-02 1.84 1.46e-02 2.37 2.01e-05 4.52

16 1.11e-02 1.97 2.67e-03 2.45 2.68e-06 2.91

32 2.87e-03 1.96 5.60e-04 2.25 3.79e-07 2.82

Table 4. Errors and convergence rates with the IMEX-SAV
scheme (17)-(18) with ν = 10−1

M ‖u− uh‖L2 Rate ‖p− ph‖L2(0,T ;L2(Ω)) Rate |q(T )− qN+1| Rate

4 7.14e-02 – 3.04e-01 – 1.75e-04 –

8 6.26e-03 3.51 6.63e-02 2.20 2.24e-05 2.97

16 6.23e-04 3.33 1.52e-02 2.12 2.81e-06 2.99

32 8.37e-05 2.90 3.74e-03 2.02 3.51e-07 3.00

Example 5.2. Here, we test whether the error estimates are obtained with no time
step restrictions for a larger value of the viscosity. To this end, we test a numerical
example in [19] to see if similar results can be obtained.
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We consider the following exact solution of (1) on the domain Ω = (0, 1)2:

u(x, y, t) =

[
sin(t) sin2(πx) sin(2πy)
− sin(t) sin(2πx) sin2(πy)

]
,

p(x, y, t) = sin(t)(sin(πy)− 2/π).

We set T = 1 and ν = 0.1. The above-mentioned mesh is used with M = 230,
which can ensure that the temporal discretization error is dominant over the spatial
discretization error.

We test the convergence rates for the first-order and second-order IMEX-SAV
schemes, respectively. The second-order IMEX-SAV scheme can be written as fol-
lows: find (un+1

h , pn+1
h , qn+1) such that for ∀(vh, qh) ∈ Vh ×Qh,

(54)

(
3un+1

h −4un
h+un−1

h

2Δt
,vh)+νa(u

n+1
h ,vh)+b(vh, p

n+1
h )+

qn+1

exp(− tn+1

T )
c(ûn

h, û
n
h,vh)=F (vh),

b(un+1
h , qh) = 0,

and

(55)
3qn+1 − 4qn + qn−1

2Δt
= − 1

T
qn+1 +

1

exp(− tn+1

T )
c(ûn

h, û
n
h,u

n+1
h ),

with ûn
h = 2un

h − un−1
h and F (vh) = (fn+1,vh). Here, we use the first-order

IMEX-SAV scheme in the first time step.
The first-order convergence rates in time for the velocity, pressure and SAV errors

are observed in Table 5. The second-order convergence rates for the velocity and
SAV errors, and nearly second-order convergence rate for the pressure errors are
observed in Table 6. These are basically consistent with the results in [19].

Table 5. Errors and convergence rates with the first-order IMEX-
SAV scheme (17)-(18)

Δt ‖u− uh‖L2 Rate ‖p− ph‖L2(0,T ;L2(Ω)) Rate |q(T )− qN+1| Rate
1
10 4.39e-03 – 2.13e-02 – 1.76e-02 –
1
20 2.08e-03 1.08 1.02e-02 1.06 9.01e-03 0.97
1
40 1.04e-03 1.00 5.11e-03 1.00 4.55e-03 0.99
1
80 5.25e-04 0.99 2.57e-03 0.99 2.29e-03 0.99

Table 6. Errors and convergence rates with the second-order
IMEX-SAV scheme (54)-(55)

Δt ‖u− uh‖L2 Rate ‖p− ph‖L2(0,T ;L2(Ω)) Rate |q(T )− qN+1| Rate
1
10 2.94e-04 – 3.11e-03 – 1.39e-03 –
1
20 8.81e-05 1.74 6.32e-04 2.30 3.97e-04 1.81
1
40 1.88e-05 2.23 1.59e-04 1.99 9.74e-05 2.03
1
80 5.03e-06 1.89 4.73e-05 1.75 2.36e-05 2.05
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Example 5.3. In this test case, we test a classical benchmark problem, where a
laminar flow around a cylinder is considered [17, 22].

The domain Ω is a rectangular channel, [0, 2.2]× [0, 0.41] with a circular obstacle
of radius r = 0.05, which is centered at (0.2, 0.2) within the channel. The boundary
∂Ω is decomposed into Γout := {x = 2.2}, the outflow boundary, Γin := {x = 0},
the inflow boundary, and Γwall := ∂Ω\(Γin ∪ Γout), the wall boundary. On Γin, we
prescribe the Dirichlet boundary condition

u(0, y, t) =
1

0.412

[
6y(0.41− y)

0

]
.

On Γout, we prescribe the homogeneous Neumann boundary condition (−ν∇u +
pI)n = 0. The homogeneous Dirichlet boundary condition for the velocity is im-
posed on Γwall. The viscosity is set as ν = 10−3.

We use a (curved) unstructured triangular mesh around the cylinder, in which
the mesh consists of 1368 cells with mesh size h ≈ 0.04 away from the cylinder, and
h ≈ 0.01 around the cylinder, see Figure 3. Notice that we use the Scott-Vogelius
pair with k = 4, which allows us to use a general mesh without the additional
barycentric refinement. For the temporal discretization, the second-order IMEX-
SAV scheme is applied with Δt = 3 × 10−5. First, we start a simulation with an
initial velocity, which is computed by solving the steady Stokes solution of this
problem. Then, the computed velocity solution at t = 1 is saved and this solution
will be used as the initial velocity at t = 0 for the following simulation, see Figure
3. The final time of the following simulation is taken to be T = 8.

Notice that in the implementation, to deal with the complex boundary condi-
tions, the discrete convection term in (55) should be replaced by cskew(û

n
h, û

n
h,u

n+1
h )

= 1
2c(û

n
h, û

n
h,u

n+1
h ) − 1

2c(û
n
h,u

n+1
h , ûn

h) such that in a continuous sense,
cskew(u,u,u) = 0, with the exact solution u of this problem.

Figure 3. Sketch of the mesh and the initial velocity magnitude
(color corresponding to velocity magnitude from 0 to 2.133)

Quantities of interest in Example 5.3 are the drag and lift coefficients at the
cylinder. At each time step, we compute the drag and lift coefficients, which are
defined as [15]

cdrag = −20((dtu
n
h, ex) + νa(un

h, ex) + b(ex, p
n
h) + c(un

h,u
n
h, ex)),

clift = −20((dtu
n
h, ey) + νa(un

h, ey) + b(ey, p
n
h) + c(un

h,u
n
h, ey)),

where dtu
n
h =

3un
h−4un−1

h +un−2
h

2Δt , when n > 1, dtu
n
h =

un
h−un−1

h

Δt , when n = 1.
Here, ex and ey are continuous piecewise quartic functions taking values ex =
[1, 0]T and ey = [0, 1]T on those nodes on the surface of the cylinder, respectively,
and vanishing on all the other nodes. We compute the maximum and minimum
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drag coefficients, max cdrag = 3.22795 and min cdrag = 3.16468, respectively, and
the maximum and minimum lift coefficients, max clift = 0.98786 and min clift =
−1.02273, respectively, which are comparable to the results in the literature [17,22].
In Figure 4, the velocity magnitude at T = 8 is shown.

Figure 4. The velocity magnitude of flow around a cylinder at
T = 8 (color corresponding to velocity magnitude from 0 to 2.209)

Appendix A. Error analysis for the pressure

In this appendix, we present the error analysis for the pressure. First, we make
the error splitting, as follows:

pn − pnh = (pn − P k−1pn)− (pnh − P k−1pn) = ηnp − enp ,

where P k−1pn denotes the L2-projection of pn onto Qh.

Theorem A.1. Under the assumptions of Theorem 4.1, we have the following
error estimate:

Δt

N+1∑
n=1

‖pn − pnh‖2L2

≤ C(1 + h−1)
{
T max

1≤n≤N+1
(‖un−1 − un−1

h ‖2 + |enq |2) + ‖ηp‖2L2(0,tN+1;L2(Ω))

+ ν2Δt
N+1∑
n=1

|un − un
h|

2
1 + ‖∂tη‖2L2(0,tN+1;L2(Ω)) + (Δt)2‖∂ttu‖2L2(0,tN+1;H1(Ω))

+ (Δt)2‖∂tu‖2L2(0,tN+1;L2(Ω))

}
,

with a constant C independent of h and ν−1.

Proof. Notice that much of the analysis is very similar to that of [7, 8], so we only
concentrate on what is really different, mainly the nonlinear terms and the scalar
auxiliary variable. We can refer to [7, 8] for more details.

First, we have the following error equation
(56)
b(vh, e

n+1
p )

= b(vh, η
n+1
p ) + (∂t(u

n+1 − πsu
n+1),vh) + (∂tπsu

n+1 − πsu
n+1 − πsu

n

Δt
,vh)

− (Dte
n+1
h ,vh) + νa(un+1 − un+1

h ,vh)

+
q(tn+1)

exp(− tn+1

T )
c(un+1,un+1,vh)−

qn+1

exp(− tn+1

T )
c(un

h,u
n
h,vh)

︸ ︷︷ ︸
φ

,
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with Dte
n+1
h =

en+1
h −en

h

Δt . Denote

φ = c(un,un,vh)−
qn+1

exp(− tn+1

T )
c(un

h,u
n
h,vh)

︸ ︷︷ ︸
φ1

+ c(un+1 − un,un+1,vh) + c(un,un+1 − un,vh)︸ ︷︷ ︸
φ2

.

By using Hölder’s inequality, we have

φ1 =c(un,un,vh)−
qn+1

exp(− tn+1

T )
c(un

h,u
n
h,vh)

=
qn+1

exp(− tn+1

T )
c(un − un

h,u
n,vh) +

qn+1

exp(− tn+1

T )
c(un

h,u
n − un

h,vh)

+
en+1
q

exp(− tn+1

T )
c(un,un,vh)

≤C(‖un − un
h‖+ |en+1

q |)‖∇vh‖,

where we use ‖un
h‖L∞(Ω) ≤ C from (51) and |qn| ≤ c1, ∀0 ≤ n ≤ N + 1. Similarly,

we have

φ2 = −c(un+1 − un,vh,u
n+1)− c(un,vh,u

n+1 − un)

≤ C(Δt)
1
2 ‖∂tu‖L2(tn,tn+1;L2(Ω))‖∇vh‖L2 .

Then, the above estimates are combined to obtain

(57) φ ≤C(‖un − un
h‖+ |en+1

q |+ (Δt)
1
2 ‖∂tu‖L2(tn,tn+1;L2(Ω)))‖∇vh‖.

We take the test function vh = (Ah)
−1Dte

n+1
h ∈ V div

h in (56), and use (57) and
(5) to obtain

(58)

‖Dte
n+1
h ‖−1 ≤ Ch− 1

2 ‖(Ah)
− 1

2Dte
n+1
h ‖

≤ Ch− 1
2

{
ν|un+1 − un+1

h |1 + (‖un − un
h‖+ |en+1

q |

+ (Δt)
1
2 ‖∂tu‖L2(tn,tn+1;L2(Ω)))

+ ‖∂tηn+1‖L2 + ‖∂tπsu
n+1 − πsu

n+1 − πsu
n

Δt
‖L2

}
,
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where we use (3) in [8], (5) and the inverse inequality (8) to get the first inequality.
Applying the discrete inf-sup condition (3), (57) and (58), we can obtain

β‖en+1
p ‖L2 ≤ sup

vh∈Vh\0

b(vh, e
n+1
p )

|vh|1
≤ C

{
‖Dte

n+1
h ‖−1 + ‖ηn+1

p ‖L2 + ν|un+1 − un+1
h |1 + ‖∂tπsu

n+1

− πsu
n+1 − πsu

n

Δt
‖+ (‖un − un

h‖+ |en+1
q |

+ (Δt)
1
2 ‖∂tu‖L2(tn,tn+1;L2(Ω))) + ‖∂tηn+1‖L2

}
≤ C(1 + h− 1

2 )
{
‖ηn+1

p ‖L2 + ν|un+1 − un+1
h |1

+ (Δt)
1
2 ‖∂ttu‖L2(tn,tn+1;H1(Ω)) + (‖un − un

h‖+ |en+1
q |

+ (Δt)
1
2 ‖∂tu‖L2(tn,tn+1;L2(Ω))) + ‖∂tηn+1‖L2

}
.

Finally, by applying the triangle inequality, we can conclude the proof. �

Remark A.2. By combining Theorem A.1 and (32), we can obtain

(Δt

N+1∑
n=1

‖pn − pnh‖2L2)
1
2 ≤ C(u, ∂tu, ∂ttu, p, T )(1 + h− 1

2 )(hk +Δt).

This kind of error bound can be seen in [8].
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