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ARTICLE INFO ABSTRACT
Keywords: This paper focuses on investigating a second-order time parallel decoupled algorithm for the mixed Stokes/Darcy
Time parallelization model. The main objective of this algorithm is to deal with the issue of low computational efficiency in solving the
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Spectral deferred correction
Stokes-Darcy model

coupling problem directly. Our scheme not only reduces the computation scale through the decoupling method,
but also realizes the parallelism in the time direction through parareal method. Furthermore, we implement
a second-order spectral deferred correction method to improve accuracy. For some small time step size, we
prove the stability and convergence results of the time parallel decoupled algorithm. Finally, we provide three
numerical tests to demonstrate the reliability and computational efficiency of our algorithm.

1. Introduction

The mixed Stokes/Darcy model is one of the most widely used models for the coupled between the incompressible flow and the porous media
flow [1-8]. The coupling model is capable of simulating the interaction between the motion of fluids on the surface and subsurface. Specifically,
it combines the Stokes equations to describe the fluid flow in the surface region, and the Darcy equations to govern the porous media flow in the
subsurface region. In addition, the model couples these two flows through certain interface conditions.

Up to now, there is a rich literature on the numerical methods for the mixed Stokes/Darcy model [9-20]. These numerical schemes can be divided
into two types: one solves it directly, the other is to decouple this coupling model. In the early studies, scholars mainly studied the numerical methods
to directly solve the coupling problem. But the mixture of coupled models will lead to various mathematical and numerical difficulties [10], such as
the large calculation scale, limited computing resources, programming difficulties and so on. However, the decoupling algorithms can significantly
reduce the computational scope of the original coupled problem. Since the decoupled sub-problems are relatively simple and independent of each
other, one can solve them individually or in parallel using different numerical methods and the existing packages. Therefore, many scholars devote
themselves to the study of efficient and stable decoupling algorithms for solving the coupled systems. For the unsteady Stokes/Darcy model,
Mu and Zhu [21] first studied a decoupled scheme, which is based on interface approximation via temporal extrapolations. As an extension of
the decoupling approach, the multiple-time-step techniques were analyzed in [22-27], allowing the different time steps in different regions to
improve the computational efficiency. In [28], Qin et al. proposed an adaptive time-stepping decoupled algorithm for the coupled Stokes/Darcy
model, which combines the variable time-stepping decoupled algorithm with the adaptive algorithm together to decrease the calculation steps and
truncation errors. Thus, it can be further improved the computation efficiency.

With the rapid development of super-parallel computers, how to design efficient parallel numerical algorithms has become a hot topic in the
field of computational mathematics. Various spatial parallel algorithms have been proposed [29-31], which can greatly improve the computational
efficiency. However, there is a limitation, that is, with the increase of the number of processors, the parallel efficiency of the algorithm will reach
saturation which will lead to the waste of computing resources. Therefore, more and more attention has been paid to the time parallel algorithms.

The parareal method, initiated by Lions, Maday and Turinici in [32], implements the parallelization of ordinary differential equations or the
discretized partial differential equations by time decomposition. The parareal method calculates the solution of the differential equations iteratively
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by assigning a processor to each time subinterval throughout the entire time domain. Normally, the parareal method involves two numerical
approximation methods, represented as & and & . The parareal method proceeds by iteratively alternating between the parallel computation of &
and the sequential calculation of €. The details of the stability and the convergence of parareal method can be found in [33,34]. For the sake of
efficiency of parareal method [33,35], the numerical cost of the & propagator needs to be comparatively lower than that of the & propagator. Let
us consider the initial value problem

{y’(t>=F(t,y(t)), t€[0,T],
$(0) =",

with y(t), Y’ € C¢ and F : R x C? — C?. Following the general strategy of parareal method, the time interval [0,T] can be divided into N intervals
with each subinterval being assigned to a different processor. If we denote the processors P, through Py, the n-th processor computes the solution
on the subinterval [¢",t"*'], n=0,1,---,N — 1. Let us denote £(t"*! ¢, $) and F (t"*',1",$) as the approximation to y(t"*!) with the initial value
y = y(t") through the propagator & and & respectively. The first step of parareal method is to compute an approximation in serial, i.e.,

n+l . _ n+l .n _n
WW=gET Ly,
with the initial value y(l) = y(0). Once each processor P, obtains the value yT, they can compute F ("1, ", y’l') in parallel, which is a more accurate
approximation of y(t"*!). The last step of the parareal method is a serial correction step

=g YL ) F T YD @y, n=0,1,- N —1, )}

where the subscript k refers to the iteration number. Since the & provides the overall accuracy of parareal method [33,34], the iterative process
(1) provides a converging sequence toward y"+! = F ("1 1" ).

Since the parareal method was proposed, it has sparked renewed interest in the construction of time parallel methods [36-41]. At the same time,
these numerical methods which are more suitable for high-performance parallel computers can provide the new algorithm tools and theoretical basis
for large-scale numerical simulations in practical applications. In this paper, we propose a time parallel decoupled algorithm for the Stokes/Darcy
model through combining the decoupled method with parareal method together. This scheme aims to improve the computational efficiency through
reducing the computing scale and improving the utilization rate of parallel computing resources. From another perspective, our algorithm can be
viewed as an extension of a time-parallel algorithm in [42], which improves the parallel effectiveness through utilizing the decoupled techniques.
Our scheme not only achieves the parallelism in temporal direction, but also enables the parallel computations of two decoupled subproblems at
each time step due to the independence of the decoupled subproblems. Furthermore, we implement the spectral deferred correction (SDC) method
[43-45] to improve the accuracy. Since parareal and SDC method both belong to the predictor-corrector methods, they can be well combined
together to improve the computational efficiency and accuracy while ensuring the stability of discrete algorithms.

The outline of this paper is as follows. In section 2, the non-stationary mixed Stokes/Darcy model is provided with its weak formulation and
properties. Section 3 is devoted to introduce our second-order time parallel decoupled algorithm. Section 4 demonstrates the stability of our scheme,
while section 5 deduces its convergence. Section 6 includes three numerical tests that validate our theoretical analysis and demonstrate the accuracy,
stability and efficiency of our algorithm.

2. The mixed Stokes/Darcy model

We consider the non-stationary mixed Stokes/Darcy model in a bounded domain Q C | R4 (d =2 or 3), which consists of the fluid flow domain
Q and the porous media region Q,. And two regions are separated by the interface I'=Q, N Q,. Let us define I'; =9Q \I" and I', = 0Q \I".

Let T > 0 be a finite time. The motion of fluid flow in Q is governed by the Stokes equations for the fluid velocity u and kinematic pressure p:
Vte (0,71,

u,—vAu+Vp=f,, ianx(O,T], (2)
Vou=0, in QX (0,1, ()
u(x,0) =u’(x), inQ, 4
u=0, on Ff x (0,71, (5)

where v > 0 is the kinematic viscosity and f, is the external force.
The motion of porous media flow in Q, is governed by the following equations for the piezometric head ¢:

So@, =V u,=fr, inQ,x(0,T], (6)
u,=-KVo, in Q,x (0,71, )
@(x,0) = ¢(x), inQ, (®
=0, onl', x (0,77, (C)]

where u,, is the fluid velocity in Q,,, .S is the specific mass storativity coefficient, K represents the hydraulic conductivity tensor, and f; is the

source term. Indeed, combining the Darcy’s law (7) with the continuity equation (6), we obtain the Darcy equation in Q, X (0,T]:
So@; = V- (KV@) = f,. 10
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We consider the following interface conditions on I' X (0, T']:

u-n;—KVg-n,=0, (€8]
7]
p- an_u =8, (12)
ong
a\/vg
—\/T.—au = u-t;, i= 1,"',d - 1, (13)

‘ong e (K)

where n; and n, are the unit outward normal vectors on dQ, and 09, g is the gravitational acceleration, {Ti}’i_ll are the linearly independent

unit tangential vectors on the interface I', and «a is a positive parameter generally determined by experiments. These interface conditions represent

the conservation of mass (11), the balance of normal forces (12) and the Beavers-Joseph-Saffman interface condition (13) across the interface I'.
Let us denote Q = L*(Q,) and

w={ve(H'@p)’ vy, =0},
W,={veH'®): vlr,=0}.

So we define the space W = W , X W,,, which is equipped with the norms as follows: Vz = (v,y) € W,

Izllp =4/ @, V)q, +&So(w,w)g ,
\/ A 4 a4

lzlly = \/u(V2.Vo)g, +&(KVy. Vy)g,.

Here and afterwards, let us denote (-, ) as the scalar product and || - || 12(p) S the L2-norm in the region D for D =Q ror Q.

The weak formulation of the non-stationary mixed Stokes/Darcy model (2)-(5), (8)-(13) is given as follows: for f € L2 (O,T; L@ f)d) and
f2 € L2(0,T: L*(Q))), find w = (u,p) € (L®0,T: LX(Q,))? n L2(0,T; W ;)) X (L®(0,T; L*(Q,)) N L*(0,T;W,)) and p € L*(0,T:Q), such that
Vz=(,y)EW,q€Q,t€(0,T],

[w,.z] + a(w,z) + ar(w, 2) + b(z,p) = (. 2),
b(w,q) =0, @s)
w(x,0) = w’(x),
where
w,.z]l= (ut,v)gf +25) (rﬂ,,w)gp,

aw,z)=a;(u,v) +a,(@.y),

a;(u,v)=v(Vu, Vv)Qf+Z/ u-t;)(v-r;),
\/tr(K
a,(@.w) =g (KVo,Vy)qg

ar.2)=g(p.v-ng) o~ (woung) o :g/ (pv-n;—yu-n;),
r

b(z,p)=bw,p) ==,V V),
(f.2)= (fl’v)gf +g(f2,ll/)gp,
w'(x) = (u'(x), "(x)) .

It is known that a () and a (-, ) are symmetric. And ar(-, ) satisfies the following properties: Vw,z € W

ar(w,z)=—ar(z,w) and ap(w,w)=0. (16)

Furthermore, for the hydraulic conductivity tensor K in (10), we assume that: 3 k > 0, such that

min’ max
2 2
kmin|x]” S KX - x S ke |x|” ae. x€Q,. a7)

From (17), we have

1 1
K2Vy|  <IVyllg, < K2Vy

max 14 min 4

. VYWEeW, (18)

Last, let us recall the Poincaré and trace inequalities that are useful in our analysis: there exist constants C, and C;, which only depend on the
region Q, such that Vv € Wf,

1 1
lvlla, <G, liVellg,» ||v||L2(I‘)SCt”v”éfllvv”éf’ 19
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and there exist constants C'p and C,, which only depend on the region Q,, such that Vy € W,

1 1
lvllo, <CpllVwllg,, vl SC,IIWIIf,pIIVWIIéP~ (20

3. Numerical algorithms

Now we present the second-order time parallel decoupled algorithm for the mixed Stokes/Darcy model, where the finite element method is used
for the spatial discretization, as well as the parareal and SDC methods are used for the temporal discretization. Since the parareal method belongs
to the predictor-corrector schemes, we need to provide a first-order decoupled scheme as the predictor. Then by utilizing the decoupled approach
and the SDC strategy, we construct the corrector and achieve the ultimate second-order time-parallel decoupled algorithm.

For the spatial discretization, we consider the quasi-uniform triangulation 7" = T h U T  of the domain Q = Q + N Q,, which depends on the
mesh size h > 0. And the triangulations T h and T " induced on the regions Q and Q, are requ1red to be compatible on the interface I". We choose
the finite element spaces W, , C W, W, , CW, and 0, C Q. Define W, =W, xW,, C W, and assume that W ; , and Q,, satisfy the discrete
inf-sup condition.

Let us define a linear projection operator (see [21]) P, = (Pw,Pfl’) from W x Q onto W, x Q;,: Vi € [0,T1, (w(®), p(t)) € W X Q,

a(Pw(n) —w(t), z,) +ar (Pw() — w),z,) +b(z,, P/ p(t) - p(t)) =0, Vz, € W,
@1
b(Pfw(1).q,) =0, Vg, € Q.
Indeed, under the certain smoothing assumptions on the exact solutions, we have the following error estimates: for k,/ > 1,5 >0,
P = Dw)|, < € (1Ol a1, + A 9Ol ).
|27 = Do < Cr 1PN, @2)

P = Dwao),, <€ (Ol gr @y + 1 oW 1) )

where I denotes the identity operator, and the constant C > 0 varies across different locations but remains unaffected by the mesh size and time
step.

Without loss of generality, let us assume a uniform mesh applied to the time interval [0, T] with " =nAt,n=0,1,---, N — 1, where At=T/N >0
is a time step. So that, we decompose this time interval into N subintervals [¢",7*1], n=0,1,---, N — 1, and we utilize the superscripts to represent
the time levels in this paper. In the general strategy of parareal method, the N subintervals [¢",#"*!](n=0,1,---, N — 1) are assigned to different
processors, so we assume there are N processors and denote by P;, P, ---, Py . Since the purpose of this paper is to construct a second-order time
parallel decoupled algorithm for the Stokes/Darcy problem, we apply the first-order decoupled method [21] as & and a second-order SDC sweep

[42,43] as F. Let ( '1“;[] s PTJZI ) denote the approximate solutions by the first-order decoupled scheme, in which a decoupling approach is proposed

n+1l n+l
Won P

time-parallel decoupled schemes to the exact solution (u(1"*!), (1"*!), p(1"*!)). Note that when we simultaneously compute F (:"*!,1", w ) over

based on the interface approximation via temporal extrapolation. And let us denote ( ) as the approximate solutions by the second-order

each subinterval [¢",#"*1], n=0,1,---, N — 1, the interface terms are treated explicitly to achieve decoupling. Specially, the approximation solutlon
at time #"t! obtained in the previous step (i.e. w;'“) is used to explicitly process interface terms in the second step of parareal emthod. It is worth
mentioning that the convergence order of parareal method [33] is decided by the order of the € propagator and the number of iterations. Because
we choose a first-order numerical method as &, the convergence order in time will increase by one time with each iteration. Since we want to create
a second-order algorithm for the Stokes/Darcy model, two iterations are sufficient for our algorithm. Next, we denote our scheme as the Para-SDC
decoupled algorithm for short. Based on the framework of parareal method, now we present the specific steps of Para-SDC decoupled schemes for
the unsteady mixed Stokes/Darcy model in Algorithm 3.1, and these three steps are named the serial prediction step, the parallel correction step
and the serial correction step respectively.

Algorithm 3.1. (Para-SDC decoupled algorithm for the Stokes/Darcy model)

Step 1. Serial Prediction Step : Compute ?(t”“,t",yi’ W= ( ’fJ;ll,p’l’J;:) with n=0,..., N — 1 in serial: find ( ’le,p;’t}) € W, x Q,, such that
v (gh,qh) EW, X0y,
wn+1 —w"
Yin “®in
[—A, ]+a< F) o (el ) = (03, ) + (7772,).
n+1 (23)
b (wl A ,f1h>
w?h =P'w

Step 2. Parallel Correction Step : Compute & (1", 1", w" h) 1= (_”“, p"“) withn=0,..., N — 1 simultaneously. Let us take the example of processor
P, over the sub-interval [1",1"*1]: find (w ;“ p’}“) EW X Q), such that V (z z,.q,) EW, X0y,

16
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At

n+1 n n+1 n n+1
] Win ~Wip Win ~Win Pin ~Pin R @4
=-dr <£1 PRETY 5 ) tar| — 5%, +b| 2, ) + > &)

b(_n+lth) 0.

Step 3. Serial Correction Step : Compute ?(t”“,t",ﬂg W)= (w "“,p"GH) with n=0,...,N — 1 in serial: find (w "“,p’g;“) €W, X Q,, such that
v (gh,qh) EW X0y,

wn+1 —w"
[uﬁzh] +a(wphz,) +b(z0)")

wn6+1 Win
[T h] +”<EG )+b( I )=—a1- (ﬂg,h’ih)"'(fnﬂ’ih)’

(25)
b (_n+1’ qh) 0.
Then with the initial value 22 W= w', we get
wn+1 - wn+l +wn+1 wn+1
=2h " =Lh’
{ n+1 C— n+1 + n+1 n+1 (26)
Pon =P TP TPy

It is easy to see that each of the discrete models from (23), (24) and (25), can be equivalent to two decoupled problems with associated boundary
conditions defined by the known numerical solutions from the previous steps or the previous time level on the interface I". The decoupled equations
corresponding to (23) have been given in [21] and the same processes can be applied to the discrete equation (25). Therefore, we only decompose
the relatively complex equation (24) into a Stokes subproblem in Q and a Darcy subproblem in €, as follows. The decoupled Stokes equations in
Q, read: find ( "“,p"’,“) EW X Q) withn=0,1,...,N — 1, such that Yz, € W and g;, € O,

un+1 —u"
(¥,vh>+af (2, 0n) + b (o)

n+l _ n n+l _ _n n+1 n +1
bl Win ~ Wi Pin ~Pin Pip Py 7+ 27)
—& [ @, Vnnptay 7 Vh +g — U ny+b| vy, 3 + 5 o, i
Q

r r
b ( n+1 , qh) 0
and the discrete Darcy equations in , read: find (p”Jrl EW,, withn=0,1,. — 1, such that Vy, e W,

1 n
AR
» 1
gSO(Tth +a, (@ yy)

+1 _ utl 1
il P ~ P Ui Ui, LY+
=& [ wplty,, "nyta, f’l//h —& th'"f‘f'g fﬂllh .
Q

T T p

(28)

It is worth mentioning that the discrete schemes (27) and (28) are independent to each other. Therefore, if there are two processors assigned
over each time step, we can solve these two independent problems concurrently. This conclusion is also applicable to the decoupled equations (23)
and (25). So that it can further improve the computational efficiency of our algorithm.

4. The stability analysis

In this section, we mainly focus on the stability of the second-order Para-SDC decoupled scheme (Algorithm 3.1), which will be presented under
a time step restriction. Lemma 4.1 presents several estimations of the interface term ar(-,-), which will be employed in the later analysis.

Lemma 4.1. [21,22] There exist C| = C}C’f and C, = C,C,, such thatVw,z€ W, £ >0,

lar(w, 2)| <ellwllj, + 4 k || zl5,. (29)

and

8C,

lar(w, 2)| <€ (lwlly, +lIzIl5,) + (llll3 +11z03) - (30)

16e+/v.S, 0 min

Moreover, foral w,, z, € W,

, &G C,C; C,C; )
|ar(£h’éh)| SEHZ;,HW + nmax kmin > VS() ”Eh”() (€20)]

17
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Next, we provide the stability of the first-order decoupled scheme (23) in the following lemma.

Lemma 4.2. Assume that the time step size At satisfies the condition

4gC,
At <1, (32)
VSOkmin
=G
and denote k| = oSohs Then we have
m
w115+ Ar Y llw] 13,
n=0
m « 4c? m-l 4g 62 m—1 (33)
< Ay —— ) 20113 + 281103, + —L At m 2 P A o
_exp< 2 1—An<1>< a5+ 28001, + 760 B TG, + A B A5G,

Proof. Taking z, = 2At£’1'+hl and ¢, = p;’tll in (23), using the divergence-free property and the elementary identity

2a-(a—b)= |a|2 - |b|2 + |a—b|2, Va,beR or R?,

we have

llg + ! — w115 + 28t llwi ! I, + 24t A
1,nl0 l,h 0 Z tr(K) ,h L2(I) (34)

] IIO - lw}
=—2Atap(w] . with + 280" with.
To estimate the first term on the right hand side of (34), applying (16) and (30), we have
—2Atar(w "+1) = 2Amr(w'1“;11, w,)
gCy (35)

4e/vSokomin

Utilizing the Holder and Poincaré inequalities along with the Young’s inequality

12 2 1
gem(||w"+ 15 + w115, ) At(lllv”+ ||0+||w1h||0)

ab < ea* + Lb2, a,b>0, >0,
4e
and considering (18), we get
2At(fn+l’£i+hl) — ZAt(fthl "+1)Qf + 2Atg(f"+l7¢rf;1
<2At||f”“||g, Ilu”“llgf +2Atg||f£'+lllg II(p"“IIQ

2, Mg, V0 N, +2818C, 1115 M, IV I,
C2 ~2
<evar|Vuillg, +—Ar||f"+‘||g +egknin AVl +

NI Fanl P 36
Ekmm Q ( )

2 Cvl

C
Sevar| Vapitilg, +egAr||sz(p"+‘||2 MG, + A
ev ki »

2 c?
12 P 12 P 12
<ellwii I, + LA + A,

min

ek
Replacing the bounds given by (35) and (36) into the relation (34), we can derive that

12 2 1 12 2
N 03 = N, I3+ ) = w13 4+ 231 |2, +2Az2 LA A
c2 ¢ @7
1 4 12 4 102
ar (a3 + N hno) LA, + A

min

gCy

4e/VvSokmin
\/_

Setting € = 1/2 in (37) and omitting the non-negative term 2At 2 \/W T ||L2(F) we obtain

<2eAtl|lwit G, +eAtlw] 113, + k
=1, 13

+ ||w"+l + At||w"+1|| At||w

1
w5 = llw Ll

1l wi o

CI’ +12
A,

202
gC 1 P 12
< (a3 + 1) + —L AL+ =
min

- 2 VSO min

Summing from n =0, ---,m — 1, a straightforward computation leads to

18
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W' nrly2 1 m o2
llw?, I3 + 2 lwtl — w13+ > Atz G, + 5 Al I,
m 2c2 m—1 2 62 m—1
8C a2 0 2, 1 0 2 P 12 8% ntl )2
< ————A1 Y llw} g+ N I + 5 At} 5, + —Ar DG, + o —ar PG .
VVSokmin  #=0 =0 min 520
This gives
el a2, L m o2
—||w1h||0+ Zn_lh —w) I3+ > AzZn_l,, I + 5 Al I,

e (38)

m 2 m—1 é
gC 1
< =0 Y w5+ 115 + S Al 15, + —Ar 3T G, + A Z 510G -
\Y% VSOkmin n=0 v n=0 min
Next, adding the term %Atllw ||2 to both sides of (38), omitting the non-negative term Atllw
relation by 2 yield

||2 , and multiplying both sides of the new

m

2 1 2 2

llw’?, 112 +Z sl —wh 13+ At Y 1w, 117,
n=0

2gC 4 2 m—1 ~2 m—1
1 )4
ArZ w15 + 20 115 + 28t w11, + —= At Z PTG, + a0 2175 G,
n=0

&
V VSOkmm n=0 min

We choose the time step satisfies the condition (32). Then from the discrete Gronwall inequality, we derive

IA

2
I’ h||0+Az2 llw! I3,

n=0
m « 4C? m—1 4g62 m—1
1 0 2 0 |2 P n+l2 p nl |2

SCXP<NZ T ) <2llyl,hn0+2mnyl,h||w + A Y ST, A Y ||Qp>,

n=0 n=0 min n=0

where x; = —2£51_ Combining the initial condition given in (23) with the definition of P, in (21), we get |[w? ||, = 1Py uw|l, < [lwP]l, and
1 % h Lallo 0 0
V0 Kmin 5

||£(1)!h||W = Pu||y < ||wP|ly . It is easy to conclude the result of stability (33). []

To simplify the later analysis, let us rewrite Algorithm 3.1 in the following compact form from the definition of numerical solutions in (26): find

(_;‘;l,p;;l> (S Wh X Qh such that V( /’l’qh) (S Wh X Qh’

wn+1 w"
—2h _2h n+1 n+1
£ o) ) o)

n+1 n n+1 n S|
n Z1,h _Zl,h Zl,h Zl h Pl h —Pl L fn+1 +fn
{ =-ap (ﬂz,hvéh)+a — »Zp ) —ar f’zh +b Eh’f + f’gh , 39)

b( Tl—zl’qh) 0,
_ 0
_P;l"y.

Theorem 4.1. Under the assumption (32), we have the following stability result

m m m

w12+ At Y llwh 112, < C (d,a.v, 8, o, ki T) <||£0||0 + At 5, + A Y IFTIG, +8a1 Y IIf2"II§2P> : (40)
n=0 n=0 n=0

Here C (d,a,v,g,S,k denotes a generic positive constant only depending on the data (d,a, v, g, S, kyin. T).

W”'"’T) min>

Proof. Taking z n= 2At£;tll in (39), we have

N 13 =l 13 + eyt — w3+ 28wyt 13, + 240 Z Wil
(41)
1 1 1 1 1 1
= Ata (ﬂll-; _ZT,h’wH ) 2Atar (Zgh’ﬂ; > — Atar (E'IH;[ _Zrll,h n+ ) + At <fn+ +fw n+ )
For the bilinear term on the right hand side of (41), we have
Ara@it! —w)  with = Ara @ —ul bt + Aray (@4~ o 053D, “42)

Using the Holder, trace, Poincaré and Young’s inequalities, we can obtain

19
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Atay @it -l "+])—vAt<V(u"+] )Vu"+1 +At2/ "+1—u’1’h)-‘r,) (u;jl‘-r,.)

V/tr(K)
pd-l \/—

<SVAIV@ —uf g, IVEs g, + AIC,C) D
f f P /r K
V n+l ”

\/t— e

1 1
|V(umL - u’f’h)”Qf ||u;; “Till 2y

< evAr|Vuyt g +—Az||V(u"+1—u1 h)||g +5A12

Z ||V< it — l,h>||§2f
2
1 C; Cp(d —Dag ) )
< evArl|Vustl g ultl. 7|2 ot VAV —u] DI,
Q LZ(F) 4e 4em l,h Qf
and
Atay(@! = o o5t = gt (KV(fp"“ -9 ) Vfﬁ”“)g

P
<gAz||KzV(¢"“ ~ @ Wllg, ||I<zv(p2 g,
<sgAt||KzV<p; I, +_gm||m((,,n+l_(p7h)||gr
” P

Then considering the definition of norms in (14), and combining the above two estimates with (42) lead to

Ata(ziil-;ll _Z}ilh’ n+1) <£At||w"+1 ”2

Next, we bound the interface terms on the rlght hand side of (41). From (16) and (30), we get

- 2Atar (W, w "+1) = 2Amr(wg;1, w,)
g€,
<ent (g I, +lws I3, ) + ——=—ar (w513 + g 113
4e/VvSokmin

Using (16), (30) and the Poincaré inequality leads to

n+1 n n+1y _ n+1 n+1 N
— Atap(wy — Wy w5 ) = AtapW, ) wi —wy )
12 1 2 8C, 1 1 2
< (w513, + ! - w13, ) + A (o 13+ oty — w12
8e/vS 0 min
2L 2
C, gCi(Cy+C)
<eArwitlg, + g—At||w"+‘||0 e+ ————2 | Arflwt - w13,
8e/vSykmin 8e4/VSyKmin ’ ’
In a similar way of (36), we obtain
+1 +1 +1 C2 +1 gC’Z n+1 ny2
n
A(f" + [ w) )<6ATIIW" || Af||f +f"||9 Af||f +f2||9p~

Combining the above estimates with (41), setting e = 1/4 and rearranging terms result in

d-1 o
| n+]|| 1 n ayve ” n+1 ”
0

1 2
— w15 + Atlla ) 15, = 2 A 15, + A1 Y

& V(K LM

24 2
3gC 5 C!Cd-Dag 8Ci(C,+C))
< b A (gt I + N ) + <—+ L * L) Ayl - wh 1,

- —2 h
2 VSOkmin 4 ngmin 2 VSO min
c? ¢
+ AL+ 1S 2 AL+ £
v o Kmin P

Summing (45) over n with 0 <n <m — 1, and adding the term = Az||w |2 to both sides of the new relationship, we have

2h|

2
||w2,,||2+ ArZH wh I3,

2 2 2
2, 380 Ny 4C2C,(d - ag  28Cy(C; +C) o
<llwd 113+ At I3, + ———Ar Y |lw} |2+ + At Y llw) 115,
V VS0Kmin  n=0 V V&K min V ViSokmin n=0
4C? m 4gC2 m
p ny2
+—Ar Y IIflG, + . Azanzng
n=0 m

20
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"+1 . || s 1 + M A’”ETJ;,] _Q?n”%/-
v’ 4e 4er/vgkpin ’ ’

(43)

(44)

(45)
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By simple calculation, we have

m
2 2
s lI5+ At Y llwh 113,

n=0
2 2 32
<i 2 4A 2 4G 2, 20 16C7Cy(d — 1)ag 8gC1(Cp+CP) A m Vo
< Sl I3+ Sawd, I3, Sl 12 + . oS It I,
\/VSOkmm n=0 ngmin 3 VSOkmin n=0
C? sC;
G, AzZ 7515, -
mm

By taking into account the condition (32) and applying the Gronwall inequality, we acquire

m
2 2
llwy, I+ Ar Y llwh 13,

n=1
LB 16C2C,(d — ag  88C,(C2 +C?) "
<exp| Aty —2 ||w 1?2+ = Atllw 13, + 20, + PP A Y w2 (46)
1 A =2,h"0 —=2,h 3 =1,h"W
n=0 - th 3 ngmin 3 VSOkmin n=0

62 m
P ny 2
Il At ) AN ,
1lq, Koin E) 21lg,
4gCy
\/VSOkmm
complete the proof of this theorem. []

where «, = . Thanks to the estimate (33), and the relations ||w2h||0 =P’ w|l, < |lw|l, and ||w2h||W = ||P}':’£0||W < lwlly,, we

5. Convergence analysis

In this section, we study the errors of Algorithm 3.1. Define (w™,p™) = (w(t™),p(™)) and (@™,p™) = (P;/“w™, P/p™). Then, let us denote:
i=12,

(47)

Here, e'” = (e el )and «f'" = (5'",5'”) In particular, e =(0,0).
The error estlmate of the first- order decoupled scheme (23) has been provided in the previous literature [21]. However, we provide the error

estimation results in Lemma 5.1 with the different regularity conditions (48) and the time step restriction (49). The rigorous proof is akin to the
process in [22,25], but simpler, so we skip it here.

Lemma 5.1. Assume the exact solution of Stokes/Darcy model satisfies

u, € L* (0.7 H"*'(Q))?) , u, € L* (0.T: L*(Q)") . @, € L* (0.T; H***1(Q))) , ¢, € L* (0,T; L*(Q,)). (48)
Under the condition
5g¢C ¢c, cC
§ L max L 1, P! At<1, (49)
h Kmin ~ VSo
we have,
lley,II5 + At Z e} 15, < C(v 8, So, kimin) (A + 1142 4 p242¥2) (50)
—1 h —l h

Next, we provide the bounds of d, e in Lemma 5.2.

At

Lemma 5.2. Under the assumptions in Lemma 5.1 and the regularities

u, € L* (0,T; H''(Q)?), u, € L2 (0.T; L2Q))), @, € L* (0.T: H*(RQ)), ¢, € L? (0.T: L*(Q,)) . (51)
we have,
m—1 Atz
lld,ef,IIg + At Z lld,e} 5 15, < Cv, 8 Sos kumin) <Az2 + Bk p2 4 7) : (52)
n=0

21
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Proof. At time #"*!, we can deduce the following equations from (15):

wn+1 —w"
[T —] +a (W™ z) +ar (™, z) +b(z ") = [; _£7+1,5] +(fhz). vzew. 53)

b(w"'.q)=0, VqeOQ.

From the definition of P, in (21), we can get

a(g.z,) +b(zn™) =-ar (§.2,). vz, €W (54)
Let (z,9) = (v, q;,) in (53) and subtract it from (23). Considering (47) and (54), we derive the following error equations: Vz n € W, and g, € Oy,

n+l e’
=LA Lh n+1
e | (et b (ae)

At

J - £n+l —Zn §n+] _én ; §n+1 _én ZVH—I —ﬂn (55)
="' - 2, |+ 22y _aF<21,h’Eh>_AmF T,Eh + Atap T,Eh N

- At At

b(ettan) =0.

Considering (55) at time " and subtracting the new equations from (55) yield

et = dieh oz, + Ata (dieft) 2, ) + A (2, d,e))
_ |:wn+1_£n+] _Zn _w L wn_wn—l . ] N [énﬂ _én _én_én—l . ]
= At I At At =h
< gl _gn g gl wtl gt " — !
SRS = W
b(d o l,q,,) 0,
il _gn el
where d, e”Jrl _IJ“T"' and d, e"“ ’h il . Taking z, = 2d, e and q,=d, e”“ in the above equations, we have
| e"+1|| e} H +||aers - der | ® oA Hd e"+1||w
wt —w" w' —w'! 5"“ &gt
get-gn gt wtl —w' w'—w'!
—2Atar (d,elh,d ) 2Atar< A7 — — = A: ,d,e n+1> +2Atar< A7 — - = Ar_ ’dtg?:;,l>'

Utilizing the Holder, Poincaré and Young’s inequalities and (18), we obtain, Ve, > 0,

n+1
il _ wtl —yn o, U —yl et 'f _gf _ g/ _§f o
2<u, u; + ,d;e 5 +2 A A ,d.e W
s Q;

2 n+l _ gn n _ gn—1
N & & &gy

(57)

2
un+1 —u" u" — unfl
<2e,vA1||Vd, e"+1||Q L A e
7 g VAL At At Q, At At
Q
f

Using the Minkowski inequality and the relation

(@a+b+c)? <3a*+3b*+3c%, Va,b,ceR?,

we get
22
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12
u”+1 B wtl _yn —uny u' — "1
! At ! At I
1
~ u;”'l +ul ~ Wt _yn ~ u! +u;'_1 L] N u;’*'l —2ul +u;'_l
2 At 2 At 2
Q
+1 -1 +1 -1
u; +u:’_un+l_un N u; +uyf _w—u! ™ = 2ul +u
2 At o, 2 At o 2 Q
2
u;’“ +ul gl _yn T A | 30 ne Yl
<3 - +3 - + 2w -2 H .
2 At 2 At 4 o,
Q Q
From the Holder inequality, we get
In«i—] 2
n+l n 2 n+1 n
wt AUl oyt e u" +uf 1
_ =[|l—-= u,dt
2 At 2 At
Q "
Q
1 2
1
<= [ ¢=1™(¢ -1, dr
<55 / (=1 = " Dy
tn
Q
m+l 1
1 ny2 n+142 2
<1z /(t—t)(t—t )y dt ey, @1
" m
i+l
2
<cad | |u dt.
< o,
i
From the Holder and Minkowski inequalities, we have
mtl 2 M 2
2
w'™th —2u! ! ||9f < /(t”+1 - Du,dt|  + /(z—z"’l)umdr
" Q/ n—1 Q/
I"+] IrHr] " "
1 2 2 —1\2 2
< /(t"+ —1)dt / ||u,,,||Qf di|+| [ ¢—1""")dt / ||um||Qf dt
th tn n—1 n—1
m+l

<cas / a3, .
-1

Hence, we obtain

1n+l
n n n—1

2
2
4 Wt T, Hgfscm3/||u,,,||gf dt.
=1

For the last term on the right hand side of (57), using the Holder and Minkowski inequalities, we get

2 2 2
§n+] _én ‘:" _§n—1 §n+1 _én én _gn—l
f f_2f S <2 S f—(-ff)n +2 (‘ff)n— S S
At At At ! ! At
Qr Q Q
mtl 2 M 2
=2 1 n+1 d 2 1 n—1 d
=2\ (" =D& p)pdt + AL (t=1"")(&Ep)pdt
m o, -1 Q,

! 1

m "
< 2| [arr-oarl| [eps, |+ Z| [a-emvall [ e, o
J pA -1 n—1

23
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m+l

2
scm/ ”(‘ff)"”u/ dt.

So that, we obtain the estimate of (57) as follows

n+l _ .n n _ n—1 ¢n+1 gn én - ‘fn_l
2 <u"+l _— LA uy + Ly-u ,d,e"+l> + 2< L2 ,d,e"!
Qr Q

! At At Lf At At

m+l 1

cc
<2evAr|Vdet g, + ej A / i1, 7+ / 166 ullgy, dr |-

=1

Similarly, we can deduce that

+1 n n n—1 n+l én f" _én—l
n+l _ (pn - @ _n P —@ n+1 P P n+l1
25 < At VL >g +2gSO( At & e Q
D

m+l 1
S2
i n+12 g 0 P
S2eigAtlK2dey g + ———— Ar? IIcomIIQ dt+ II(EP),,IIQ dt].
k 4 elkmm

From the definitions in (14), the combination of the above two relations leads to

w't! — w" — w! §n+1 ‘;;n ‘;’:n _ gn—l
2 ! - =—— = —w'+—=————.de +2 = = = "l

— At At At At -Lh

1 e+l

2
/ lw, i + / et

=1

14
£1v €1kmin

CC;  S,CCh
<251At||de”+'||2 —2L2 )] Ar

Using (16) and (31), we get

—2Atar (d el d; 9'1’,?) =2Atap (d,g;', +1_ g i€l dy 2721)
C ¢,c; C,C,
<61Atlld en+1||W g &5+1 max p1 , 4 Al‘”d en+l dterllh”(z)‘
1h kmin VS() -

From (29), we bound the remaining interface terms as follows.

§n+l _ én én _ énfl wn+1 Zn Zn _ Qn—l ol
—2Atar - , dr + 2Atar - dfgl,h

At At At At
+1 n n n—1 2
c.C A S e 1 wtl —w w'—w!
<26, Mrlld et 2, + S a2 2 - 22 +——-=—=
£qvkyi At At " At At w
,n+l trz+l
<2¢,At||d, e"+1||2 A12 /||§ II? dt+/||_n||2 dt].
mm

Combining the above bounds with (56), taking €; = 1/5 and considering (49), straightforward computations lead to

1 2 12
e 15— ld e} 115 + Atlld e+ I3,

n+l1 e+l i+l i+l

"
5CC; 58,CC 50¢CC. C
( V” +—> At2/||wm||0dt+/||§ I12dr |+ bt e YV /||¢ 112, dt+/||_,,||2 dr|.

mm mm

IA

=1

Since d,g’l' " is not defined for n =0, so we sum (59) over n=1,:--,m — 1 leading to

s
m-1 5cC? 58,CC? m-
el 2+ A Y et 2, < el 12+ (—+k—”) Ar22 / ||w,,,||0dt+2 / I, 12dr
n=1 min n=
—1
tn+l tn+l
5gCC c
2G5, 22 /nzs 2 dr+/||w,,||2 ar.
mlﬂ

24
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Then, considering the regularity (51), as well as the property (22), we have

trH»] tn+l

m—
A,zz / ||w,,,||0dz+2 / I, I3ar
n= n=

T
<A / lw,,|12d1 + / I, 12dr
0 0

2 2 2k, 2ky
=Car (”u"’”LZ(O 2@ © ”(”"’”Lz(o,T;LZ(ﬂm) tC <h ”u””L2<0T H*1(©Q))) +h ”(””"LZ«)T HR2(Q >>>
and

1 1

AFZ /Ilé 2 dr+/||w,,||2 dr

T T
2 2 2
/ lg 112, dr + / law, I, dt
0 0

< 2 [ 12k, -2 2ky—2
cai <h N T NN 1 PN L .

> > 1.
(u R O o A ——. ))> k> Lk, > 1
Hence, we have

m—1

lid,ef,IIg + At Z €3 M 15, < lld e ,lIg + C v, 8. Sos kmin) (A + B*1 4 H?*2) (61)
n=1

In order to bound the term ||d, e] hllo, we consider the error equation (55) in time ¢!. Since ¢

Then taking z, = 2d,g1 , and g, = ell ,» & straightforward calculation gives

7E
\/(—”delf illa
tr(K

(62)
,wow £-g £-e w-w
=2 ﬂt_T’dlgl,h +2 T’dtgl,h —2Atar T’dtgl,h +2Atar~ T’dtgl,h .

Then, using the Holder inequality, the Young’s inequality and (18), we derive, Ve, > 0

w' —u fl -
) ¥ 2 1
2 w, - B vant d, Lh +2 Ve ’dtfl,h

, w'-w
w22

0
e, = L 1p)—(OO),wehavee —Atde

20ld,e] I3 +2A10d,e] 115, +2A1 Z
i=1

§I_§0

1 = = 1
||dx£1h||0+2 ||dz£1 h”O
o > At s

0

1 |1gt =€

2 2

<2£2||de

(63)
0 €2 At o

t I
12, C 2 C 2
5252||d,gl,h||0+£—At/||yn||0dt+—£ Az/”ér”‘)dt
2 2
10 10

C
< 252||d1§}’h||(2) += (A2 4 p2K142 4 p2ha2)
2

A5+

From the definition of ar(-, ), we have

g _g gl g0 5}—‘5?
—2Atar <f’dt§i,h = —2Atg/ PAt p dfe%,f “ng +2Atg/d,eip A7 ‘ng.

r r

Using the trace, Pincaré, inverse and Young’s inequalities, we get

1 1
1_ g0 1_ 0|2 1_ 20\ |3
o [ (552 Jacl oy <zncc | 2| o (BTN et I ract |
r Q

Qp

14

25
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1 & —& 1
~ ~2 2
<2A18C,C,-C} ||V 7 h~ z||de sla,
Q,
22 F2 A 1_ 20\ |1
g Cce &5
<&ld + —— A ||V
62” elfllg 82h At
Q,
#CE,
<& llde; fllgf Tm/ IIV(?:,,),IIQ dt
C(g)A1*h2k C(g)ar
<£2”de|f|lgf T 2”de]f||gf > k221
In way similar, we obtain
- - 2
& -&) gC2C2C,C, & -¢
—2Atg | de! < e,8S,lld, 2#A12V'ff
g/ 1 < A ) sesSollde, &5 Soh At
r Qf
C(g, Sp)Ar*h*k
<&85lld; €1p||g — oh
C(g, Sp)Ar?
<e8Solldiey llg + - 50 k21
2
So from the definition of || - ||, in (14), we get
1 _ £0
&5 C(g, SpAr?
—ZAUZF T’dtfl,h <62||d elhllo T (64)
Do the same estimates of (64), we have
w' —u 1_ 0 1_,0
— -9 1 1 (u —u
2Atar <T d, e —2Atg/ <A—I> dlel,f “ny —2Atg/d,e1,p( A7 ) “ng
r r
2022 7 2520 7
87 CICIGC 2 e L 8GCTGC (65)
<52||d€ f||Qf TN/||V(Pt||gpdt+52g50||d:91,p||9p+TN/||Vux||g dt
10
C(g. Sy)AP
<52||d e]h||0 T
A combination of estimates (63)-(65) and (62) along with ¢, = 1/4 gives
2 2k p2kps2 , AP
lld,e! h||0+At||d e! h|| <C(g, Sp) | At? + h¥aH= 4 pohate 4 - ) (66)
From the estimates (66) and (61), we get
m—1 Ar )
lid,ef "2+ At Z I\d, e"+1 12, <CWv, g, Sps ki) <At +hR g gy 2 >
n=0 h
This completes the proof. []
We now give the error estimates for the Para-SDC decoupled algorithm.
Theorem 5.1. Under the assumptions of Lemma 5.2, we have
Art
e lIg + At Z lles5 I, < C (d, @, v, 8 Sos knmin) (At4 + h2kat2 | p2hot2 | T) . (67)

Proof. Considering the equation (15) for the time of # and #"*!, then calculate the mean of them resulting in
% [wit! + w!. 2] +%a(w +w'z)+ ;ar( "+ w z) +%b(§,p"+l +p") = %(f"+1 +f"z), VZEW,
b(w™ +w",q)=0, VgeOQ.

Then, subtracting it from (39), and considering (21) and (47), we have the following errors equations:
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1 i
& ‘E'ih . wolot 2 Vap(e ey | e w w8 8
AL a(eyl, -2y ) +ar (€2, Zw o B Ar 2h A 2h

n+1 n+1 n+l _ _n
e € € ~€n b €h " Ln
+a T’E" —ar T’E" o\ )

b( g;‘,q,,) 0.

(68)

Setting z, = 2Ate’“rl in (68) yields

n+1

_2,h : IIILZ(I*)
(69)

lless UG —lles ,llg + eyt — €5 ,llg +2atlles s 15,
0 =2,h"10 2,h 0

1 n

wt ot g £ €
=t = — = - n+1 n n+l 2 n+l _n+l 2 n+l _n+l

; N2y —2A1a1—< eHne >+At (delh,e )—At al"(‘irfu,’ 2h>

=241 | = -
[ 2 At * A

In a similar way to the estimation of (58), we get

—_ e

2 At At =2.h

1
_n+1 + w wt — §n+ _gn .
2At = — += — et

0
<2eAt]lett 2 - r -—
ehtlleyy lw +\ o + 2 A M
0 0

. 2
+1
c? 5,C? wrw' wt —wr g -¢
; s 3
min

By applying the property (16) and the estimation (31), we have

~2aiar (¢f,.¢55) ) = 280ar (e~ &5, 57) )

c ¢c, c,C
<eAr|lert, +ﬂmax{"—’, P! Atflertl — et 112,

h kmin VSO
Similar to the bound (44), we have

n+1 n+1 _ 2 n+l _n+l 2 n+l _n+l
ala(de )-Ataf(de]f,2f>+At s (derttent!)

1.h &
C2C,(d - Dag
1, e s AP ||de"+1||2

n+l 7 ” Lz(r) +
4e 4e/vekmin

We bound the last term on the rlght hand side of (69) by using (16) and (29),

<5At||e”+l||2

+1 +1 2 +1 +1 +1 3 +1 12
—Af ar<de" e ) Ala (;Yh,d,g’l’,h)<sAt||e" 12, + 4 k At ld e 112,

Under the condition (49), combining these above estimates with (69) and takmg e=1/5lead to

1 12 p t =t = =
et 12 ~ llel 12 + Arllert 12, <—+ - +

5C2C,(d — Dag 5¢C,C
§+ tp + 8L10, At3||d €n+l”2
4 4 ngmin 4Vkmin

5C2 SSOC? > A Znﬂ +w" ! — 2 §n+l _ ‘f”
—— t —_— —_—

0

min

Note that ggh =w,, - P;["ZO = 0. Summing (70) up from n=0, 1, .- ,m — 1, results in

n 2 §n+l_§n 2

5C2 55062 m—1 n+l + wn wn+1 —w
e + At en+1 2 _p+—p At w, _ = “ 4
ey, 13 Zn <\ 5"+ )v 2 5 < =
- 0 0

5C2C,(d—Dag  5¢C,C o
T [ + 202008 Y el I
4 4 ngmin 4'Vkmm n=0

Applying the Holder inequality and the regularities (51), we have

27
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tn+l
m—1 n+1 n n+1 n m—1 n+1 n
wotw w'-w w, tw 1
At Y 5 -= =AY 5 -— [ wadt
n=| 0 n=0 i
0
mel t"+1 2
<Aty /(z—t")(r " hw, dt
= DAt
0 (72)
,n+l t"+1
1 m—1
2 +1\2 2
<% Z /(t—t") (t — "1 di / lw,,|I2dt
= Vl t'l
In+]

4 4 2
< CAt Z / ”wrn”()dt < CAt <||utlI||L2(OT LZ(Q ) ||(ptn”L2(0,T;L2(Qp))> :

In addition, from (22) and (48), we have

2

1 il
m—1 ‘,;:n+l fn
VEIELE —AtZ /1 g dr <c2/||¢||0dt
(73)
0
< 2k +2 2ky+2
C(h IquIILZ((,”,kIH(Q yTh ||“’f”L2<oerz+1<sz »

Now applying the bounds given by (33), (72) and (73), the estimate (71) becomes
m—1 At4
I 2h||0 + At Z ||e"+1||2 <C(d,a,v,8, S kpin) (At4 + h2at2 4 p2hot? | 7) s kik, > 1

This completes the proof of theorem. []

By utilizing the approximation properties (22), along with Theorem 5.1 and the triangle inequalities, we can derive the following results
immediately.

Theorem 5.2. Under the assumption of Theorem 5.1, then we have

4
lwy, - w3 <C (d.a,v.8. Sp. kyin) <At4 + hPhat2 4 p2kot2 %’) ) (74)

min
6. Numerical experiments

There are three numerical experiments in this section to demonstrate the reliability and effectiveness of Algorithm 3.1. First, we examine the
convergence rate in order to illustrate the accuracy of our scheme. The second test verifies the stability for the smaller parameters v, .S, and k;,.
In the final experiment, we compare different schemes based on the second-order SDC method, demonstrating that our Para-SDC decoupled scheme
achieves comparable accuracy to other coupled or serial schemes while significantly reducing CPU time consumption.

6.1. Convergence rates
Let the computational domain Q C R2, with Q = 0,1)x(1,2), Qp =(0,1) % (0,1) and the interface I'= (0, 1) X {1}. We take the exact solution:

u(x,y,t)= ((xz(y - 1)2 + y)cos(t), ( - %x(y - 1)3 +2-— ﬂSil’l(T[x))COS(I)) s
p(x,y,t) = (2 — zsin(xx)) sin (%y) cos(?),
@(x,y,1) = (2 — zsin(zx)) (1 — y — cos(zy)) cos(r) + % (1+ @2 = zsin(zx))?) ((y = D? + 1) cos*(1).

For simplicity, we assume that all the physical parameters a, g, v and S, are set to 1.0 and the hydraulic conductivity tensor K = KI = I. The initial
conditions, the boundary conditions and the right-hand side source terms follow from the above exact solutions. The finite element spaces used
for the spatial discretization: the MINI elements (P1b — P1) to the Stokes problem, and the piecewise linear Lagrange elements (P,) to the Darcy
problem. And all tests in this paper are implemented by the software package FreeFem++.

In order to examine the spatial and temporal convergence rates by the varying mesh size 4 and time step Az for Algorithm 3.1, we utilize the
measure of convergence in [21], which can efficiently avoid the interaction between Ar and 4 in the convergence tests. Assume that Uﬁ’(x, 1) &
v(x,t,) + Ci(x,1,,)At" + Cy(x,t,)h*, let us define the measures to examine the orders to convergence with respect to the mesh size 4 and the time
step At as follows:
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Table 1
Convergence orders of Algorithm 3.1 with varying time step At but fixed spacing h =1/8.
At ||";A, - u;n A ”(LQ, PuAt0 ey, = o, 1l 19, PuAr ||I’ZTA, - P;‘ A ||§z, Pp,AL0
-2 -2 2
1/80 6.3298e-7 3.9738 3.8077e-6 3.9762 2.0317e-5 3.7878
1/160 1.5929e-7 3.9869 9.5763e-7 3.9878 5.3638e-6 3.8929
1/320 3.9953e-8 3.9933 2.4014e-7 3.9939 1.3779e-6 3.9463
1/640 1.0005e-8 6.0127e-8 3.4915e-7
At ”(l’;m - (P;"g ||1),gzp Po.Ar0 “(P;A, - ‘P;g ”1,gzp Po.Atl
1/80 1.1466e-5 4.0025 4.3678e-5 4.0044
1/160 2.8646e-6 4.0015 1.0907e-5 4.0024
1/320 7.1588e-7 4.0008 2.7252e-6 4.0012
1/640 1.7893e-7 6.8110e-7
Table 2
Convergence orders of Algorithm 3.1 with varying mesh £ but fixed time step Az =1/20.
h ey, =, llog, Puho 3, =) llig, Punt 1p3, =2 wllog,  Ppno
=3 °2 °2
1/8 1.3854e-2 3.9855 3.4879e-1 2.0380 1.0246e-1 2.9437
1/16 3.4760e-3 3.9925 1.7114e-1 2.0742 3.4808e-2 2.7994
1/32 8.7065e-4 3.9792 8.2509e-2 2.1704 1.2434e-2 2.7088
1/64 2.1880e-4 3.8016e-2 4.5903e-3
h o3, =] llog,  Pono o3, =) v llia,  Pon
"2 "2
1/8 3.4220e-2 3.9709 9.0197e-1 2.0373
1/16 8.6178e-3 3.9927 4.4273e-1 2.0957
1/32 2.1584e-3 3.9986 2.1126e-1 2.2346
1/64 5.3978e-4 9.4538e-2

Il vy (1) = 05 (1) i

S L Ao
v,hi — ~ 5
|3 et = v Gt ) g 29— 1
3 3
At
o s t) =0, Kty) lip 4y — o7
pU,Ar,i - At At ~ 27 —1 .

o} (x.t,) =0, (1,0 |l p

Here v refers to u, p or ¢, D denotes Q, or Q,, and i can be 0 and 1 representing the L?-norm and H!-norm, respectively. Specially, if Pyno and
Py.ar0 approach 4.0 for y =y =2, the corresponding order of convergence in space and time will be of O(h?) and O(A#?), respectively.

First, we test the order of convergence with respect to the time step At, and we set a fixed mesh size # = 1/8 and the varying time step Ar. Table 1
show the temporal convergence performances of the velocity u, pressure p and the piezometric head ¢ for Algorithm 3.1 at time #” = 1.0. Since all
the parameter p. 5,; ~# 4.0, i =0, 1, the convergence orders in time are O(Ar?). These numerical results illustrate the second-order convergence of
Algorithm 3.1. In Table 2, we list the results of convergence orders with respect to A, with a fixed time step At = 1/20 and varying spacing h. These
results display that the error estimates O(h?) for the L?>-norm of u'£ " and (,og”, w O(h) for the H'-norm of ug’ " and (p'z"’ W and the L2-norm of pg”, " is
optimal in space for Algorithm 3.1.

6.2. Stability for the smaller parameters

Since the Para-SDC decoupled algorithm is stable under a time step restriction (32), we then check the stability of it with the smaller parameters,
such as v, S and K. To test the effects of the smaller parameters on the stability, we define the quality of energy E(t") = ||ug’ b ||522/ +g5) ||(p’2" n ||§z .
» ’ P

Choose the source terms f; =0 and f, = 0, the initial values u° = 1 and ¢° = 1. We set all physical parameters to 1 except v, .S, and K. Due to
the hydraulic conductivity tensor are set to K = KI, k., in (18) is equal to the hydraulic conductivity variable K. Fig. 1 displays the quantity
of energy E(¢™) with the smaller parameters v, .S, and k,;,, respectively. Apparently, our decoupled scheme is still stable even for much smaller
v, 80, ki, than our stability analysis predicted.

6.3. Comparisons of varied second-order methods

In order to demonstrate the effectiveness of the decoupled and parallel techniques for Algorithm 3.1, we evaluate our scheme against various
algorithms that based on the second-order SDC method. For example, the second-order SDC algorithm [43], and the Para/SDC algorithm [42] which
is based on the parareal and second-order SDC methods. However, these two schemes solve the mixed Stokes/Darcy model directly. Furthermore,
we present the second-order decoupled algorithm based on SDC method in Algorithm 6.1, as a reference to highlight the parallel efficiency of our
Para-SDC decoupled algorithm.

Algorithm 6.1. (SDC Decoupled Algorithm)
Step 1. Using the first-order decoupled scheme (23) to get (gﬁll N Pﬁzl) withn=0,...,N — 1.
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Fig. 1. Energy of Algorithm 3.1 on the time step points " with fixed Ar=1/10 and h =1/32.
Table 3
Comparisons of the various second-order algorithms based on SDC method.
=1/1 =1/12
Numerical Algorithms h=1/16 h=1/128
Error CPU(s) Speedup Error CPU(s) Speedup
SDC 1.5545e-2 17.312 1.3579%-3 1037.23
SDC Decoupled 1.5546e-2 10.696 1.3585e-3 663.394 -
Para-SDC 1.5545e-2 6.470 2.676 1.3579e-3 423.412 2.450
Para-SDC Decoupled 1.5546e-2  4.059 4.265 1.3585e-3  268.229  3.867
Step 2. Using the second-order SDC method to compute (w'i™', p') € W, X O, such that V (z,,.45) € W, X Qy,
n+1 n
w —w
=D =D n+1 n+1
Ar 2 +a(wy'.z,) +b(z,.0p")
n+1 n n+1 n n+1 n
" Win ~¥in Win ~®in Pin ~Pin ViaRE o i
=-ar (wh.z,) va| =5z, | mar| =z, ) Hb| 2 | (T3 )
n+1 —
b (ZD ’ qh) =0.

We will display the errors between the exact solutions and the numerical solutions, along with the Central Processing Unit (CPU) time for the
various second-order schemes. In addition, to quantitatively measure the parallel efficiency, let us define the parallel speedup as the ratio between
the serial with parallel cost. Let us calculate the parallel speedup of Algorithm 3.1. Assume that there are 2N processors can be allocated to the
N sub-intervals [¢",#"*1], n=0,1,---, N — 1. Therefore, each time step will be assigned two processors, such as the processors Py, and P,,,, are
assigned to the subinterval [¢",#"*!]. Hence, we are capable to solve these two decoupled sub-problems over each time step concurrently. Let us
denote Y ¢ and Y i ¢ as the numerical cost of one processor to compute the decoupled Stokes equations over one time step based on the ¥ and %,
respectively. In the same way, we denote Y p and Y , as the corresponding cost for the decoupled Darcy equations. Notice that the computational
cost of the Stokes equations is greater than that of the Darcy equations. Assume that all processors are homogeneous and the communication delays
between them are negligible. Hence, following the pipelined version [44] of parareal method, the total cost of the Para-SDC decoupled algorithm
for one iteration with 2N processors equals

N-max{Ys 5 Ygpl}+ (max{YF,S,YF’D} +max{YG’S,YG,D})
=NYos+(Yrs+Yes) =N+ DYg5+ Yrs.
What’s more, the computational cost of the serial second-order SDC method is N(Y; + Y ), where Y; and Y  represent the cost for one processor

NXG+YFp)

— G-I~ Following a similar process, we
(N+DY g s+YF 5 & P ’

to compute one time step of & and &, respectively. Hence, the parallel speedup of Algorithm 3.1 is

can obtain that the parallel speedup of Para-SDC algorithm [42] is equal to NQGHYp)
(N+DYg+Yp

We consider the same computational domain, triangulation and exact solutions of the test as in Section 6.1. Let us take the fixed time step size
At =1/100 and varying spacing h =1/16,1/128. In Table 3, we provide the errors between the exact solutions and the numerical solutions, CPU
time and the parallel speedup of different algorithms. From the data in Table 3, it is easy to see that our Para-SDC decoupled scheme almost retains
the same accuracy as the other schemes, but owns the least CPU time and the highest parallel speedup. Accordingly, the decoupled and parallel
techniques in our scheme do not degrade approximation accuracy, but they improve the computational efficiency significantly.

, which is obviously less than that of Algorithm 3.1.

7. Conclusions

This article proposes and analyses a second-order time parallel decoupled algorithm for the unsteady mixed Stokes/Darcy model. It is able
to effectively improve the computational efficiency in solving the coupling problems, as well as take full advantage of the abundant parallel
computing resources available today. The stability and convergence results are evaluated under some time step limitations. Numerical experiments
are conducted to demonstrate the computational accuracy, stability and efficiency of our algorithm. The future work is promising in extending this
approach to nonlinear cases in the fluid part, or even the phase field model of the coupled two-phase free flow and two-phase porous media flow.
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