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1. Introduction

The Swift-Hohenberg (SH) equation is a widely applied phase-field model and it was originally derived by Swift
and Hohenberg [1] to describe Rayleigh-Bénard convection. Related applications can be found in complex pattern
formation [2,3], complex fluids and biological tissues [4-G]. The SH equation is derived from the following free energy
functional

E(u) = / (]u(l + APu+ éuz + F(u)) dx, (1.1)
o\ 2 2

where £2 is a domain in RY (d = 1,2,3), u is the density field, F(u) = %u“ — #uz, A is the Laplace operator. The SH
equation is given by
SE 3

u=— =—((1+ A)Yu+ Bu+f(u)), (1.2)
with the periodic boundary conditions and initial conditions u|;—g = u°, where a% denotes the variational derivative,
u = g—;‘,f(u) = F'(u) = u® — (e + B)u. It is known that if ¢ < 0, the SH equation has the trivial solution only (cf. Theorem
9.1.1 in [7]), and hence we consider ¢ > 0 in this paper. A classic example for the SH equation is convection of a thin
layer of fluid heated from below for which we can think of the scalar quantity u as representing the temperature of the
fluid in the mid plane. The parameter ¢ is the reduced Rayleigh number and is expressed as:
_ Ra — Ra,
" Ra,

€
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where Ra, is the critical Rayleigh number at which instability sets in and convection begin [8]. Hence, for € > 0, convection
occurs. The free energy is nonincreasing in time:

dE SE 9
& ——udx:—/(ut)zdxso.
dt o éu dt o

Here we study the numerical scheme of SH equation with periodic boundary conditions since that is used very frequently
in numerical or analytical works of SH equation. If we choose other physical boundary conditions like Neumann type, the
analysis is also true.

As a nonlinear fourth-order partial differential equation, the SH equation is difficult to be solved analytically. Hence,
various numerical schemes have been proposed in recent years. To design a numerical scheme satisfying energy dissipa-
tion law, the linear terms are generally treated implicitly and the nonlinear terms are treated by different approaches. A
very efficient approach is the convex splitting method [9]. Based on the convex splitting method, Lee presented a non-
iterative scheme for the SH equation with quadratic-cubic nonlinearity without convergence analysis in [10]. Zhang and
Ma constructed and analyzed a large time-stepping scheme for the SH equation in [11]. In [12], the authors proposed
a second-order energy-stable numerical scheme for the SH equation and presented an optimal error estimate for the
scheme. By applying the Crank-Nicolson scheme, a semi-implicit second-order method for the SH equation was given
in [13]. In [14], an unconditionally energy-stable, second-order finite element scheme in the mixed formulation is given
and analyzed for the SH equation. The convex splitting method is unconditionally energy-stable and uniquely solvable.
However, to solve the fully discrete nonlinear systems, these methods generally require the use of an iteration. Hence,
the computational costs are often high and the implementations are usually complicated. Another efficient approach
is the stabilization method. By introducing artificial stabilization terms, one can alleviate the time step restriction and
balance the explicit treatment of the nonlinear term, see [15]. In [16], the authors proposed a stabilized linear predictor—
corrector scheme for the SH equation, they also proved rigorously that the scheme satisfies the energy dissipation law
and is second-order accurate. In [17], a stabilized linear Crank-Nicolson scheme for the SH equation was proposed and
analyzed. Efficiency and simplicity are the main advantages of the stabilization method. The operator splitting method
is also an very powerful approach for solving the phase-field models. In [18], based on the operator splitting scheme,
the first- and second-order Fourier spectral methods were presented for the SH equation. In [19], a new conservative
SH equation was introduced and its first-order and second-order mass conservative operator splitting schemes were
proposed. In [20], A fast explicit high-order operator splitting scheme was presented for the SH equation with a nonlocal
nonlinearity. There are also various interesting linear approaches that attract the attention of many scholars, such as
invariant energy quadratization (IEQ) scheme [21] and scalar auxiliary variable (SAV) scheme [22]. These approaches
provide linear numerical schemes and satisfy unconditional energy stability based on a modified energy functional.

In this work, we design and analyze an unconditionally energy-stable linear Leapfrog scheme combined with IEQ
approach for the SH equation. Although there exist some works about IEQ type or SAV type schemes for the SH equation,
such as [23-28], almost all works only focus on the unconditional energy stability. In view of the absence of error analysis,
the main goal of this paper is to derive the error analysis for a second-order IEQ scheme for the SH equation. In [29], Yang
and Zhang gave the convergence analysis for the IEQ schemes for solving the Cahn-Hilliard and Allen-Cahn equations with
general nonlinear potential, but the authors considered only time discrete schemes in their study and Remark 4.1 was
given in their article to indicate, for the fully discrete IEQ scheme of the Cahn-Hilliard equations, their were not clear on
how to derive the corresponding error analysis using Galerkin type approximations and this was a challenging work. In
this work, we adopt a spectral-Galerkin approximation for the spatial variables and establish error estimates for the fully
discrete IEQ scheme, which is not studied in [29]. In order to get optimal error estimate, some reasonable conditions about
continuity and boundedness for the nonlinear terms are given. Unconditional energy stability and unique solvability are
also rigorously proved. Numerical tests are presented to support our theoretical results.

The rest of the paper is organized as follows. In Section 2, we design the second-order semi-discrete linear energy-
stable Leapfrog scheme and prove the scheme satisfies the energy dissipation property. In Section 3, we derive the error
estimate of the semi-discrete scheme. In Section 4, we adopt a spectral-Galerkin approximation for the spatial variables
and establish error estimates for the fully discrete linear Leapfrog scheme. In Section 5, numerical tests are provided
to illustrate the accuracy and energy stability of the proposed scheme. In the end, some conclusions are presented in
Section 6.

We introduce some notations which will be used in the analysis. We denote the spaces [P(£2) associated with the [P
norm ||ullp = ([, lu(x)|Pdx)'/?. We also introduce the space L°(£2) with [|v]|;c = sup,cq, [v(x)]. WP(£2) stands for the

standard Sobolev spaces equipped with the standard Sobolev norms || - ||k p. For p = 2, we write H*(£2) for W*2(£2) and
the corresponding norm is || - ||x. The space W*P(0, T; V) represents the W*P space on the interval (0, T) with values in
the function space V. We denote by (-, -) the inner product in L? and || - || the norm in I%. Let x < y denote there is a

positive constant C that is independent on time step size t and n such that x < Cy. Let K > 0 be any positive integer, T
be the final time and set

t=T/K, t,=nt, forn <K,

let u" be the numerical approximation of u(t;).
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2. The semi-discrete linear Leapfrog scheme for the SH equation

In this section, we develop a second-order semi-discrete time-stepping numerical scheme to solve the SH equation
based on the IEQ method. For this purpose, we introduce following auxiliary variable

W = /F(u)+ D,
D is a positive constant to make F(u) + D > 0 and ensure W = \/F(u) + D is well-defined for any u € R. Since

2
1u4_€+,3u2+(€+,3)2 =<1uz_ﬂ> >0

4 2 4 2 2

2
and F(u) = %u“ — #uz > —%, F(u) is bounded from below. We are able to choose a positive constant D such that

D> %. Thus, the energy functional (1.1) becomes

A 1
E(u, W)= / <fu(1 + AYu+ éu2 +w?— D) dx. (2.1)
o \2 2
We denote H(u) = Z%W(u) = % and we have the following equivalent PDE system:
U+ (14 APu+ Bu+HuW =0, (2.2)
1
W = EH(U)Ur, (2.3)

with the periodic boundary conditions and initial conditions

Ule=o = u, Wli=o = v F(u®)+D.

The equivalent PDE system still satisfies the unconditional energy stability. By taking the L? inner product of (2.2)
with u; and taking the L? inner product of (2.3) with 2W, summing up the resulting equations, we have the following
unconditional energy stability of the equivalent PDE system (2.2)-(2.3) as

d .
—E(u, W)= —|u > <0.
i (u, W) luell” <
We design the second-order semi-discrete scheme based on the Leapfrog scheme as follows,
un+1 _ unfl Wn+1 + W”f] un+1 + unfl un+1 + unfl
—— +HU") ———— + (1 + A)? + B =0, (2.4)
27 2 2 2
1
wr —wnt = EH(u")(u”“ —u™ N, (2.5)

Because we tackle the nonlinear coefficient H(u) of the variable W explicitly, we can write Eq. (2.5) as below:
Wt = %H(u")u"“ +1, (2.6)
with r} = W"™! — JH(u")u""". Thus, (2.4) can be written as a linear system as follow
yu™ = G+t =g, (2.7)

withy = L, 37" = Lum !, Gu™) = JHWMHu U™ + 3(1+ APu + Sumt! il = TH@W ! + JHW W + 1(1+
AYu1 4 gu”‘l. Actually, u™! can be solved directly from (2.7). After we get u™!, W™*1 is naturally obtained in (2.6).
Moreover, we note that
1 n n 1 ﬁ
(G(u), v) = Z(H(u Ju, H(u" )v) + 5((1 + A, (1+ Ap) + E(u’ v),
if v satisfies the identical boundary conditions as u. Thus, the linear operator G(-) is symmetric. Furthermore, for each u,

we derive

B

1 1
(G(u), u) = ZIIH(U")UII2 +5lI+ All? + EIIUII2 =0,

“_n

where is valid if and only if u = 0.

Remark 2.1. For the SH equation with quadratic-cubic nonlinearity, that is, the nonlinear term is f(u) = u®—gu®—(e+8)u,

F(u) = %u“ - §u3 — #uz, the current research is also applicable. In this paper, we focus on the SH equation with € > 0,
3
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gEA/g2+4(e+B
2

g > 0 and B > 0, the nonlinear term F(u) has double wells with two local minimal values at uy = ) such

that f(us+) = F'(uy) = 0, and
F(u) > min{F(uy)} =: D(g, €, B),

where D(g, €, ) is a constant depends on g, € and 8 only and a similar analysis can be found in [23]. F(u) is bounded
from below and we can find a Dy > —D(g, €, 8) such that F(u) + Dy > 0. The analysis in our paper can also be carried
out.

Remark 2.2. A symmetric reformulation was introduced in [30], Section 4.3 and [26], Eq. (2.1) for the SH equation. In
our work, the SH equation can be written as the following symmetric reformulation:

U + £q+ pu+ f(u) =0,

q=Lu,
where £ = (A + 1). By the IEQ approach, we have the following equivalent system:

us + £q+ Bu+ Hu)W =0,

q=Lu,
1
Wt’ = EH(u)ut.

The proposed scheme is still applicable to the reformulated equation.

Remark 2.3. The second-order scheme (2.4)-(2.5) involves three time levels and (u"*!, W™1) can be updated after
we obtain the initial values (u®, W°) and (u', W1). Obviously, (u®, W°) is given by the initial conditions. To get the

second-order time accuracy of the scheme, we can calculate (ii', W) by using the first-order scheme (2.8)-(2.9)

ﬁn+l _ un ~
+ (14 AP + g™ + Hu")W™! = 0, (2.8)
T
- 1
W —wn = EH(u”)(ﬁ"“ —uh). (2.9)

then apply the following corrector scheme to get (u'!, W),

ul —uo w4 wo u' +ul u' +u
+H{@")y————— + 1+ A4) + B =0, (2.10)
T 2 2 2
1
w—wb = 5H(al)(u1 —u%, (2.11)
with
H@"Y) = _fa@h
F(u')+D

We now prove the well-posedness of the system (2.4)-(2.5) (or (2.7)) as follows.
Theorem 2.1. The linear system (2.7) can be solved uniquely, and the linear operator is a symmetric positive definite operator.

Proof. From (2.7), it is obvious that u"*! solves the following system with unknown u,
yu+Gu)=ry"—rp. (2.12)
Let us denote the above linear system (2.12) by Tu = y.
1. For each u; and u; in H2(£2) with the periodic boundary conditions, applying integration by parts, we obtain
(T(u1), u2) = y(ur, uz) + (G(u1), uz)
< Gllurlliuzll + IVua IVl + || Aus || Auzll)
< Gillurll2lluz 2 (2.13)

Hence, the boundedness of the bilinear form (T(-), -) is proved.
2. For each u in H(£2) with the periodic boundary conditions, using the H>-regularity of the second-order elliptic
equation —Au = f (cf. Chapter 6 of [31]), we have

lulla < CUFI + lull)
= C(lAull + [lul)
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= C(I(T + Au — ull + llul)

= C(I(1 + Aull + 2(lull),
it is not hard to obtain that
B
2
Consequently, the coercivity of bilinear form (T(-), -) is proved. Here, C; and C, are positive constants.

In this way, the well-posedness of the system Tu = y is obtained from the Lax-Milgram theorem, that is, the linear
system (2.12) has an unique solution in H?(£2). Moreover, we can easily obtain

(T(uq), uz) = (ug, T(uz)). (2.15)

From this, T is symmetric. At the same time, the positive definiteness of T comes from coercivity in (2.14). Hence, T is a
symmetric positive definite operator. O

1 1
(T(u), u) = ylull* + ZnH(u")un2 + 210+ Aull® + =l > Gllulls. (2.14)

Theorem 2.2. The scheme (2.4)-(2.5) (or (2.7)) satisfies the discrete energy dissipation law as follows:

1
Eft — B = — ™ — w2 <0, (2.16)
4t
where
1 1 B
B = E(IIW"“II2 + W) + 2+ AP 4 I(1T+ A"|1?) + Z(Ilu““ll2 + lu"|1*) — D|£2].

Proof. First of all, taking the [*-inner product of %(u”+1 — u™ 1) with (2.4), and using the following identity
Xx—2y+z,x—2)=@x—-yf —(y—2)F,

we have

3 l”un+1 3 un—1||2 _ <H(un)wn+l + Wn—] un+l _ un—]
4T

> + %(n(l F AR — (1 4+ A R)

2 ’ 2
B _
+ Z(HU"HH2 — [l ") (2.17)
Secondly, taking the L?-inner product of 3(W™! + W"~") with (2.5), we derive
1 1 1
5”Wn+] ”2 _ 5”WH—'I ”2 — Z (H(un)(un+1 _ un—l)’ Wn+] + Wn—]) . (218)

In the end, combining (2.17) and (2.18), we derive

1 1 _ 1
E(IIW”HII2 + W) — E(IIW"II2 + W) + LU+ AWM (1 At?
- B - 1 -
— 1+ A" = (1 4+ AP + Z(IIU"HII2 + P =t = ) = —Ellu”“ —u"?

which implies the desired result (2.16) is hold. This completes the proof. O
3. Error analysis of the semi-discrete scheme

We now give the error analysis for the second-order scheme (2.4)-(2.5). First, we formulate a truncation form for the
SH system (2.4)-(2.5) as follows:

o) Z W) g pp e i) | g b WEn) ey W) E WD) gy
2T 2 2 2
Wits1) ~ Wit 1) = SH@(E Ut 1) — ulty 1) + 26, (32)
where
e :%T”(t"*‘) — ue(tn) + (14 A)zw — (1+ AYu(ta)
n ,gw — Bu(ty) + H(u(ty)) 2 L) : W) g wie,).

W(tn-H) - W(tn—l)
2t

— Witn) + %H(u(tn))ut(tn) - %H(u([n))w'

G, =
w 2T

5
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To derive the error estimate, we assume that the analytic solution of the system (2.2)-(2.3) satisfies the following
regularity conditions

uel®0,T; HY(R)), W eL>®(0,T;L®(2)), u; € L0, T; L®(£2)), (3.3)
Wy € (0, T; L)), ug € L*(0, T; HA(R2)), ue, Wi € 120, T; L*(£2)). (34)
We define the error functions forn =0, 1,2, ...,K as

el = u(ty) —u", e}, = H(u(ty)) — HW"), e}, = W(t,) — W".

Subtracting (2.4)-(2.5) from (3.1)-(3.2), respectively, we get the following error equations for n > 1,

ez+1 enfl 5 n+1 +en 1 en+1 +en71 W(tn+1)+W(tn,1) n+l +en 1
S T8 (g4 ap& u U el HuMw_ W G, 35
> +(1+4) > + B 5 +ey 5 +H(u") > u (3.5)
1
el —ely ' = Sen(Ultnin) = ultn1)) + 3 H( et — el + 276y, (3.6)

Before further investigation, we introduce the following lemmas.

Lemma 3.1 ([29]). Suppose (i) F(x) is uniformly bounded from below: F(x) > —D for any x € R; (ii) F(x) € ¢3(R); and (iii)
there exists a positive constant Dg such that

max (|[u(tn)llree, Vu(tn)ll3, lu"llie) < Do,
0<n<K

then we have

IH(u(tn)) — H@™)|| < Collu(ts) — u"|l,
IVH(u(ts)) — VHU")I| < Do(llu(ts) — u"l| + |V (u(ta) — u™)l),

for n < K, where 60 and 50 are positive constants dependent on §2, Dy and D.

Lemma 3.2. Under the regularity conditions (3.3)-(3.4), the truncation errors satisfy
K-1
T UG+ 16, 17) < <
n=1

Proof. Since the proof is rather straight forward, we omit the details. O
Let v = maXo<¢<7 ||u(t)|/1 + 1, we now prove the L* stability of solution u".

Lemma 3.3. Under the regularity conditions (3.3)-(3.4), there exists a positive constant r (which is given in the proof), such
that when t < r, the numerical solution u" of (2.4)-(2.5) satisfies the following uniformly boundedness

lu"le <v, n=0,1,2,...,K.

Proof. We prove this lemma by mathematical induction. Because u° = u(ty), ||u®||;~ < v holds naturally. Assuming that
luM|lee < v is true for 0 < n < M, we derive ||uM*!|;~ < v is also true by the following two steps.
(i) Taking the L?-inner product of (3.5) with el+! — e'~1, we get

*Ile”“ en P+ (Il(l + AP = 11+ A)ey P + l;(lle”+1 I” = lley™"1%)

N <921 W(tn-H)‘;W(tn—l)’ et eZA) i ( (u n)@’ et ezl) (G, et! — e 1), (3.7)
Taking the [*-inner product of (3.6) with e”+1 + eW , we have

lefy 12— llegy 117 *(eﬁ(u(tnﬂ) —u(ta-1). e ey

+ %(H(u")(eﬁ“ —el ), el el ) + 27(Gly, el el ). (3.8)

6
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: 2 i n+1 n—1
Taking the L*-inner product of (3.5) with t(e]™" 4 e} ~"), we get

1 _ 1 _ 1 —
S IZ = ey 1) + ST+ A + eI + S prlle™ + e

L <ez W(t”“)—;w(t”_l),eﬂH +ez—1> T (H(u )"H% et +ez—1) — 7(G, e 4 et ), (3.9)
Combining (3.7)-(3.9), we derive
(||€n+1|| lej="11%) + 1(||(1 + A)e PP — 11+ A)enq” )+ el 1% — lefy 7
ﬂ(||€”+1|| lles™"1I%) + ,3T||€nJrl +e? +t3; || ent! —ey I + ET”“ + A)ey™ + el I
_ (e,'; W(tn+1)-;W(tn_1)7 el eﬂ’l> 4G e — ey %( n (Ut s) — U(ta_1), €5 + el
4 20(Cly. e ety g (91“1 W(tas1) ;— W(tn—l), et +eﬁ’1> s (H(u )w et +ez1>
+ (Gl el el . (3.10)

Using Lemma 3.1 and regularity conditions (3.3)-(3.4), we estimate each terms on the right hand side of (3.10).
(ez W(tn+1) + W(tn—l) en+1 _ en,1>
u

> el < NefIIIW (Ens1)lloe + IW(ta1)llioo )€l — el |

1 -1
< lleglilleg™ —ep™"l
1
1 —1y2 2
< EHET —ey 17+ Tllefll
1 —1y2 2
—||e“+ e, I°+lel” (3.11)

2/\

Since
[Vell> = |(Vel, Vel)| = |(el, Ael)| < llel* + [ ael?
= llell® + (1 + A)el — el < lleflI> + (I(1 + el ll + llell)?
S legl® + 1101+ Ael?,

we have

1
5|(eZ(u(tn+1) —U(ty—1)), € n+l +ey B

+1 -1
=< llemnllallutnsr) — ulta-1)llalley + ey |

< ||eH||L4||e"“+eW [
Stlept + ey I +r||e,”,||f4
< t(lef 1% + llefy 1) + tCllef I + Vel 1)
< tlllef 1%+ llely 1P + TClell® + 101+ Adelf1?). (3.12)
. (ez W(tn+1)‘;W(tn—l)’eZ+1 +EZ1>‘
< Tlef AW Gl + IW (Ea—1)llie)lledt + el
S tleflllel™ + el
Stlefll® + Tl 4+ el
S tlell® + el + el 2. (3.13)
n+1
e
T (H(u )%, eltl el ]>
n+1
+ el _
< TIHU")|l 5 i el + el
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tllel ! + e I+ ollelt! el 2
1 —-1y2 112 —-12
(el 1% + e 1% + el 1% + flel2). (3.14)

AN A

T[2(Gy. ey + ey )+ (Glet e

<TGy el + el '+ G ey ™ + el ")

STUIGH 1P+ lley ' + el I + G2 + Nl ™ + el ")1?)

< TUIGH I+ G + el M 1% + Nefy 1% + et 1> + el '1%). (3.15)

_ _ 1 _
Gy el — el D) < G, Illley ™ — eI < Elleﬁ+1 e e e (3.16)
Combining (3.11)-(3.16) with (3.10) and dropping some positive terms, we obtain
+ 8 _ 1 _
T(IIE”+1 1> = llef~"1*) + *(Il(l + AP =111+ Al ) + e P — Neyy I

S Tt % 4 el + llef M1 4+ 10T+ Adegll* + lley, 1> + lleyy ' I* + IGW 11> + IG311%).

Summing up for n from 0 to m (m < M) and using Lemma 3.2, we have

1+ 8 1
T(Ileﬂ1+1 1% + llef'1?) + 5(Il(1 + AP A (T4 A)eplP) + llefy™ 1% + lefy 112
m+1
STy _(lepl® + 101+ Al + llefy 12) +
n=0
Applying the Gronwall’s inequality, there exist two positive constants ry and r, such that when t < ry,
12 + 101+ 2)ef 1% + lley™ 1> < rprt (3.17)
(ii) Since
ey 115 = llel 11> + Vel )2
M+12 M+12
< e 1P+ [l aey ™)
M+1)2 M+12
< e 12+ 111+ Ay ™|
<t
ley™ 115 = llel ™ 1> + Vel 1> + | ael ™|

< led™ 2+ l1ae 1 )1?
< e 2+ 1101+ 212
< Tt

we have

M-+1 M+1
[u Moo < lley Ml + ||u(tM+1)||L<>O

M+1 M+1
< Colley™* ||1 lley ™ ||2 + [lu(ty1)lle

< Con/rat? + Uty 1)l < v,

ift < Thus the proof is completed by setting r = min{ry,

1 1
NN N

Theorem 3.1. Under the regularity conditions (3.3)-(3.4), the numerical solution u" of (2.4)-(2.5) satisfies the following
estimate:

lel 1% + 101+ 21> + ey 1* < vt 0=m<K-—1. (3.18)
Proof. If r < r, we have ||u" |~ < v for 0 < n < K. Hence, following the proof of Lemma 3.3, we get the result (3.18). O
4. The fully discrete scheme and its error analysis

In this section, we adopt a spectral-Galerkin approximation for the spatial variables and establish error estimates for
the fully discrete linear Leapfrog scheme. Let & = (1 + A)u, the system (2.2)-(2.3) can be rewritten as

ur+ (14 A + Bu+ Hu)W =0, (4.1)



L. Qi and Y. Hou Communications in Nonlinear Science and Numerical Simulation 120 (2023) 107185
§=(1+ A, (4.2)

1
Wr = EH(u)ut, (43)

with u(ty) = u°, £(ty) = £° := (1+ A)u® and W(ty) = WO := \/F(u®) + D. The weak form of the above system (4.1)-(4.3)
is

(ue, V) + (€, ¥) — (VE, Vi) + B(u, ) + (HuW, ) =0, ¥ ¢ € H'(2) (4.4)
(€,v)=(u,v)— (Vu, Vv), Yv e H(£2) (4.5)
(We,§) = 3 (HQWu, ), ¥ ¢ € (82, (46)

We denote by Vy the space of polynomials of degree < N in each direction, and for any ¢ € H*(£2), we define a projection
Iy : HY(£2) — Vy by

(IIng —9, 1) =0, (V(IIng —9), VY ) =0, V¢ € V. (4.7)
It is well known that the following estimate holds [32]:
le — Mvells S N ¥llgllk, s=0,1, Vo € H(2), k> 1. (48)

Let [2(22) = {v € [*(2) : (v, 1) = 0}. The discrete Laplacian Ay : Vy N L3 — Vy N L2 is defined as follows: for any
Yy € Vy N L2, let Ayyy be the unique solution to

(An¥n, x) = —(VYn, V), ¥ x € Vy. (4.9)
The fully discrete form of (4.1)-(4.3) is
ulr\l]+l _ u[rz]—l 13+1 + S}G_] ulr\ll+1 + ulr\z,—l W]g-%—l + ch—l
——— 414+ A H(uy, =0, 4.10
e +(1+ Ay) 5 + B 5 (uy) 5 (4.10)
&y = (14 An)uy, (411)
Wﬁ_H _ W]c—l 1 un+1 _ un—]
NN — _Hu)N—N_ 412
2t W) =7 (412)

The spectral-Galerkin method for the scheme (4.10)-(4.12) reads: given u$ = ITyu®, &y = IIy&° and W = ITyW°,
find upt' € Vy such that

Ll;\']_H _u;‘\l_l 3+1+§ﬁ_1 Véﬁﬂ—i-Véﬁ_] ux+1+ulrzl—1
AN, My ) (A XN
( 7 v+ 5 v 5 v|+8 5 v

Wn-H Wn—l
+ (H(u;;)Ner”, v]=0 Vyevy (4.13)
(§ﬁ7v):(u?\]7v)_(vugsvv)a Vuve VNa (4'14)
WrH—l _ Wn—l 1 un+1 _ un—l
(Nerv ¢ = 5 H(U;\I/)Nzirlvs ¢, YieW. (4.15)

Remark 4.1. Since the above scheme involves three time levels, we need to apply the spectral-Galerkin method to the
initialization step (2.8)-(2.11) to calculate (u});, &y, W,l) and then start the above scheme.

Using (4.11) and the same proof as Theorem 2.2, we can obtain the following theorem.

Theorem 4.1. The fully scheme (4.10)—(4.12) satisfies the discrete energy dissipation law as follows

1

grin _ghnt — —4—||u,"v+l — 2, (4.16)
T

where
1 1 B
gt = E(IIWEHII2 + WX %) + Z(IIEE“II2 + IEV1I%) + Z(IIU,’&“II2 + [luy 1*) — DI£2].
In this work, we assume that the initial data satisfies the following stability:
1 1 B
&’ = SUWRIP +IWRIR) + S U&7 + 1EWI%) + 3 (luy ) + 14y 1) - DI2] < C. (417)

9



L. Qi and Y. Hou Communications in Nonlinear Science and Numerical Simulation 120 (2023) 107185

We define the discrete H2-norm as

Ionllmz = llonll + IVoNI + 1 Angyll, ¥ éy € Vi

To derive the error estimate, we first give the H2-boundedness for the numerical solution.

Lemma 4.1. Assuming that uy, is the solution of the scheme (4.10)-(4.12), there is a constant C > 0 such that

lunllyz < C.

Proof. From Theorem 4.1 and Eq. (4.17), we know that there is constant C > 0 such that

1 1 B
SIWRIP + 218517 + Zluyll” =€, 0=n =<K,
hence, we have

luyll <C, gyl <C.
By applying (4.14), we have

(Vuy, Vuy) = (uy, uy) — (&5, uy),

(Vuy, VAyuy) = (uy, Anuy) — (£F, Anuy).
Hence, it holds that

IVURI? < lluf I + lluf €T < C,

I ANuR I < llug Il ANUR T+ IEGI I Anug Il

[Anug |l < llugll + lIEN T < C.
From (4.19), (4.20) and (4.21), we can deduce (4.18). O

Let us denote

O'LT = ulr\l] — Myu(ty), /)L': = Iyu(t,) — u(ty),

of =&y — [INE(tn),  py = TINE(tn) — &(En),

oy =Wy —IINW(ty), py = TINW(ty) — W(t,),

thus,
83 = UZ —u(ty) = uﬁ — ITyu(t,) + Myu(t,) — u(t,) = U; + ,037

8; = &y — &(ty) = &y — TINE(ty) + TINE(Ln) — £(ta) = 0’; + /Og",
ey = Wi — W(ty) = Wy — IINW(t,) + IINW(t,) — W(tn) = oy + pyy-

By the definition of the projection ITy, we have

We also denote

u(tn-H) - u(tn—l) g(tn+1) + S(tn—l)

T = T F— —u(ty), TJ = - 5 —&(tn),
u(t u(ty— W(t, — W(t,—

T = W —u(ty), T} = (n+1)2‘[ (tn-1) — Wi(ty),
W(t, Wi(t,—

Tsnz (n+l);‘ (n ])—W(tn).

By using the Taylor expansion, we can easily derive the following estimates:
ITH < 6||u||w3v°°(0,T;L2(Q))T2! T3] < §||§||w2-oo(o,T;L2(:2))Tza
n 1 2 n 1 2
T30 < E||u||w2,00(o,7';1_2(9))7: s TEN < 6”W||W3’°°(0,T;L2(.Q))r >

ITSI < SIW lhwessorzant™

10

(4.18)

(4.19)

(4.20)

(4.21)

(4.22)
(4.23)

(4.24)
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Theorem 4.2. Assuming that u € W>°(0, T; HX(£2)), £ € W>>(0, T; H**2(2)) and W € W3>(0, T; H*(£2)), then we have
the following error estimate

lu(t,) — uyll < CN* + C(||U||W3-°°(0,T;Hk(:2)) + 1§ lw2.co0,1;1k+2(2)) + ||W||w3-oc(o,T;Hk(g)))'52, 0<n<K.

Proof. Subtracting (4.4)-(4.6) from (4.13)-(4.15) at t,, we get

_ 1 n—1 n+1 n—1
oyt —oy ! Pyt —py! n of" + oy + 0
77 77 T 9 77 77

< 7 v+ 5 ¥ )+ (17, ¥) + 5 v+ 5 ¥

Vo_nJr] +Van71 n+1+o.n 1
+ (T3, 9) — (‘fzf,w — (VI V) + B (71#)

2
n+l n—1 Wn—H Wn—l
ny <% w) +B(TEY) + (H(u,”v)”;” — HQu(t)W(t), w) o0, (4.25)
(0g,v) = (0, v) + Vo, Vv) = (py, v) = (p;, V), (4.26)
e’ — e ™ )= MR U (e 427
T»C +(4,§)—§ (N)T (u(ta)ue(ta), ¢ | - (4.27)

Arranging (4.25), we have
_ +1 n+1 n—1 1 n—1
ot —oy! of "' ol Vo' + Vo S
—_ S S -\———V _
( )+ 5 v . v)+8 > v
1 n—1
pn+1 ol 1 p”+ +p
- - (5 ) —ann - (B ) —an )

prtl n—1 w4 it
- B (% 1//) —B(T5. ¥) — (H(u,”V)NJZr — Hu(t,))W(ty), w) ) (4.28)

From (4.26), we have
n+1 n—1 _ —
O—E O—E ) - 0-1‘117‘*'1 _ 0,1111 1 o N VULT+1 _ VO’LT 1 ’ -

2T 2t 2t

n+1 n—1 n+1 n—1

1Y P
— (P TP )2 ). (4.29)

2T 2T

Taking ¥ = (0! — o ~1)/27 in (4.28), we get
n+1 2 N "“ + a 0,11+1 — o1 ~ Va;“ 4 vg” 1 Vot — yon-!
2 ’ 27 2 ’ 21

u
1 1
=l 12 = lloy ~M1%)

,3
4
n+1 n—l U&1+1 0&1—1 - O_L?Jr] _ 0_1111—1 "‘H + p -1 GLT+] _ O.L?—l
27 v 2t 2 ’ 21
- B

n—1
—o)

2T

n+l n 1 N VTH VGL7+] —VO’L':_l ﬂ n+1+pn 1 ULT+1_ULT—1
2 2t 2 ’ 2t

n+l n—l Wn-H Wn—l n+1 _ _n—1
(T;, Tu ) - (H(um”*zr” — H(u(t))W(ty), "ZT") . (4.30)

Taking v = (of"*' 4+ 0{~')/2 in (4.29), we have

O,éfH»l _0;7] Tl+1 +U; 1 B GL7+] _O_L,l—l_l O_;+1 +O_§1171 N VGL7+1 _ VO'LT_l VU£+1 + Vo,énfl
2t ’ 2 2t ’ 2 2t ’ 2

B pLH_] ,0,’}_1 n+l 4 UE pg+l _ pg 1 n+1 + Ugn 1
= ; : . (4.31)
2T 2 2t 2

11
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Taking ¢ = (ef; ' + e}y ')/2 in (4.27), we obtain

1t ey ey
& Ew T, +—*
4r(|| 1> = lleyy '1%) = 4 5
1 un+1 _ un 1 n+l + 8
+ — [ Hu®)A——F — H(u(t,))ue(t e ) 432
2<(N) 5 (u(tn)ue(tn), > (4.32)
Combining (4.30), (4.31) and (4.32), we have
CTn+1 _ Un—] 2 ,3 _ B
| e — eI + (||a”“|| = lloy M%) + (||g"+1 1% = llew ' 1%)
n+1 n—1 n+1 _ _n—1 n+1 _ _n—1 "‘H + -1 n+1 _ -n—1
— Pu Py Oy Oy S Ou Ou _ p 9y 9y
2T ’ 2T v 2T 2 ’ 2T
B T” O.Lrl1+l _O.L?—l N VTH VGL7+] _ VO'LT_l 3 ﬂ n+1 +pn 1 ULT+1 _ U&l—l
2 2t 2 2T 2 ’ 2T
n+1 _ —n—1 WH-H +W"—1 n+1 _ _n-—1
- B <T3n’ %) _ (H(u;\‘,)NZN — H(u(t))W(ty), %
- (psﬂ o ot +a;‘) (pz“ o ottt ol ) (Tn ! el )
2T ’ 2 2T ’ 2 4 2
1 un-H un—] n+l +8
+ 3 (H(UN)NZtN — H(u(t,))u(ty), % . (4.33)
Now, we estimate each term at the right hand side of (4.33).
_ 12
A R At WO I ool 3
27 2T 16 2T
o1 _ gn-1 1 | on*! — gn-1 2
_ Tn7 u u < 4|T 4+ — u u
( ! 2T ) I 16 2T
1 O.n+1 _ O.n—l 2
4 u u
||u||W3 1000, T; Hk(.Q)) + ﬁ 21_ ) (435)
n+1 _ _ 2
_ + ’OE , UL]lH—] — ULT ! < CN 2k + l 05+1 _ O"f 1 , (4.36)
2 2T 16 2T
o+l _ gn-1 1 n+1 _ on—1 2
_ T", u u <4 Tn 4+ — u u
( 2 2t ) I3 16 2t
1 o.n+l _ O.n—l 2
2 4 u u
S ||$“W2,OO(O.T;HI(+2(Q))T + E 27 5 (437)
opr Yout = Vou | ot o
2 27 - 2 27
1 n+1 __ an—l 2
<A4|AT}? + — ||~ u
Il I* 16 7
1 O.n+] _ O_n—l 2
2 4
S ||S||W2,DO(O.T;HI(+2(Q))T + E 4 27,' = ) (438)
_ )
_p (AT A e gy L e el (4.39)
2 2T 16 2T

12
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o+l _ gn-1 1 n+l _ gn-1 2
_ Tﬂ, u u < 4 T u u
ﬁ(ng ) FITSIP + 25 =
1 || g+l — gn-1 2
2 2 4 u u
5 ,3 ”u”WZ.oo(O'T;Hk(Q))‘C + E 21_ ) (440)
2
p3+1 p:}i] n+l +ng 1 _ 1 ,0,_',]+1 plr}q 2 n+1 +G
, <<\l *+2|———
2T 2 8 2T 2
< ONH 4 [lof TP + Nl (4.41)
12 2
,0;+1 _pg 1 n+l +0'§ 1 pg+l pg 1 n+l +O'$
, <\l +2|———
2T 2 8 2T 2
< N4 lo 1P + ol (4.42)
8n+l -I—Sn_l 1 1 n+1 +8
T8 W W )< ITI + = W 4.43
( 4 5 < 2|| 2+ 5 > (4.43)
<= ||W||W3 ko (||e"+1|| + Il 112). (4.44)
(0,T;H (-Q)) w
Since F(u) > —%, we can choose D > %(e + B)? such that «/F(u) + D > € + . Thus, we have
H)| = < > —(e+ B 4.45
IH(w)I| H F(u)—i—D’_e—}—ﬂ” (€ + Blull (4.45)
1
=< 7(”””300(&1-:,_2(9)) + (6 + ﬂ)”u”LN(O,T;LZ(Q))) = C. (4'46)
e+ B
Using (4.18), we also have
1 1
H < —(e4+ Bl < —— (It |? + (e + Bl < C. 4.47
I[H (up)Il Jrﬂll( N = (e + Byl €Jrﬁ(ll N7+ (e + Blluylh) (4.47)
Applying Lemma 3.1, we have
IH(uRy) = Hu(t) < Colluy — utta)ll < Colllory | + llog 1)- (4.48)
Since
Wn+1 + Wn—]
H(Uﬁ)% — H(u(t))W(ty)
witt 4wt W(t, W(t,—
:H(u?\,) N ‘;‘ N —H(uﬁ) (n+l)‘; (nl)
W(t, Wi(t,— W(t, W(t,—
+ H(U;ZJ) (n+l)‘; (n 1) —H(u(tn)) (n+1)‘£ (n 1)
W(t + W(t,—
+ He) ) wie
n+l
+ &) W(t + W(t,—
= Hop 2 W (HO) — Hugey)) ) ) | oy,
we have
Wn+1 Wn 1 n+1 _ -n—1
(H w2 EI pwie), 2
2T
(H n+1 +8" 1’ oMt — 0&11>
2T
W(t + W(t._ on—H _ on—l O.n+1 _ O.n—l
+ ) (u(tn))) ( n+1) ( n 1)’ u u + H(u(tn))TS”, “u o Cu
2 2t 2T
= I] + Iz + 13. (449)

13
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Using (4.45)-(4.48), we have the following estimates:

1 2

n+1+8(/zv1 2 1
16

2

n+1 n—1
9y — Oy

I < 8|Hu)I? >

n+1 _ -n—1 2
1 |o o,

u

16 2t

(tn+1) + W(tn71) 2
2

&1+1 _ G;—]
2t

Gn+] _anl

u u

2T

< Clley 1% + ey " 1%) +

n+1 _ n—1|2
GU

27

1

16

Oy

I < 8|H(uy) — H(u(t)II?

2
O,

< Clloll + llofl)* +

16
2

1
< ClloM? + N~ + T

n+1 n—1 2
u — 0y

2T

n+1
Uu

2T

1
I < 8| H(u(t))IITS 1 t16

n—12

1 — oy

= C||W||W2 00(0,T; Hk _Q))t + 1

Combining (4.49)-(4.52), we get

Wn+1 + Wn—l otl _ gn-1
(H( N)% — Hu(t))W(tn), =———

2
+ Clllew M 1% + ey 12 + lloy 1)

1 n+1 _ CTl?—]
< —
4 27

+ CIWI;

Oy

2%
W2.09(0,T; Hk .(2))T +CNT

Similarly, since

n+1 n—1
Uy u

TN — H(u(ty))ue(ty)

uptt — et Hyu(tyyq) — Hvu(ty—1) TIyu(tng1) — Hyu(t,—q)

H(un)

= H(uy)

— H(uy H(u},
2T (uy) 2T + H(uy) 2T

B H(umu(fnﬂ)z—tu(fnfl) _{_H(umu(fnﬂ)z—ru(fnq) B H(u(tn))u(tnﬂ)z—tu(tnq)
U(tn1) — u(tn—1)

+ H(u(t))—————— — H(u(ta))us(tn)

O,n+l _ O_n—l pn+l pn—1 Ll(t ]) _ U(t 71)
— H(y" )= u H(u™ )2 u n n+ n
(uy) 2t - Hiu) 2t N 2t

+ H(u(t,))T7,

we have

2T 2

n+1 n—1 Tl+1 n+1 n—1 n+]
- + ¢y 1 + &y
Haup) 2% W + o (2P i
2T 2 2 2T 2

n+1 n—1 n+1
;<m%f”lm—mmmmm)+%’>

1 n U(tny1) — u(tn—1) ¢ n+1 + EW
+2<mwm—kum el w2

1 8"}\,“ + ey
+3 (H( (¢ ))T1,2>

=Lh+Lh+]+]a

14
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Using (4.45)-(4.48), we have the following estimates:

2

2
n+1 n—1 n+1 n—1
+¢ 1 |o — 0
< |[H(u" 2 w o u u
Ji < IIHu)ll 5 16 77
" n+1 _ gn-1 2
< C(|lefy) el RELEE— 455
Ulew 1% + ey '1%) + 16 ‘ > (4.55)
2
1 pn+1 pn 1 1 n+l +8
< —||H(u™ u u _ W
L= 4|| (uy)I? > +t3 5
< CN7X - Clleg M 1% + ey 1), (4.56)
1 Utagr) —u(ta 1) > 1 ||eb! 4+ el
< —|IH(uy) — H(u(t, _ - W
L= 4|| (uf) — H(u(ta))II? 7 2 5
< Cllog 1> + oy 1*) + Clley 11> + llew 1%
< Cllay 1 + e M 1% + llepy, '1%) + CN 72, (457)
2
1 1 n+1 +£n 1
< CUHENPIT? - = w
Ja = JIHE)IPIT]IP + 5 | =
< C”u”W:ioo(OTHk(_Q T +C(||8n+]|| + ” ” ) (4'58)
Combining (4.54)-(4.58), we get
un+l _ un—l n+1 + Sn 1
Hub) NN H(u(t)u.(t, fw_Tfw
( (uy) e (u(tn))ue(tn), 5
1 o+t — gn—1 2
< u u C £n+1 8
=35 e + CClle M 1% + Ny ' 1% + o 11?)
+ Cllull? 0 OT:HK2) 4 4 CN 72, (4.59)
Substituting (4.34)-(4.43), (4.53) and (4.59) into (4.33), we get
1 O,n-H _ O,n—] 2 /3 3 3
7l R T IR A el L DR (||a"“|| — o711 + (||s"+‘|| — e 1)
< CN™ 2 + C(”“”wS °°(0T Hk (£22) + ”S”WZ °0(0,T; Hk+2(9 + ||W||W3 ,00(0,T; Hk(.Q))) 4
+ CUSE I + 1o~ 1 + e 1P+ Hlew 1P + llog 1) (4.60)
Multiplying (4.60) by 7, dropping some nonnegative terms, summing n from0to [ (0 < <K — 1), we get
I
B 1
LIl I17 + oI+ 112 < Ce S oI + o™ 17 + o ™I + el 17 + el 1) (461)
n=0
+ CTN_Zk + C(||u||w3 109(0,T; Hk(.Q + ||‘§||W2 :09(0,T; Hk+2(9 + ||W||W3 109(0,T; Hk(Q))) 4 (462)
+ llog I + o 11 + llew 1. (4.63)
Applying the same approach to the initialization step (2.8)-(2.11) and noting that GL? = aso = 0‘2,=0, we have
llog 17+ Nl 17 + llew 1> < CTNT2 4 CUIUI 5000 rapigy + 1 ivzcoo rasrziay F W Ihsco rupiay) T (464)

Combining (4.61) and (4.64) and using the discrete Gronwall’s inequality, we obtain
o™ 1% + o 1 + ey 12 < ONT2 4 CUIUIG 3 000, 1uptky + 18 Iiy2.og0 sz + IW lysoego,rasikay )T

In addition, because ||u’N —u(t)|l < ||au|| + ||,ou||, ||“;‘N — &) < ||ag|| + ||Pg | and (4.8), we get the desired result. O
5. Numerical experiments

In this section, we give numerical experiments for the SH equation to verify the accuracy and energy stability of the
proposed scheme.

15
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Table 1

The errors and rate of convergence at T = 10 for the phase variable
u that are computed by the Leapfrog scheme, using different time
step sizes and N = 256. The physical parameter is € = 0.025.

T L% error Rate
1/16 6.5927e—03 4.64
1/32 1.0632e—03 2.63
1/64 2.5910e—04 2.04
1/128 6.4808e—05 2.00
1/256 1.6206e—05 2.00
1/512 4.0519e—06 2.00
1/1024 1.0130e—06 2.00
1
3 —>—7 =25 10
—8—17 =20
7=10
——r=3
T=2
T=1
2} g e TR 107
—_
% 2
— — -3
o 1 107
q 3]
€3] k A
ot = 107k
_1 y y y y 107 1 ‘2 3
0 20 40 60 80 100 10 10 10
Time Spectral order N
(a) Evolution of the energy with different time step size (b) Spatial L2 errors

Fig. 1. (a) Evolution of the energy with different time step size of r=0.01, 0.1, 1, 2, 5, 10, 20, 25 using the Leapfrog scheme, where € = 0.025. (b)
The spatial L? errors.

5.1. Accuracy test

We first test the convergence rate of the proposed scheme. The parameter is € = 0.025, 8 = 1, D = 50. Because it is
difficult to obtain the analytical solution for SH equation, We add a suitable source term such that the exact solution is

27 %) cos( 2w )

64 647

Set the computational domain to be £2 = [0, 128] x [0, 128]. We set N = 256 so that the spatial discretization errors are
negligible compared with the time discretization errors. In Table 1, we show the L? errors of the phase variable between
the analytical solution and numerical solution with different time step sizes at T = 10. From Table 1, we can observe that
the scheme gives desired rate of accuracy in time. The spatial L? errors are plotted in Fig. 1(b).

u(x, y, t) = cos(t) sin(

5.2. Energy stability test

In this subsection, we consider the smooth initial condition (5.1) to verify the energy stability of our scheme.

B B r(x—12) wly—1) o X o (Y —6)
u(x,y, 0) =0.07 — 0.02 cos( 6 ) sin( 6 ) —0.01sin*( 3 )sin (78 )
, m(x+10) 5 w(y+3)
+ 0.02 cos“( 32 ) cos“( 32 ). (5.1)

The parameters are € = 0.025, 8 = 1, D =50, T = 100, N = 64 and 2 = [0, 32]°. In Fig. 1(a), we present the evolution
of the discrete energy with different time step sizes of ¢ = 0.01, 0.1, 1, 2, 5, 10, 20, 25 using the Leapfrog scheme. We see
that the energy is nonincreasing, which validates that our scheme satisfies the unconditional energy stability.

Remark 5.1. The energy in Fig. 1(a) goes below 0, since for any constant C,

6 E(u)

2 % (Ew) + ),
Su

ut = = ——
ou

16
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Fig. 2. The evolution of the phase transition behavior in 2D with u = —0.2. Snapshots of the numerical approximation of the density field u are
taken at t = 0, 60, 180, 720, 1200, 1500, 2220, 2460, 3000. The computational domain is [—30, 30]?. The parameters are ¢ = 0.025, T = 3000,
N = 128, the time step is t = 1.

the SH equation can be derived from any free energy functional E(u) + C, you can choose an appropriate constant C to
make the energy nonnegative.

5.3. Phase transition behaviors

In this subsection, we apply the Leapfrog scheme to check the evolution from a randomly perturbed non-equilibrium
state to a steady state.

5.3.1. 2D case

With the initial condition u® = i+rand, where i = —0.2 and rand is a randomly chosen number between —0.4 and
0.4 at the grid points, we set N = 128 to discrete the 2D space on the computational domain of [—30, 30]2. Let the time
step be T = 1 and the parameter be ¢ = 0.025, 8 = 1, D = 50. Fig. 2 shows the time evolution of the phase transition
behavior, which validates that our scheme does lead to the expected states. Fig. 4(a) shows the energy evolution with the
random initial condition.

5.3.2. 3D case
With the initial condition u® = u+rand, where & = —0.2 and rand is a randomly chosen number between —0.4 and
0.4 at the grid points, we set N = 40 to discrete the 3D space on the computational domain of [—10, 10]3. Let the time

17
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(j) t=996 (k) t=1020 (1) t=1200

Fig. 3. The evolution of the phase transition behavior in 3D with u = —0.2. Snapshots of the numerical approximation of the density field u are
taken at t = 0, 12, 36, 60, 108, 144, 228, 600, 900, 996, 1020, 1200. The computational domain is [—10, 10]3. The parameters are € = 0.5, T = 1200,
N = 40, the time step is t = 1.

7000 T T T T T 1400 T T T T T
6000 |- J 1200 | 4
000l | 1000} 1
800 1
4000 1
600 - B
3000 1
400} ]
2000 |
200 1
1000 : : : : 1
0 |
or -200 \\ E
1000 ; ; ; ; ; 400 ; ; ; ; ;
) 500 1000 1500 2000 2500 3000 0 200 400 600 800 1000 1200
(a) 2D (b) 3D

Fig. 4. Evolution of the energy with the random initial condition.

step be r = 1 and the parameter be ¢ = 0.5, 8 = 1, D = 50. Fig. 3 shows the time evolution of the phase transition
behavior, which validates that our scheme does lead to the expected states. Fig. 4(b) shows the energy evolution with the
random initial condition.
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6. Conclusions

In this paper, we propose and analyze a second-order linear energy-stable Leapfrog scheme for the SH equation. We
prove rigorously that the scheme satisfies the energy dissipation property and derive the error estimate. Numerical tests
are given to show the accuracy and energy stability of the proposed scheme.
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