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1. Introduction

In this work, we consider the following modified phase field crystal (MPFC) equation
U + Buy = MA((1+ AYu+f(u)), in £2 x (0, T, (1.1)
with the following initial conditions:
Ule=o = Uo(X), Ul = Yo(X), X € £2, (1.2)

where £ is a domain in R? (d = 1,2, 3), f(u) = u®> — eu, u is the atomic density field function, M > 0 is the mobility
constant, € (0 < € < 1) is a positive constant with physical significance, 8 > 0 is a constant. Here we study the numerical
schemes for the MPFC equation with periodic boundary condition since that is used very frequently in numerical or
analytical works of the MPFC equation. If 2 = [0, L] x [0, L,] (Lx and L, are two positive constants), the periodic boundary
condition means

u(x+ Ly, y, t) =ux,y, t), ulx,y+L,t)=ulxyt), V(xy)e, t>0.

While the periodic boundary condition is assumed herein, the theory and numerical analysis to follow also hold for the
homogeneous Neumann boundary condition.

In [1,2] Elder and Grant proposed the phase field crystal (PFC) equation as a continuum model to study the dynamics
of atomic-scale crystal growth on diffusive time scales. But the PFC equation does not contain a mechanism to simulating
elastic interactions since it only evolves on diffusive time scales and it fails to distinguish between the diffusion time
scales and elastic relaxation. To overcome the major disadvantage of the PFC model, Stefanovic et al. [3,4] introduced the
modified phase field crystal (MPFC) model. The MPFC model includes both elastic interactions and diffusive dynamics,
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hence when the length scale is the same as the size of the system, the separation of the elastic relaxation and diffusion
time scales can be observed. Compared with the PFC equation, there is a wave operator for elastic interaction in the MPFC
equation, therefore the form of the MPFC equation is more complicated and it is more difficult to develop time-stepping
schemes for the MPFC equation.

Numerical methods about the MPFC model has been studied by many researchers. In [4], Stefanovic et al. proposed
a semi-implicit scheme based on finite difference method, they solved the resulting algebraic equations by multigrid
algorithm, but they did not give the analysis about energy stability, unique solvability and error estimate about their
algorithm. In [5], based on convex splitting method, Wang and Wise designed an energy-stable first-order nonlinear finite
difference scheme for the MPFC model. In [6], Baskaran et al. designed first- and second-order unconditionally energy-
stable nonlinear finite difference methods for the MPFC equation based on convex splitting scheme and they provided
the convergence analysis for their second-order scheme in [7]. In [8], Lee et al. presented first-and second-order schemes
for the MPFC equation based on an appropriate splitting of the energy for the PFC equation, Fourier spectral method
was used for spatial discretization, moreover, they show their algorithms were unconditionally stable with respect to
the energy and pseudo energy of the MPFC equation. In [9], Dehghan and Mohammadi proposed a semi-implicit scheme
based on meshless methods for PFC and MPFC models. In [10], Grasselli and Pierre proposed a space semi-discrete and a
fully discrete finite element scheme for the MPFC equation and their algorithm was convergent and energy-stable. In [11],
Guo and Xu designed a high-order adaptive time-stepping method and local discontinuous Galerkin method for the MPFC
equation. Other than the MPFC model, the square phase field crystal (SPFC) model has also attracted great attentions in
the study of crystal dynamics. There has been some numerical works on the SPFC model and the energy stability and
convergence estimate have been theoretically justified, such as [12-15]. Although quite a number of algorithms have
been designed to solve the MPFC equation, most of them were based on convex splitting approach and were therefore
nonlinear, it is generally complicated to implement nonlinear algorithm and the computational costs are expensive. Hence,
linear schemes are desirable for the MPFC model.

Recent years, invariant energy quadratization (IEQ) scheme [16-20] and scalar auxiliary variable (SAV) scheme
[21-23] are proposed and enable one to design unconditionally energy-stable, linear, symmetric positive definite schemes
for various kinds of gradient flow problems. These approaches satisfy unconditional energy stability based on a modified
energy functional and the stability of the original energy is not guaranteed. This problem has been partially addressed
in [24,25]. In [26], adopting the IEQ scheme, Li et al. proposed three temporal discretization schemes based on the
first-order backward Euler, the second-order Crank-Nicolson scheme and the second-order backward difference scheme,
respectively, but they did not give the error analysis about their algorithm. There have been a few error estimate works
for the second-order SAV numerical schemes, such as [27] for the thin film epitaxial equation and [13] for the square
phase field crystal equation. Due to the nonlinear hyperbolic properties of the MPFC model, error analysis is a challenging
work. As far as we know, first- and second-order error analysis for any linear schemes for the MPFC equation are lacking
in the existing literature.

In this work, we design first- and second-order unconditionally energy-stable linear schemes based on the SAV
approach and derive a rigorous error estimates for our schemes. We adopt the first-order backward Euler and Crank-
Nicolson schemes for temporal discretization and prove they satisfy unconditional energy dissipation law with respect
to pseudo energy. We also present the second-order fully discrete Crank-Nicolson scheme based on the block-centered
finite difference method and its convergence analysis. In the end, several numerical experiments are given to validate the
unconditional energy stability and convergence of our algorithms.

The rest of the paper is organized as follows. In Section 2, we present the governing equation for the MPFC model and
give the mass conservation and energy dissipation law in the continuous case. In Section 3, we construct a first-order SAV
scheme based on the backward Euler scheme and prove it is unconditionally energy-stable with respect to the pseudo
energy, and we derive the error estimate for this scheme. In Section 4, we construct a second-order SAV scheme based
on the Crank-Nicolson scheme and prove it is unconditionally energy-stable with respect to the pseudo energy, and we
derive the error estimate for this scheme. In Section 5, based on the block-centered finite difference method, we present
the second-order fully discrete Crank-Nicolson scheme and its convergence analysis. In Section 6, several numerical tests
are carried out to verify the theoretical results. We conclude this paper in Section 7.

We introduce some notations which will be used in the analysis. We denote the spaces [P(£2) associated with the [P
norm |[ul| = ([, lu(x)[’dx)"/?. We also introduce the space L°(£2) with [|v]|;c = Sup,cg [v(x)]. W*P(£2) stands for the
standard Sobolev spaces equipped with the standard Sobolev norms || - || p. For p = 2, we write H*(£2) for Wk2(§2) and
the corresponding norm is || - ||x. The space W*P(0, T; V) represents the W*P space on the interval (0, T) with values in
the function space V. We denote by (-, -) the inner product in L? and || - || the norm in 2.

2. Mass conservation and energy dissipation for the MPFC model

We consider the following free energy functional

u) = / 1u(l + AYu + F(u)dx, (2.1)
Q 2
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and introducing the following chemical potential u

8
no= 88 (1+ APu+ f(u), (2.2)
u

where (;S—u denotes the variational derivative, F(u) = %u“ — %uz and f(u) = F'(u). Thus, the MPFC equation can be rewritten

as follows
Uy + Bur = MAp, in £ x (0, T]. (2.3)

By setting f o Ut(x, 0)dx = 0 and integrating (2.3) over £2 with the periodic boundary value condition for x1, we see that

—/utxtdx—i—ﬂ/u[xtdx_M/ Vi -nds =0, (2.4)

where n is the unit outward normal vector on the boundary d£2, (2.4) implies that

/ uy(x, t)dx = e‘ﬂf/ uy(x, 0)dx = 0,
2 2

and we obtain the mass conservation

/ ue(x, t)dx:/ U (x, t)dx = 0. (2.5)
2 2
We define the inverse Laplace operator A~! such that w = A~1¢ (with fg ¢dx = 0) if and only if

Aw = ¢, / wdx =0,
with the periodic boundary condition for w. With this notation, we can define the Hper inner product and norm by

(@, 9)-1:=(VAT'$, VAT ), 8|2, :=(VAT'$,VA~l9),

where (-, -) is the standard L? inner product.
We can see from [26] that the MPFC equation satisfies the following energy dissipation law

d,
af(u) = —gllufllz_1 <0, (2.6)

where the pseudo energy £(u) is defined by

_ [ (1! 2 e
5(u)_/9<2u(1+A) u—l—F(u)) A+ oo el (2.7)

Let N > 0 be any positive integer and set
t=T/N, t,=nt, forn <N,

let " be the numerical approximation of ¢(t,).
3. The stability and error analysis of the first-order SAV scheme

In this section, we develop a semi-discrete time-stepping numerical scheme to solve the MPFC equation based on the
SAV method, and then we prove the scheme is energy-stable. First, we assume that for any u,

E(u) =/ F(u)dx > —d,.
Q

Let Dy > dp such that E(u) + Do > 0. In the approach, we introduce two auxiliary functions as follows,

r(t) = VEW)+ Do, ¥ =u,.

Obviously, we have f o Ydx = f o Yrdx =0 from (2.5). Now, we obtain an equivalent PDE system as follows:

Ve + By =MAL, (3.1)
_ 2 r(t)
=(1+AYu+ E(u)+D0f(u), (3.2)

1
nziﬁﬁﬁiLﬂWM&
w = U¢. (34)
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The initial conditions are

Uli—o = Uy, Vl=0 =0, rli—0 = +/E(up)+ Do, (3.5)

where we set the initial profile of ¢ to be zero point-wise for simplicity.
The new transformed system (3.1)-(3.4) still satisfies an energy dissipation law. By applying A~! to (3.1) and taking
the L? inner product of it with “‘ , of (3.2) with u,, of (3.3) with 2r, using (3.4) and

BAT Y. )= =Bl (AW, ¥) = —ianwu 1
and summing them up, we can get the energy dissipation law of the new PDE system (3.1)-(3.4) as follows

d B

a’zu!rv ¢)= _M||W||2_1 =< 0’ (36)
where

?(u,r,w)zf (%u(1+A) )dX+r —D0+7||1//|| 1
2

We design the first-order scheme based on the backward Euler method as follows,

wn+l wn n+1 __ n+1
- + By =MAuT, (3.7)
+1 2. 41 i
=01+ A)u" —f(u"), 3.8
P = (1 AP e ) (38)
1
S o — ] (TU W TU L L 3.9
N O T ) (39)
; un+1 —uyn
- 3.10
14 " (3.10)
From (3.7)-(3.9), we can obtain
wn+l 1//" i1 < ) ; rn
+BYTT = MA((1+ AU+ —————f(u")
T VE™) + Dg
fum) ny ,n+l n
By applying (3.10) and denoting
fu")
"=, 3.12
A/ E(u”) + Do ( )
(3.11) can be rewritten as
2
M
(14 Br—MA(1 + AP ™! — TTAa“(a”, sl
2
M
— (14 B 4+ ty" + M Ad" — %Aa”(a", "y = ", (3.13)

First, we calculate (a”, u™') from (3.13). Let T™' := (1+ 87 — t2MA(1+ A)?)~!, multiplying (3.13) with T~!, then taking
the L? inner product of it with a", we have
2
M
(a",u"“)—i—TTQ”(a",unH):(a",T_lh") (314)

where
O" = —(a", T"'Ad") > 0,
since —T~!A is a positive definite operator. Then, from (3.14), we obtain that
(@", T~1h")
1 4 Mot 21\/19" :

(aﬂ , un+1

Thus, we can obtain u™! and ™! from (3.10) and (3.13), respectively.
The following theorem implies that the first-order scheme (3.7)-(3.10) is energy-stable.

4
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Theorem 3.1. The scheme (3.7)-(3.10) satisfies unconditional energy dissipation law, that is, forn < N,
é(urH—l’ rn+1, 1//_114-1) < é(un, rn’ wn)’

and then, we have the following boundedness

1 1 1 1
max (=[|(1 4+ ™2 + (r™)? + —|[¥"™12,) < =11(1 + 2A0°|12 + (0 + — ||[v°)12,. 3.15
0§n§>§v(2ll( + A=+ (") +2Mlll/f 1<) < 2||( + A|E + () +2M|IW [ (3.15)

Proof. Combining (3.7)-(3.8) together and applying A~!, we obtain
11 n 1, n+1 2 nt1 Mrm n
—A” — A” =M1+ A)u —f(u"). 3.16
. (¥ v+ BAT Y (1+4) +E(un)+D0f( ) (3.16)
Taking the [? inner product of (3.16) with u"™*! — u", we derive

%(A—l(wn+1 _ wn)’ un+l _ un)‘f‘ﬁ(A_]er—l, uTl+1 _ un)

M
= E(II(l + AP = I+ AP+ 1+ AT —ut))?)
rn+1 n n+1 n

Taking the L? inner product of (3.9) with 2r"™*!, we have

nH1N2 _ ny2 nHl o2 ri ny g+l _
)y ="+ (r )y = 7E(u")+DOU(u ) u u"). (3.18)

From (3.10), we have

%(A71(wn+1 _ wn), un+1 _ un) — (A7](1/IH+] _ 1//11)7 er»])

— _(VAfl(wTH»] _ I)011)’ VA*lle»l)
1
= —5(||W"+1||31 — Y™+ ™ =y, (3.19)
and
,B(Ail'(p, un+1 _ un) — ﬁT(A71¢n+1, wlﬂ»l)
— —ﬂT(VA_ller—l, VA_ll//n+1)
= =By, (3.20)
In the end, we combine (3.17)-(3.20) and obtain
1 M
5(||1/f"+1||2_1 — Iy ™ =R ) + 5(”(1 + AP = I+ AP I+ A —ut))?)
+ M((rrH—l)Z _ (rn)z + (rn+l _ rn)Z) — _ﬂt||wn+l”27] < 0.

Dividing both sides of the above equation by M and dropping some positive terms, we obtain the desired energy
dissipation law and boundedness. O

Remark 3.1. There are many pioneering works about energy stability for the PFC model, the reader can refer to [28], [29]
for details.

In this work, we assume that the initial data satisfies the following stability:

o 1 1

E, 1%, y°) = §||(1 + AW+ (%Y — Do + muw"ni] < Go. (3.21)
We now establish the uniform in time H? bound of the numerical solution u" of the scheme (3.7)-(3.10).

Theorem 3.2. Let u™ be the solution of the scheme (3.7)-(3.10), there exists a positive constant C such that

uly2 < C.
Proof. Using the Holder’s inequality, we have
1 1
W12 < mllu® 1% + ——121, [Ve"|? < pllAu"|? + — u" |,
4m 4

5
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for any 1y, n, > 0, where |§2]| is the measure of the domain £2. Taking n, = %, N2

A 1 1
£ n, n, m = Z|(1 A n2 n2_D ny2
(W' " Yty = I+ AP+ (7 = Do+ o 91

%

1
SIu"ll? = vu"|? +

1 1 €
AW+ S = S )

2 2
1 1 3
= U2+ IV + 1Au"?) + i + Sl Au?
9 3 —4e
— Zyvu" 2 4+ = ut 2
gVl g Il
1 1 3 9 /1 3
>7un2 7un4 7Aun2_7 7Aun2 7un2
Z gl + 2wl + gl AWTIT = o { SHAUT" + 2wl
3—4e
+ 3 ™)

8 4

8 4

8
1
S 10" — 121,

v

in the last inequality, we used the fact that

1 1 15+16e

1 1
2 4
> 2, + " -

1 1
= Sl + Il = 5

1 27— 16¢
- >0

4 4 32 4 32

1 1 3—4e¢ 27
= _llu"lIFs + S llutl + ( - 3*2> lu"I?

8

15+ 16€ [ 1
— (Znu"n;ﬁ; + |9|)
1 15+ 16€ 15 + 16¢

e - ——— 12|
4 32 32

15 + 16¢
, —— <1

32

Applying Theorem 3.1 and the initial data assumption (3.21), we have
"2, < 88", 1", ™) + 812 < 88w, °, y°) + 8|2] < 8(Cy + | 2)).
Let C = /8(Co + |£2]), we obtain the desired result. O

We now give the error analysis for the first-order scheme (3.7)-(3.10). First, we formulate a truncation form for the

MPFC system (3.7)-(3.10) as follows:

1/f(tn+l) - w(tn)
T

Wltns1) = (14 AP u(tnr) +

r(ther) — 1(ty) =

+ BY(tast) = MA(trar) + G,

r(tn+l)
E(u(tn)) + Do

2VE(u(ty) + Do)

f(u(ty)) + G,

(F(u(ta)), u(tnir) — u(ta)) + TG,

u(tn+l) - u(tn)

Y(tny1) = . +Gt,
where
oyt = M) =)y
f(u(tnsq))

GZ+1 == r(tn+]) <

r(tn+1) - r(tn)

n+1 _
Gl =
T

f(u(tn)) )

VEW(t1) + Do E(u(ta)) + Do

~ riltsr) — Fu(tnt1)) <U(fn+1) — u(ty)
2 Jo ~Eu(tnt1)) + Do T
lf ( Fu(tni1))  f(u(t) ) U(tny1) — U(tn)dx
2 Jo \WEu(ta1)) +Do  /E(u(t;)) + Do T '

GZH = U(tys1) — .

U(tny1) — u(tn)

we have the following estimate

(3.22)

(3.23)
(3.24)

(3.25)

- Ur(fn+1)> dx

To give the error estimate, we assume that the analytic solution of the system (3.1)-(3.4) satisfies the following
regularity conditions. The reader can refer to [30] about the global smooth solutions of the MPFC equation.

¢ €10, T; HY(2)) N L®(0, T; Wh®(2)),

(3.26)
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Ce, & € LP(0, T; HA(2)) N L°(0, T; L®(2)), Cue € L*(0, T; H'(£2)), (3.27)

where ¢ = v, u, u, r. Let u < v denote there is a positive constant C that is independent on t and n such that u < Cv.
By Taylor expansion, we can easily derive the following estimates for the truncation errors.

Lemma 3.1. Under the regularity assumption (3.26) and (3.27), the truncation errors satisfy

N-1
(G2 + IG I + 1G4+ G 1%) < 2. (3.28)
=0

n

Proof. Using (3.26)-(3.27) and Theorem 4.1 in [23], we can get r;; € L?(0, T; L?(£2)). Then we can easily derive the desired
result. O

We define the error functions forn =0,1,2,...,N as
ey = u(ty) —u", e, = u(ta) — n", ef =r(ta) — 1", €y, = Y(tz) — Y". (3.29)
Subtracting (3.7)-(3.10) from (3.22)-(3.25), respectively, we get the following error equations for n > 0,
en+1 _et
Ly gent! = MAeMt! + G, (3.30)
T
ol — (1+ A)zen-H 4 gt flu (tn)) flu)
g ! VE@(@&) + Do EW") + Do
en+1 ;
+ ——L——f(u(ty)) + G, (3.31)
Eu(t)+Do "
t u"
PTG (C ( n)) (U P,
2/E(u(ty)) + Do 2\/E(u")+D0
1
+————(f(u"), e —el) + TG, 3.32
5 E(u")+D0(f( ). ertl — el + 7Gl! (3.32)
en+1 —en
ez]}/—H u u +GZ+1- (3.33)
T

We derive error analysis of the first-order SAV scheme by applying a mathematical induction on ||u"||;~ and the norm
is used to control the nonlinear terms in the equations.

Theorem 3.3. Under the regularity assumption (3.26) and (3.27) and let (y", u™, u", r™) be the solutions of (3.7)-(3.10), we
have the error estimate as follow

lel ||+( Zue”“n 1) ST (3.34)

Proof. We apply A~! to (3.30) and take the L? inner product with re'l}/“, using (3.31) and (3.33), we have
Bt

1
o 1€ 120 = el 12y + Nel™ — €l I2,) + T llel ™I,
1
E(II(1 + A)ep PP = [1(1+ A)ep 1>+ 1(1+ A)ey™ —el®)
__ L( SIGHHT g1y _ ety f(u (tn)) fw") Pt
Mo VE(6:)+ Do VEW)+D; !
en+1
-1 (mﬂu(rn)) ':;1) — (14 AP, Gt — o(GH el ). (3.35)
Taking the L? inner product of (3.32) with 2«3;”rl and applying (3.33), we have
f(U(tn)) fu")
en+12_en2+en+1_en2:en+l Jult —u(t
et — e+ e — el = et | e — e Ut — ()
F2eM G 4 ‘[L(f(un), e”“) e, Gy, (3.36)
E(u™) + Do v E(u™) + Do

7
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Combining (3.35) and (3.36), we get

2 2 BT
(IIE”“II y— ey 4 llelt — el 12 ) + lef — e} + lef™ — €| + |Ie"+1|| 1
+ 5<||(1 + e P =10+ el + 10+ AXey™ = elP) =+,
where
2 n+1 ntl ert! +1 +, +1 +1_nt1
= —t((1+ Ay, ) — 1 —L——(f(u"), G") — (G, € +2e/ G}
Ji ( Ye,£ L, G) E(u")—}—Do(f( )G ) — (G, )
T a=1p/n+1 et
— aTer e,
(u(ty)) (u")
Jo =€ ( Jfulty _ A1 s U(tng1) — u(tn)
E(u(ta)) + Do E(u")+ Do
f(u(ta)) f(u")
r(tm)r< : . e
Eu(t) + Do E(u")+ Do
We now estimate J; and J,. First, we try to prove that
lu"flree < flullpooqreey + 1 (3.37)

by mathematical induction. Because u® = u(ty), (3.37) holds naturally for n = 0. Hereinafter, we derive the error estimates
of the numerical solution under the assumption that (3.37) holds for 0 < n < m, for some positive integer m. We will see
that if (3.37) is true for 0 < n < m, it is also true for n = m + 1. First of all, applying (3.37) and E(-) + Dy > 0, we get

1 1,2 1 1,2
Jo< (e % 4+ 1er T 4 el 2 + llep )

© GG G IR 4+ IGE ). (3.38)
Vf<u<rn)> iCORI E(u") — E(u(ty)
JE(6)) + D VE@) 1 Do JECa(6)) + Do)E(@) + Do)ECu(t)) + E) T 2D0)
Ve —fu "
O (3:39)

Because f(-) is Lipschitz continuous and E(-) + Dg > 0 and applying (3.26), (3.27) and (3.37), we can estimate H; and H,
as follows

IHill S IVF@hlegl < lleyll, (3.40)
and
IH2 ]l S IV (u(ta)) — fFh)Il
= |If (u(tn))Vu(ta) — V(W) Vu" — f'(u")Vu(ta) + f'(u")Vu(ts)|
S NG (En)) = /@)D Vuta)ll + I @)l | Veyll
< llegll + 11Veyll. (341)
Hence, combining (3.39),(3.40) and (3.41), using the Poincaré inequality, we obtain
‘ Vfu(t) V")
E(u(tn)) + Do E(u")+ Do
together with (3.26) and (3.27), it implies that

< Vel (3.42)

o S Tl 4 Vel + et 2 ). (3.43)
Combining (3.38) and (3.43), we get

2 Bt
(|| L2, — el 12 + Nl — el I2,) + et — fel 2 + et — e’ + B e 2
f(u(l + AP = 1+ A)eflI” + 111+ A)ep™ — eI
< (el eI+ el 2) + NG 2 4+ IGEIE + NG + 1G5 ). (3.44)

8



L. Qi and Y. Hou Journal of Computational and Applied Mathematics 417 (2023) 114579

Summing up for n from O to m and then using the Gronwall’s inequality, there is a number 7; > 0 such that provided
T < 11, we have the following estimate

1 1 2 1
(mne;’+ 12+ 1 S+ A)e?+1||2)

m
2 T
+ > (ne:;,“ — el |2+ et — T 11+ A)er T — el + %ne:z“nz_]) <Gt (3.45)
n=0
Applying the H? elliptic regularity of (3.8) and || - ||_2 < || - ||, there is a number C, > 0 which is independent of n such

that
™ o < ™+ IF@™ -+ [ly™

A—]wm«H _ A—]wm B
< H F 1A Y ™I+ ™)
AT Y(twme) — W) | | €T — €
S H e R e I (U I i R (]
-1
=G. (3.46)
From (3.26), (3.27) and (3.46), it holds that
ez < U™ iz + l[ultme)ll2 < Cs. (3.47)

Moreover, according to (3.45) and (3.47), we get

m+1 m+1

U™ e = Nley™ lloe + lNu(tmia)lloe
< Calle™ 17 1€ 13 + Nultms i
< CoV/OV/TV/Gs + ultmsn)llie (348)
in which Cg, is a positive constant depends on £2. Hence, we can find a t; > 0 (12 < 1), such that provided 7 < 15,
[u™ Ml < flu(®)lsopey + 1, (3.49)

and we complete the induction on (3.37) in the case T < 1. Hence (3.45) is true whenm =N — 1if t < 1.
In the case t > 13, according to (3.15), (3.26) and (3.27), we have

2
0meN1 (”e?f]”z_l + e T I+ A)eﬂﬁllz)

N-1
2
+ 3 (et = eh 2+l — el el 2, + T+ AXert! — eI?)
n=0

< Gy < Cy(zy )72, (3.50)

for some C4 > 0.
In the end, Combining (3.45) and (3.50), we derive for any t,

12 12 12
Cmax (s, + e 11+ A)l )

N—-1
2
+ 3 (et = b2+ lertt — el el 2 + T+ A)ert! — eDI?)
n=0

< (Ci + Caty 2)72,
which implies (3.34). O

4. The stability and error analysis of the second-order SAV scheme

In this section, we construct a second-order scheme based on Crank-Nicolson method as follows: for n > 1,

n+1 _ .n n+1 n
¥ ¥ +ﬁ¢ 2+W — MA™2, (4.1)
T
2urH»l_,’_un rn+1+rn

+
2 2VE@™) + Do

uY2 = (14 4) f@@), (42)
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o n m(ﬂﬁn)y gy, (4.3)

I/f,~.+12 Ty un+1r_ un’ (4.4)
in which

"= ;u" - %u”’l. (4.5)

Remark 4.1. Since the second-order scheme involves three time levels, it requires an initialization step. Here, (u°, ¥°, %)
is determined by the initial conditions. In order to obtain the second-order time accuracy of the main scheme, we calculate
(u', ', ') by a predictor-corrector scheme. We first predict (ii', %!, 7!) by the following first-order backward Euler
scheme

Yl —y°

——— + By =MAu,
T
=1
- r
=1+ AP + ———f")
VE®) + Do
- 1 -
F1_ 0 W) ot — uo),
2E®) + Dy
~1 0
=g —Uu
w o T

Then we use the following second-order corrector scheme to obtain (u', ¢!, r)
1 0 1 0

- +
il AR AL LTS

T 2

ul +u0 r] + TO .
12 =1+ Ay +—— ",
2 2E@u!) + Dy

r—-r = %U(ﬁl), u] _uo),
2/E(@i") + Do

2 T
From (4.1) and (4.2), we have

n+1 _ /n n+1 n n+1 n n
LAl AP e :1\/1A<(1+A)2u+ t, T f(ﬂ"))
+ Do

T 2 2 E(u™)
f@") - 1
+ MA| ———— u",u"* —u" . 4.6
(o™ ! (49
Applying (4.4) and let
n
R LC (47)
JE@) + Dy
Eq. (4.6) can be rewritten as
72 72
2+ ,BT—?MA(l + AP — X1\/1Aa”(a”, u™th
2 2
— (24 B 42ty + %MA(] + AU+ M AT — %MA&"(&”, "y = R, (4.8)
From (4.4), we have
Y = M v (4.9)
T
Let T-':=(2+ Bt — éMA(l + A))7!, applying T~ to (4.8) and then taking the inner product with a", we get
2
(@, un+1) + ."—Zen(an7 un+1) =@, Tﬁlhn), (4.10)

10
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in which
6" = —(@, T"'MAG") > 0,
because —T~ 1A is a positive definite operator. Then from (4.10), we have
R @, T-1h"
@, u" = % (4.11)
1+ 50m
Thus, we can obtain u™! and ¥"*! from (4.8) and (4.9), respectively.
The following theorem implies that the second-order scheme (4.1)-(4.5) is energy-stable.
Theorem 4.1. The scheme (4.1)-(4.5) satisfies unconditional energy dissipation law, that is, forn < T/z,
E ™y < £ 1", Y, (4.12)

and then, we have the following boundedness

1 1
max (= [|(1+ A"|* + (") + mlll/fnllz_l) =

1
= 14+ A2 02 4 192
0<n<N z” (14 A + (%) +2M||w 1%,

N —

Proof. Combining (4.1) and (4.2) together and applying A~!, we obtain

1 B u gyt ptl 4opn B
AT YT =y AT (YT 4 ") = M(1 4 A u"). 413
. (¥ v > (¥ v ( ) 5 3 E(ﬂ")+Dof( ) (4.13)
Taking the L? inner product of (4.13) with u™! — u", we obtain
1
;(Afl(wTH»] _ wn), uﬂ+1 _ uﬂ) + g(Afl(er»l + wn), un+1 _ un)
M rn+1 +rn
= — (|0 4+ Au™ )2 = ]+Au"2+M<_7 a”,u"“—u"). 414
5 (lIc = u"|[?) 3 E(u”)+D0f( ) (4.14)
Taking the L? inner product of (4.3) with r"t! 4+ 1", we have
rn+l +rn
Y — (1Y = ———(f(@"), U™ — u™). 4.15
(" = (" = e ) ) (4.15)

From (4.4), we have

1 1
;(A—l(wn+l _ wn)’ un+1 _ un) — ;(A—l(wﬂﬁ-] _ wn), %(1//?1-0—1 + Wn))
— STATI g, VAT )
1
- 5(||¢r"“||2_l — "), (4.16)
and
B, 1, nt ny ,n+l ny _ B, 1, nt ny ©oongl n
SATWM Ry u - = SAT M ), S )
- B wangr pyn vatgr 4y
By e, (417)

In the end, we combine (4.14)-(4.17) and obtain

M 1
S >+ AP =+ At ) + MM = (")) + E(Ill/f"“llz_] —Iv"I2,)

Bt
= = S R

Dividing both sides of the above equation by M and we obtain the desired energy dissipation law and boundedness. O

Now we consider the error estimates for the second-order scheme. Let ty12 = (th41 + t;)/2. We write the MPFC
system (4.1)-(4.5) as a truncation form as follows:

W(tnﬁ) - W(tn) W(tnﬁ) + 1)0(&1)
T

+8 5 = MAu(tas12) + Gy, (4.18)

11
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ty _ ~

Wtny12) = (14 AYu(tayry2) + %f (@(tn)) + G, (4.19)
_ — ; _ ~n+1

r(ty1) — 1(tn) = N Do(f( u(ty)), u(tng1) — u(ty)) + G, (4.20)

Ip(tn+1) + \/f(tn) _ u(tn-H) - u(tn) + an+1 (4 21)
2 - T v '

in which

ty) = Julty) — ey 1),

anwﬂ _ lﬂ(tm)r— v(ta) wt(tn+l/2)+ﬂw(tn+1)2+ v(ta) B (tnsay2),

G (ty12) fu(tay1/2)) fu(ty))

n "2\ 2 Eu(tir2) + Do 2vE@(E) + Do )

G+l — (tn1) — r(tn) Fetnea) — 1 / F(u(tniay2)) <u(tn+1) — u(ty) _
' T m U(tnt1/2)) + Do T
(¢

E(u
1 / ( F(u(tary2) () )u(rm)—u(rn) .
= X,
2\/5 tn+1/2 )+D0 2\/5 u +D0 T

B = gy - ) =) | Yl Ve o)

ut(tn+1/2)) dx

To prove the error estimate, we assume that the analytic solution of the system (3.7)-(3.10) satisfies the following
regularity conditions

£ €L%0, T; H(£2))NL®(0, T; WH®(£2)), (4.22)
Ce. St G € LP(0, T3 HA(2)) N L0, T; L°(82)),  Cuee € (0, T; HT'(£2)), (4.23)

where ¢ = ¥, u, u, r. By Taylor expansion, we can easily derive the following estimates for the truncation errors.

Lemma 4.1. Under the regularity assumption (4.22)-(4.23), the truncation errors satisfy, for any N < T/,
N—1
D (G52, + 0GR I3 4+ G + 16 < o (424)
n=0

Subtracting (4.1)-(4.4) from (4.18)-(4.21) and with the error functions we defined in (3.29), we get the following error
equations for n > 0,

n+1 _ ,n n+1 n
€y . ey N ey 2~|— ey :MA6Z+1/2 _i_anwﬂ’ (4.25)
n+1 n n
ez+1/2 — (-l + A)Z <u(tn+]/2) _ U(tn+1)2+ u(tn)> + (.l + A)Z <euzﬁ> + GZ_+1
(tht1/2) — (_r(tn+1)+ r(t"))/zf(ﬁ(tn))—i- r(tag1) + () ( fu(tn)) f_(ft”) )
E(u(ty)) + Do 2 VE@&) + Do E@) + Do
entl 4 en fa (4.26)
2JE@") + Dy ’ '
n+1 _ ,n f(_(tn)) f(an) _ )
T (2\/E ViD;  2vE@) D, ) T
+ m(f(ﬁ”), el _ ey 4 G, (4.27)
eyl +el _eri—el +m, (4.28)
2 T

in which we define e;""/* = u(ty11/2) — "2,

12
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Theorem 4.2. Under the regularity assumption (4.22) and (4.23) and let (¥, u", u", r") be the solution of (4.1)-(4.4), we
have the error estimate as follows

1
2
||e5||+< Z||e"+1+e;||2_l) st (4.29)

Proof. We prove the theorem by using the mathematical induction. Because (u°, ¥, r%) is given as (3.5) and we calculate
(u', !, r') by setting (u™!, v~ 1, r=1) = (u°, ¥°, r9), (3.37) holds for the case n = —1, 0. Hereinafter, we derive the error
estimates of the numerical solution under the assumption that (3.37) holds for 0 < n < m, for some positive integer m.
We will see that if (3.37) is true for 0 < n < m, it is also true forn = m+ 1.

We apply A~! to (4.25) and taking its L? inner product with —r(e"l/frl +e},), using (4.26) and (4.28), we have

n+1 /3 n+1

2
el 12y = e 12, + S-llef ! + ey,

u(t, + u(t
=—1(a7 G e el — Mt ((1+A)2(u(tn+1/2)—7( ”“)2 (")) “+1+e¢>

— M([I(1+ A)el* |2 = (1 + A)el|?) — Mt (r(t”“”) ;(E_lr((:”);:)rJ;Or(t”))/zf(a(tn)), e+ e;;,)
g Tltngn) 4 () fu(ty)) {CD . )
M 2 («/E(ﬁ(tn)) TDy <E@)+Do e Te
_ en+1 + en n n+1 n\ _ ~n+1 n+1 20 n+1 ny ~n+1
Mt (2\/U”—+Do ("), ey +e¢> Mz(G,", +ew) Mz((14 A)Y(e,™ +ey), G, ). (4.30)

Taking the L? inner product of (4.27) with 2M(e™! + ') and applying (4.28), we have

u(ts)) f@")
2Me”+12—2Me"2:2Me”+1+e f((n Ju(tyaq) — ut,
Cagl el (e s~ svEm ) — U
+ MM(]‘(&H) en+1 _ en) +2M.L.an+l(en+1 + en)
E(l_ln)—i-DO s tu u r r r
Fu(tn)) f@)
= 2M(e™! + " — s U(tgaq) — ult,
€+ e 5 fm  avrm e ) )
n+1 n+1 n
+ el _ e +e oA ~
Nm—m (@), eyt —ey) — Mrm(f(u”), Gy 4 2M TG (et 4 o). (4.31)
Combining (4.30) and (4.31), we get
n+1 /37 n+1 no2 n+12 5102
el 12y — lel 1%, + =-llel" + el 12, + 21/ " — 2lef|
+ M([I(1+ A)ej ™)) - ||(1 + A)el]?) < Ky + Kz, (4.32)
where
~ u(t, =+ u(t,
Ki=— t(A71GIH e 4 el) — M ((1 + AP (ultyirp) — R, gy e:},)

— Mt(GL el el ) — MT((1+ A (el +€f), i) + 2MzGr (el + o),

K = — Mt (T(fn+1/2) (r(ta1) + r(tn))/zf(ﬂ(tn)) n1 e¢>

E(@(E) + Do '

e re) (TG @) g )
+ M e )(2J5f( (tn))+ Do 2JE{E‘:Z;)JFDO’U(t”+]) N u(t")>
- Mt\/%(f(ﬁ"), Gy,

13
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By applying (4.22) and (4.23), we derive

Ki < Co(l(1+ Al 2+ 101+ Al 2 + e + el ) + frne"“ +el

+ Cr(l AT G+ NG A+ 1GR3 4+ G 1) + €. (4.33)
f(ﬂ(tn)) 1@ _ E(") — E(u(ty))
VE@(@&) + Do /E@" + Do VIE(u(ty)) + Do )(E(™) + Do)(+/E(u(tn)) + Do + /E(i") + Do)

flu(ty)) — f@") |

E(u(t,))+ Do -

Because f(-) is Lipschitz continuous and E(-) + Dy > 0 and applying (4.22), (3.37) and (4.23), we can estimate 0; and O,
as follows

= 01+ 0., (4.34)

10111, 10211 < [If llwreeCllEfll + lley ™" 1) < Nefll + lley Il (4.35)
Hence, combining (4.34) and (4.35), we have
f('(t ) f")
- < lletll + ller ", (4.36)
VE@G) + Do E@) + Do

together with (4.22) and (4.23), it implies that
_ 2 A
Ky < CT(llell? + el 112 + lef™)” + lef1 + 1GL 1)
1
frlle"“ +e) | +Ct°. (4.37)

Combining (4.33) and (4.37), summing up for n from 0 to m and then using Lemma 4.1, the Poincaré inequality and the
Groénwall’s inequality, there is a number 7; > 0 such that provided t < 7;, we have the following estimate

len T2, + (e + 11+ A2 +rZ||e"“+e;||ils€1r“. (438)
n=0

From (4.22), (4.23) and (4.38), it holds that
™ M e < llef e + IIU(tm+1)||Loo

1 1
< Celley ™ MII7 ||6’er ||2 + lu(tms1)lloe

< Coy Ge> + [lultms1)lioe (4.39)
Hence, we can find a 7, > 0 (%, < 77), such that provided 7 < 7,
U™ e < fJu(t)llreoqeey + 1, (4.40)

and we complete the induction on (3.37) in the case t < 7. Hence (4.38) is true when m =N — 1 if t < 1.
In the case T > 1, according to (4.12), (4.22) and (4.23), we have

N-1
Jmax (e, e I+ 20 ) + 7 Y e e 2 < G < Gam) i, (441)
- n=0

for some 62 > 0.
In the end, Combining (4.38) and (4.41), we derive for any T,

N-1
max (eI, + e 10T+ Al ) 47 Y el eI = (G Galr) e,
0<n<N-1 o

which implies (4.29). O
5. Fully discrete scheme and its error estimate

In this section, we present the fully discrete scheme based on the block-centered finite difference method. Here we
consider the system with the homogeneous Neumann boundary condition. Since the proof for the first-order scheme is
essentially the same as for the second-order scheme, for the sake of brevity, we shall provide the details only for the
second-order Crank-Nicolson scheme. We first describe the block-centered finite difference framework. To fix the idea,
we set the two-dimensional domain 2 = (0, L) x (0, L,). Let Ly = N;h, and L, = Nyh,, where h, and h, are grid spacings

14
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in x and y directions, and Ny and N, are the number of grids along the x and y coordinates, respectively. The grid points
are denoted by

(Xix1/2, Yiv12), i=0,1,..., Ny, j=0,1,...,N,
and

Xi = (Xi—12 + Xiy12)/2, 1=0,1,..., Ny,

Yi = Wj-12 +Yjr12)/2, j=0,1,...,N,.
Define difference operators

[dxtliv1/2j = (Uir1j — Uij)/hy

[dyulijr1/2 = (Uijr1 — uij)/hy,

[Dxulij = (Uiy1/2j — Uim1/2,5)/hx,

[Dyulij = (Uijr1/2 — Uij-1/2)/hy,

[Anulij = Dx(dxut)ij + Dy(dyut)s j.
Define the discrete inner products as follows:

Ny Ny

(W n =YY hehyuijuij,

i=1 j=1
Nx—1 Ny

(U,U)x=§ E hyhytig1/2,jVic1/2,5,
i—1 j=1
Ny Ny—1

(u,v)y = Z Z hxhyui.j+1/21)i,j+1/2«

i=1 j=1

Lemma 5.1. Let Ui j, V1,i+1/2,f and V2.0 j+1/2 be any values such that U1,1/2,j = V1,Ne+1/2,j = V2,i,1/2 = V2,i,Ny+1/2 = 0. Then
(u, Dyvi)m = —(dxtt, v1)x, (u, DyUZ)m = _(dyU, UZ)y-

Next, we define the discrete H~! inner product. Let S = {¢|(¢, 1), = 0} and suppose ng; € S to be the unique solution
to the following problem:

— Anng = i, (5.1)
where 7, satisfies the discrete homogeneous Neumann boundary condition
(Mg )oj = Mg )1j> Mg INer1 = (Mg INej» J= 1,2, ..., Ny, (52)
(Mg ko = (Mg k1 (Mg dkny+1 = (Mg dkny, k=1,2, ..., Ny. :

We define the bilinear form

(¢]7 ¢2)7‘1 = (ded)] ) dx’?q&; )X + (dyngb] ) dy77¢2) 5

for any ¢1, ¢, € S. Then we can obtain that (¢1, ¢2)_1 is an inner product on the space S. Moreover, we have

(D1, $2)-1 = —(¢1, A} ' b2)m = —(A; D1, $2)m.

Then we can define the discrete H~' norm ||¢|_1 = (@, ¢)_1.
Let us denote by {U", W",R", ¢" g:o the finite difference approximations to {u", u", r", w”}fzo. Set the boundary

condition as
Uoj = Uujs Unt1j=Unyjs J=1,2,.... Ny,
Uio = Ui1, Uiny+1 =Uin, 1=1,2,..., Ny,
Woj=Wij, Wheprj =Wy J=1,2,.... Ny,
Wio = Wi, Winyt1 =Win,, 1=1,2,..., Ny,
AplUpj = ApUsj, ApUngyrj = ApUn, s j= 1,2,...,Ny,
ApUio = ApUin, ApUing41 = AplUin,, i=1,2, ..., Ny

The second-order fully discrete Crank-Nicolson scheme is as follows: we find {U™!, w1 Rm+1, lI/”“}’,;’:—(} such that

II/n+] —_ygn
- 4 IBlI,n+l/2 — MA;,W"“”, (54)

15
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II/n+1/2 _ U’H‘l -u" (5 5)
T ’ '
Rn+l/2 _
Wn+1/2 A Un+1/2 +2A Url+1/2 +Un+1/2 + - f(Url)7 (56)
Ex(U") + Do
1 —
Rn+l _R" = 70([}1‘1)7 Un+l _ Un)m; (57)

2v/Ex(U™) + Do

where ¢"t1/2 = (¢! 4+ ¢™)/2, ¢ = ¥, W, R, U, U" = (3U" — U"1)/2 and the discrete form of energy E(U") is defined
as follows:

Nx

Ny
=> " hhyF(O")

i=1 j=1
Next, we carry out a rigorous error analysis for the second-order fully discrete scheme (5.4)-(5.7). Set
83 = U" - u(tn)a 83 = lI/n - ‘/’(tn)7
g, = W" — u(ta), & =R" —r(ty).

We introduce the following lemma which will be used to control the backward diffusion term in the error analysis.
Lemma 5.2. Suppose that u and Apu satisfy the homogeneous Neumann boundary conditions. Then we have

1 2¢
| Apull? llull2, + ?”Vh(Ahu)Hz- (5.8)

m—32

Proof. The proof for the homogeneous Neumann boundary condition is essentially the same as that for the periodic
boundary condition. One can refer to [28] for more details. O

Theorem 5.1. Suppose that
u e L®0, T; WEX(2))NW22(0, T; WH®(£2)) N W0, T; W>(£2)) N W4(0, T; L®(£2)).

Let T < C(hx + hy). Then for the discrete scheme (5.4)-(5.7), there exists a positive constant C independent of hy, h, and t
such that

||Uk+1 4

2
(tk+1)” < C(”ullw4 100(0,T;L(£2)) + ||u|lw2oc 0,T: w4 100(£2)) + ||u||W3 100(0,T; w3. oo((_))))

+ C”u||LooOTw8oc Q))(h4+h4) VOSkSN_l (59)

Proof. Subtracting (3.1) from (5.4), we get
n+1 _

& 3
v % +ﬂ n+1/2 MAWZH/Z —|—T]"+1/2, (5.10)
T
where
Y(tns1) — Y(ta)
TIY? = () — — . L+ M(Ap — A)ltnrs2) (5.11)
= C”W”Wl“(O,T;L“(Q))IZ + ||/'L||L°°(O,T;W4~°°(.Q))(h§ + hﬁ)- (5.12)
Subtracting (3.4) from (5.5), we have
n+1 __
8lr}j+1/2 _ & &y i Tn+l/2 (5.13)
T
where
U(tp1) — u(ta)
T = S — () < Cllullwsosioramiay ™ (5.14)

Subtracting (3.2) from (5.6), we obtain

Rn+1/2 _
ZH/Z Az n+l/2+2A 8n+l/2+8n+1/2+ _ F(OM)
En(U™) + Do
B 1(tnt1/2) F(Utasr2)) + T2 (5.15)
En(u(tay1/2)) + Do P

16
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where
T;H/z = Aju(tat1y2) — A%U(tnir)2) + 2A0U(tns1/2) — 2AU(tns1/2)
< Cllullooqo.7:wb.00(2y) + Iull oo, 7. w0y (hE + hi)- (5.16)
Subtracting (3.3) from (5.7) gives that
8n+1 —gn 1 _ Un+l —_yn 1
: - = = ( un, > - (f(u(tny1/2)), ue(tns12))
T 24/ Ex(U™) 4 Do T m  2y/E(u(tayi1/2)) + Do
+ T2 (5.17)
where
I(tng1) — 1(tn)
TPY? = r(tagay0) — % < Clirllys.oqo.r T2 (5.18)
Multiplying (5.10) by S%yzhxhy and making summation on i and j for 1 <i <Ny and 1 <j < N,, we have
8n+1 — g
(‘” — s@“”) + Bl = M(Anelt V2, 6B (TR (5.19)
m

The first term on the left-hand side of (5.19) can be transformed into

e el eyt 12 = ey 12
(w -, 813/“/2) =" (5.20)
T 2T
m
Using (5.15), we can write the first term on the right-hand side of (5.19) as
M(Ape" V2, el %) = M(AZERTY2, el 7Y + 2M(AZel 12, )2,
Rn+1/2 B r(t
(B agm  —2) ), e
En(U™) + Do En(u(tay1/2)) + Do .
+ M(Apelt 2, el 2+ M(ARTy 2 e (5.21)

Applying Lemma 5.1, the boundary condition (5.3) and (5.13), we can write the first and second terms on the right-hand
side of (5.21) as

M IVa(Aney DI = 1 Va(Ane)II?

M(A£83+1/2, 8;+1/2)m

— M(Va(Dnel ™), Vi(Arel %)

— M(Vi(Ane™*172), Vi( AT %))

2T
I Va(AneftOI? — I Vi(Ane)II?
- M s 2.’_. 1 s + C”Vh(AhBLH_]/z)”Z + C”u”aﬂ,oo(oj;wloo(g))rlls (522)

2M(Azel /2, 83}+1/2)m

= 2M(Apel ™2, Apey )

=2M

I Aney 5 = 1 Aneg I,

- + 2M(Apemt 2, ARTIY?)
M
—UAne ™5 — A1)+ CHAne] 2 17, 4 Clly o e pyaoe 7™ (5:23)

The third term on the right-hand side of (5.21) can be estimated as follow

") - 1) Ahf<u(tn+1/z)),s$”2)

Rn+1/2 _
M| —Ayf(U
(m e En(u(tas1/2)) + Do

_ MR ( Apf(U™) £n+1/2> — Mr(tas1,2) ( Apf(U™) 8n+1/2)

VEW(U") + Do v VE(U") + Do v

Apf(U™) n+1/2 ( Apf(U(ty)) n+l/2>
+ M tn T — - M tn T e
" +1/2)( B +D, " )m e\ haen e ),
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+Mr(tn+1/2)<M 8n+1/2> _ Mr(tn+1/2)< A (ultns/2)) 8$1/2)

En(u(t)) + Do~ " En(u(tni1/2))+ Do
-t A - D )
+ Mr(tap1/2) (\/;“f (u(tn J)r)Do \/EhAhf (tnitln;l/zJ)r)Do’ 8$+1/2>
+ Met1/? (%, e;“/z)m. (5.24)

Next, we shall first assume that there exist three positive constants Cs, Cs and C; such that
U loo(2) < Cs, IVRU™ [lioo2) < Go, [1ARU" |lioo(2) < Gz, YO <n <N, (5.25)

which will be verified later.
Using Lemma 5.2, the first term on the right-hand side of (5.24) can be controlled similar to the estimates in [5] by

Anf(O™) Ahﬂ‘( 1)
Mr(tnt1/2) = Ez,ﬂ/z
VEO") + Do VEn@(t) + Do’
< C(llegliz, + I Anepllz) + CCllep 112 + ||Ah83*‘ I12) + Cliey 212
< CUl1ERZ + IV AneDI?) + CClen™ 12 + I Va( Anel= IP) + Cliey, 2112, (5.26)

where C is dependent on |[|1||ic(0. 1), U™ ||1oo(2y and || VU™ || 1oo(e2)-
The second term on the right-hand side of (5.24) can be handled by

Apf (u(ty)) Apf (U(tnga/2)) 412
Mrlinsayz) (JEh(a(rn))JrDo VEu(trr )+ Do " )
_ Anf (u(ty)) Apf(U(tnrr2))  ntap2
_Mr(th/Z)(«/Eh i)+ Do En(u(tn) +D078w )m

+ Mr(tas) ( Anf(utay1/2)) Anf (u(tny1/2)) 8n+1/2>

VEE) + Do /En(u(tar12)) + Do’ "
< Clley 212 + Clul)?

™ 4+ Cllul? hy + h3). (5.27)

W2.09(0,T; W2:29(2)) Lo°(0,T; W3:20(2)) (

The last term on the right-hand side of (5.24) can be directly estimated by the Cauchy-Schwarz inequality
Apf(U"
mepe 2 (S )< gt 2+ (528)
Ex(U") + Do N
where C is dependent on [|U"||;00), VAU [[ioo(2y and ||ARU" || 1oo(s2). Using (5.26)-(5.28), we have
Rn+1/2 _ T(t 2)
M | AWf(0") — At Apf (u(tarry2)), el
En(U™) + Dg En(u(tns12)) + Do n
< eyl + 1Va(ArsDIP) + Clley ™ 17, + 1 VAl Anel IR + Clley, 211,
+ Cle™ V2P Cllull? h -+ hy). (5.29)

+ C”u”foc(o-r’w3oo(9))(

w2.00(0,T;w200(2))
Using Lemma 5.2, the fourth term on the right-hand side of (5.21) can be transformed into
M(Ap 8n+l/2’ 8$+1/2)m

+1/2
< Clley"™ 2|12, + CllAnelt 2|12

< Clley 12 + Cllelt 12 + ClIVa(Anel ™I + CllellZ + ClI Va( Anel)]1%. (5.30)
The last term on the right-hand side of (5.21) can be estimated by
1/2 2 2
M(ARTS 2, 602 < Clley™ 212, ClUlR e poasogo T
+ C(”u”foo(o_’-r;w&oo(g)) + ||u||§oo(0,T;W6,oc(Q)))(h3 + h;) (531)
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Combining (5.19) with (5.20)-(5.31) leads to

ey 17 — lley I, a1z IVA(ARe™ )12 — (| Va(Ans™)|I2
— R B2 + M
27T 27T
< CUIEM M2 + VA Ane )1%) + CUIEMZ + [ VA(AneIP)

_ _ 2
+ Cllen I + Va( Mgl IP) + Clley 212 + Clert|

M
+ U Bne ™ = NAneg15) + Clulagg pys.oeqan (B + 1)
+ C(||u||w4 109(0,T;L%°(£2)) + ”u||w20<: 0,T: W4oo(Q + ||u||W3 ©0(0,T; w3. oo(_q))) 4
Next, we give the error estimate of the auxiliary function r. Multiplying (5.17) by &1 + " leads to
/2 n+1 n
len+ 17 — |en? et _ oyt _y
— = fO", ———
T En(U™) + Do T m
8n+1/2
1/2
= : (F(utns12))s eltnp12)) + Tg (67 — &),

En(u(tnt1/2)) + Do
The first two terms on the right-hand side of (5.33) can be transformed into

n+1/2 n+1 n n41/2

e _ U —-U e

— (f(U”), ) - ' (FQUlts1/2)), tetns1/2))
En(U™) + Do T m En(u(tay1/2)) + Do

_ e u(ti1) — ()
= ) Do |:(f(u(tn+l/2))’ T)m — (fF(u(tny1/2)), Ut(fn+1/2))]

+ 8n+1/2 f(l_]n) f(u(tn+]/2)) u([‘n+1) — u(tn)
' VEn(U") + Do \/Eh(u(tn+1/2 )+ Do’ T .

+1/2
4 {7 (f([]"L M) ,
VEx(U") + Do T m

which can be handled in a similar way to that in [31]. Thus we have

n+1/2 n+1 n n+1/2
g _ U —-U £
_ (f(U"), ) - : (f(u(tnr1/2)), ue(tnra2))
En(U™) + Do T m E(u(tnt1/2)) + Do
< Clef ™2 4 ClUIZ oo g goeqy I IE + et~ I2) + Cllel 212

+ Cllu|? + hy).

Substituting (5.35) into (5.33) and using the Cauchy-Schwarz inequality, we can obtain

4
wl.o0o (0,T; W2.00 _Q))(h

2 2
lep 1™ — Jel|

r n+1/2 ”

1/2,2 2 —12
< Clel™ 2 4 Ul ooy lERIZ + el 12) + Clle]y

+ C”u”a/l 100(Q, T'W2 °0(2)) (h4 + h4) + C”r”a/ii 100(0, T)t
Combining (5.32) with (5.36) and multiplying by 27, summing over n (n =0, 1, ..., k), we have

1/2 2
e 017, +ﬂZrlls"“ 12+ MIVa(Arel™ DI + 2068

k+1 k+1 k+1

< M Aneg 7+ C Y Tllenlln +C DTl Vi(Aneliz +C D wley I
n=0 n=0
k+1

2 2 2 4 4
+ C Z r|81r1| + C(”u”Loo(O,T;WS.oc(Q)) + ”u”LOO(O,T;WGVOO(Q)))(hX + hy)
n=0

+ Cllull;

To carry out further analysis, we should give the following inequality first. Recalling (5.13), we have

k k
+1 _ 0 1+1/2 1+1/2
=g, + E TE, + tT, s
=0 =0

4
Jull? + llull?

W4.00(0,T;L%°(£2)) + | W2.20(0,T; W40(£2)) W3.20(0,T; W3- 00(9)))
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and using the Cauchy-Schwarz inequality, we obtain

k k
1+1/2 1+1/2
E TE, E T,
=0 1=0

k k
<20eQln 42T Y wlley % + 21 Y I, (5.39)
1=0 1=0
Using Lemma 5.2 and (5.39), the first term on the right-hand side of (5.37) can be transformed into
M
2

2

2
k1,2 02

ey i < 2leglly, + 2 +2

m

m

M| ApekTHIZ < Clef 12 + = I Vi(Anek ™))

S 12 - 12 M k+1y)12
< C Y tllel i+ C YTl + < I Vi Aneg ™))% (5.40)
=0 1=0

Then using the discrete Gronwall inequality and Lemma 5.2, (5.37) can be estimated as follows:
2
IeS 2 + ek 012 + Il Ansl T 12, + MIVa(Anel I + 1ef

2 2 2 4
E C(||u||w4,:>o(0$T;Loo(_Q)) + ”u“Wz,oo(O.T;W&oc(_Q)) + ||ullw3,:>o(0’T;W3,oo(Q)))t
2 4 4
+ Cllu”Loo(O,T;Ws,oo(Q))(hx + hy)a A 0 S k S N - ] (541)

We now verify the hypothesis (5.25). This proof follows a similar procedure to that in [31,32]. We first give a detailed
proof for ||[U"||;2) < Cs in the following two steps by using the mathematical induction. Using the scheme (5.4)-(5.7)
for n = 0 and applying the inverse assumption, we can get the approximation U! with the following property:

U oeq) < IUT = utr) o) + lults)llio(e)
< U" = Hyu(ty)llieoce) + IHTpu(tr) — u(ts)lloge) + lu(t)llee)
< Ch (U = u(t)llm + Nu(tr) = Tputs)llm) + [1Tau(tn) — u(tn)llee) + lut)lliee)
< C(h+h™'t%) + Jlu(t)ll2) < C,
where h = max{hy, hy} and [T}, is a bilinear interpolant operator with the following estimate:
ITpu(ts) — u(ty) (o) < Ch. (542)
Thus we can choose the positive constant Cs independent of h and t such that
Cs > max{[|U'||ro(2), 2/|u(t)llro(2)}-

By the definition of Cs, it is trivial that the hypothesis ||U’||Loo(m < Cs holds true for | = 1. Supposing that || U~ o2y <
Cs holds true for an integer [ = 1,2, ..., k 4+ 1 with the aid of the estimate (5.41), we have |U' — u(t))||m < C(z? + h?).
Next, we prove that ||U’||LOO(Q) < Cs holds true. Since

10"y < IU" = )o@y + (@) oo
< 1U" = Thu(t)llieqe) + IHTpult) — u(@)lioe) + lut)llee(e)
< Ch Y (IU" — u(t)llm + ultr) — Ipult)llm) + [TTut) — u(t)lleocey + ult)loe(e)
< Gs(h+ h™'2%) + [Ju(ty) o 02)- (5.43)
Let T < Coh and a positive constant h; be small enough to satisfy Cg(1 + ng)h1 < Cz—f‘ Then for h € (0, h¢], we derive from
(5.43) that
l -1_2 2 G
U Nlio(2y < Colh + h™"77) + [[u(ti)llioo(2) < Cs(hy + Coh1) + 5 = Cs.
This indicates that ||[U"||;ec(ey < Cs for all n. The proof for the other two inequalities in (5.25) is essentially identical with

the above procedure so we skip it for the sake of brevity. O

Remark 5.1. The numerical idea and the theoretical analysis can also be applied to the SPFC model, the reader can refer
to [13], in which a second-order backward differentiation formula is proposed and analyzed for the SPFC model based on
the SAV approach. Moreover, an optimal rate convergence analysis is provided for the proposed scheme.

6. Numerical experiments

In this section, we give several numerical experiments for the MPFC equation to verify the accuracy and energy stability
of the proposed schemes.
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Table 1

The errors and rate of convergence at T = 10 for the phase variable u with different time step size.
T lleullm Rate T [lewllm Rate

The first-order scheme 1/8 3.3056e—01 - the CN scheme 1/8 1.8364e—03 -
1/16 1.6706e—01 0.98 1/16 4.0970e—04 2.16
1/32 8.4211e—02 0.99 1/32 9.8583e—05 2.06
1/64 4.2287e—02 0.99 1/64 2.4357e—05 2.02
1/128 2.1190e—02 1.00 1/128 6.0664e—06 2.01
1/256 1.0607e—02 1.00 1/256 1.5146e—06 2.00
Table 2

The errors and rate of convergence at T = 10 for the phase
variable u with different spatial mesh size.

Ny x Ny lleullm Rate
20 x 20 1.1486e—01 -

40 x 40 3.1432e—02 1.87
80 x 80 8.0201e—03 1.97
160 x 160 2.0010e—03 2.00

Energy

2'30 20 40 60 80 100 2'30 20 40 60 80 100

Time Time
(a) (b)

Fig. 1. Evolution of the original energy and pseudo energy using the first-order scheme (a) and the second-order Crank-Nicolson scheme (b).

6.1. Accuracy test

To verify the temporal convergence rate, we set £2 = [0, 128] x [0, 128], the parameters are set as M = 5, ¢ = 0.025,
B =0.9, T = 10. We choose a source term to the equation such that the exact solution is given by
. 2mx 2y
u(x,y, t) = sin(—-) cos(—-) cos(t).
(x5, 1) (64) (64) (t)
We set Ny = N, = 128 so that the spatial discretization errors are negligible compared with the temporal discretization
errors. The errors and convergence rate at T = 10 for the first-order and second-order SAV schemes are presented in
Table 1 and we can observe that our schemes give desired rate of accuracy in time. To verify the spatial convergence rate,
we set T = 1/128. The errors and convergence rate at T = 10 for the second-order Crank-Nicolson scheme are given in
Table 2, which are consistent with our theoretical analysis.

6.2. Energy stability and mass conservation test

To test the energy stability, we set the initial condition as

u(x,y) =0.07 — 0.02 cos (27r(x — 12)) sin (27r(y — 1)> + 0.02 cos? <M> cos? (M)
32 32 32

32
4 X 4 —6
— 0.01sin? [ 222 ) sin? 47y - 6) .
32 32

M =2,¢6=0.05p8=0.1, =[0,32] x [0,32], T = 100, T = 0.1, Ny = N, = 128. Fig. 1 shows that our schemes are
energy-stable with respect to the pseudo energy. Fig. 2 shows the mass conservation. Let 8 = 0.9, Fig. 3 shows that our
schemes are energy-stable with different time step size.
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Fig. 2. Evolution of the total mass using the first-order scheme (a) and the second-order Crank-Nicolson scheme (b).

2.62 —e—T = 28
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26 T= ?
) S
«3' 2.58
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20
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0 50 100
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50 100
Time
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Fig. 3. Evolution of the pseudo energy using the first-order scheme (a) and the second-order Crank-Nicolson scheme (b) with different time step

size.
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6.3. Phase transition behaviors

In this subsection, we apply the second-order Crank-Nicolson scheme to check the evolution from a randomly
perturbed nonequilibrium state to a steady state. Since the first-order scheme provide similar numerical results, for
simplicity, we only consider the Crank-Nicolson scheme in the following simulation. With the initial condition u(x, y) =
0.07 + rand, rand is a randomly chosen number between —0.001 and 0.001 at the grid points, we set Ny = N, = 128 to
discrete the domain 2 = [—32, 32] x [—32, 32]. Let ¢ = 0.025, M = 1, 8 = 0.2, t = 1. Fig. 4 shows the time evolution
of the phase transition behavior, which validates that the Crank-Nicolson scheme does lead to the expected states.

7. Conclusions

In this work, we design the first-order scheme and Crank-Nicolson scheme for the MPFC equation based on the
SAV method. Rigorous results about unconditional energy stability, convergence and error estimates are derived. Several
numerical experiments are presented to verify our theoretical results and demonstrate the accuracy, energy stability and
mass conservation.
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