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Abstract: Compressed sensing (CS) has been successfully demonstrated to reconstruct ultrafast
dynamic scenes in ultrafast imaging techniques with large sequence depth. Since compressed
ultrafast imaging used a two-step iterative shrinkage/thresholding (TwIST) algorithm in previous
image reconstruction, some details of the object will not be recovered when the amount of data
compression is large. Here we applied a more efficient Total Variation (TV) minimization scheme
based on augmented Lagrangian and alternating direction algorithms (TVAL3) to reconstruct the
ultrafast process. In order to verify the effectiveness of the TVAL3 algorithm, we experimentally
compare the reconstruction quality of TVAL3 algorithm and TwIST algorithm in an ultrafast
imaging system based on compressed-sensing and spectral-temporal coupling active detection
with highest frame rate of 4.37 trillion Hz. Both dynamic and static experimental results show
that, TVAL3 algorithm can not only reconstruct a rapidly moving light pulse with a more precise
profile and more fitted trajectory, but also improve the quality of static objects and the speed of
reconstruction. This work will advance the ultrafast imaging techniques based on compressed
sensing in terms of image reconstruction quality and reconstruction speed, which finally helps
promoting the application of these techniques in areas where high spatial precision is required,
such as phase transitions and laser filamentation in nonlinear solids, etc.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Nowadays, researchers have discovered various phenomena with great scientific significance.
These phenomena usually happen in very short time scales. For example, the investigation
about laser-material interactions, especially about optical material modification [1–3] and laser
filamentation [4] are critical to the development of advanced optical waveguide, photonics crystals,
and ultrashot pulse laser. But these processes are in the picosecond domain. Moreover, the study
of molecular dynamics, which happens in the femtosecond domain can provide experimental basis
for the study and control of chemical reactions, molecular phase transitions, etc. To reveal the
essence of these microscopic processes, ultrafast photography and measurement technologies with
extremely high imaging speed have been proved to be a powerful tool [5]. Pump-probe technique
can detect ultrafast processes that happens in femtosecond scale [6,7]. However, it cannot observe
events that are difficult-to-reproduce or non-repetitive. Recently, several techniques have also
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emerged to obtain multiple images of ultrafast processes with a single detection, such as angle-
division-based multiple-camera (ADMC) [8], multiframe femtosecond time-resolved optical
polarography (M-FTOP) [9], sequentially timed all-optical mapping photography (STAMP)
[10,11]and frequency recognition algorithm for multiple exposures (FRAME) [12]. Among these
promising methods, although they can record ultrafast processes with extremely high temporal
resolution, the sequence depth is limited. To get enough frames, the amount of data increases.
In this way, there will be difficulties in the storage, transmission and recovery of information.
To address this challenge, many ultrafast imaging systems utilize compressed sensing (CS)
algorithms [13] to reconstruct high-dimensional data from acquired low-dimensional data.

For the ultrafast imaging techniques based on CS algorithms [14–17], the temporal slices of an
ultrafast scene are spatially encoded and compressed into a single 2D image. In previous work,
most of the ultrafast image sequences were reconstructed from the compressed 2D image using a
two-step iterative shrinkage/thresholding (TwIST) algorithm [18]. The two steps in the TwIST
algorithm can be considered as iterative convergence and denoising [19]. So far, TV (Total
Variation) minimization has been used as the denoising step of TwIST in compressed ultrafast
imaging. The first few iterations of the TwIST algorithm could give satisfactory reconstruction
results, but the remaining iterations may be sometimes not. Due to the functional characteristics
of the TV model itself, with the frame further increases, it still lacks a certain robustness
when reconstructing images. Moreover, the main time-consuming part of running TwIST is the
denoising step operation. Considering that many important ultrafast processes happen in the field
of microscopy, which means that to have a clear knowledge about them need a spatial measurement
with high precision reconstruction, the current reconstruction quality in compressed ultrafast
imaging should be improved. In this paper, we applied a more efficient TV minimization scheme
based on augmented Lagrangian and alternating direction algorithms (TVAL3) to reconstruct
the ultrafast process in femtosecond scale [20,21]. TVAL3 algorithm was applied by Yang et
al. [22] in a compressed imaging system based on streak camera for passive-detecting. Due
to the electron optical structure in the streak camera, additional aberrations, such as distortion,
astigmatism, will be introduced, resulting in limited image quality. Here, we use an all-optical
active-detecting system named compressed ultrafast spectral-temporal photography [15], which
can achieve higher imaging quality. Compressed ultrafast spectral-temporal photography is
capably of measuring the transient events at speeds up to 1012 frames per second (fps) with a
sequence depth of tens of frames in a single shot. Moreover, it can also recover the spectral
imaging with sub-nm resolution. We experimentally measured a detective laser illuminating the
static objects and light propagations with highest frame rate of 4.37 trillion Hz. From the static
and femtosecond dynamic reconstruction results, the reconstruction performance of TVAL3
algorithm shows great progress in spatial resolution and accuracy of reconstruction of unknown
ultrafast processes compared with TwIST algorithm.

2. Principle and experiment

In the experiment, a fs pulse is stretched to chirped pulse by grating group of optical dispersion
elements. In the chirped pulse, the frequency of pulse changes with time. In this way, according
to spectral-temporal coupling, different wavelength corresponds to different time. When an
ultrafast dynamic scene O(x, y, t) is detected by the stretched pulse, different temporal segments
of O(x, y, t) are detected by different spectral components and converted into spectral-temporal
image sequence. The spatial-temporal distribution of the stretched pulse is denoted as a density
matrix I(x, y, t) or I(x, y,λ). Then the coded aperture spatially encodes the spectral-temporal
image sequence with a pseudorandom binary pattern, which can be donated as matrix, C. The
encoded scene is spatially dispersed by a dispersive element, and then the 3D x-y-t date cube is
transformed into a 2D image to be recorded by CCD, the process of which is donated by matrix,
T. C and T are used to record images according to the CS theory. Only the images processed in
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this way can be restored by the CS algorithm [23]. In this paper, our reconstruction processes are
all done using MATLAB R2020b on a computer configured with Intel(R) Core (TM) I7-10700
CPU @ 2.90GHz. The 2D image E(x, y) can be written as

E(x, y) = T · C · I · O · (x · y · t) = ϕ · O(x, y, z) (1)

Where T is an image compressor, C is a spectral-temporal encoder, I is a density matrix, and
we define ∅ = T · C · I, ∅ is a transform matrix. A clearer mechanism representation is shown
in Fig. 1(a). In Eq. (1), the data cube of observation images E is much smaller than that of the
ultrafast target O(x, y, t), so it is an ill-conditioned problem to solve. According to the compressed
sensing theory, the O(x, y, t) we need can be acquired by solving an optimization problem:

minO(x,y,t)
∑︂

i
∥ DiO ∥, s.t. ϕO = E (2)

Where DiO is a discrete gradient calculation for each pixel of O(x, y, t) horizontally and vertically.

Fig. 1. (a) Schematic diagram of ultrafast imaging techniques based on CS algorithms; (b)
Flow chart of the TVAL3 algorithm

Furthermore, Eq. (2) has been proved to be equivalent to Lagrangian function, which is
expressed as:

min
O(x,y,t)

L =
∑︂

i
∥ DiO ∥ −λ(E − ϕO) (3)

In order to solve the above equations, researchers have applied the TwIST algorithm to the TV
model to solve the fast optimization problem in recent years. The problem solved by the TwIST
algorithm can be expressed as follows:

Ô = arg min
o

{︃
1
2
∥ E − ϕO ∥2

2 +λ
(︂∑︂

i
∥ DiO ∥

)︂}︃
(4)

Where
∑︁

i ∥ DiO ∥ is called the regularizer which usually is total variation (TV), λ is the
regularization parameter that balances the fidelity term ∥E−∅O ∥2

2 and the regularizer
∑︁
i
∥ DiO ∥.

Since the main time-consuming part of the TwIST algorithm is the TV noise reduction part,
this makes the algorithm’s time to calculate the reconstruction results much slower than that
of the l1 solver. Also, due to the non-differentiability and nonlinearity of the TV model, the
Eq. (2) is difficult to solve. In previous research, Wang, Yang, Yin et al. applied the alternating
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minimization method to the TV model to deconvolute and denoise the image. Although the
solution speed of this method is much faster than that of the l1 solver, the available measurement
matrices are limited.

Based on the idea of solving the TV model by this alternating minimization method, this part
will introduce the TVAL3 algorithm. TVAL3 combines the augmented Lagrangian (AL) function
method and the alternating minimization method on the basis of the TV algorithm, and then uses
the steepest descent method to find the minimum value and improve the signal-to-noise ratio of
the image.AL function is written as:

min
ωi,O

∑︂
i

∥ ωi ∥, s.t.ϕO = E and DiO = ωi for all i (5)

By compare Eq. (2) and Eq. (5), since the term ∥· ∥ in the TV model is non-differentiable,
we introduce a slack variable ωi at each pixel to move the non-differentiable term out. The
augmented Lagrangian function corresponding to Eq. (5) is:

min
ωi,O

L (ωi, O) =
∑︂

i
(∥ ωi ∥ −ν

T
i (DiO − ωi) +

βi
2

∥ DiO − ωi ∥
2
2 )

− λT (E − ϕO) +
µ

2
∥ E − ϕO ∥2

2

(6)

In order to facilitate the solution of the above equation and overcome the non-differentiability
and nonlinearity mentioned above, TVAL3 uses the alternating minimization method at each
iteration to solve. The above formula is divided into two sub-formulas, the first formula is
“ω-subproblem”:

min
ωi

∑︂
i
(∥ωi ∥ −ν

T
i (DiO(k) − ωi) +

βi
2

∥ DiO(k) − ωi ∥
2
2 ) (7)

The result of Eq. (7) is as follow:

ω
(k+1)
i = max

{︃|︁|︁|︁|︁DiO(k) −
νi
βi

|︁|︁|︁|︁ − 1
βi

, 0
}︃

sgn
(︃
DiO(k) −

νi
βi

)︃
= shrike

(︂
DiO(k); νi, βi

)︂ (8)

Then, use the solved ω(k+1)
i to solve the second formula is “O(k+1)-subproblem”:

min
O
Qk (O) ∗ =

∑︂
i
(−νTi (DiO − ωi) +

βi
2

∥ DiO − ωi ∥
2
2 )

− λT (E − ϕO) +
µ

2
∥ E − ϕO ∥2

2

(9)

The gradient of Qk(O) is

dk(O) =
∑︂

i
(βiDT

i (−DiO − ω
(k+1)
i ) − DT

i νi) + µϕ
T (E − ϕO) − ϕT (10)

Steepest descent method can update O(k+1):

O(k+1) = O(k) − αkdk(O) (11)

α is compute step length. The parameters νi and λ are updated as follows:

νk+1
i = vk

i − β
k
i (DiO(k+1) − ωk+1

i ) (12)

λk+1 = λk − µk(E − ϕOk+1) (13)
So far, both the ω-subproblem and the O-subproblem are solved. By using the above iterative

formula, the optimal solution of the original signal can be found. For a clearer representation, the
algorithm flow chart is shown in Fig. 1(b).
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3. Result and discussion

3.1. Reconstructions of static spectral images

In order to prove the superiority of TVAL3 algorithm, we firstly performed acquisition reconstruc-
tion of the resolution test chart in this system. The experimental setup is shown in the Fig. 2(a).
At first, a designated spectrum of the fs pulse transmits through the resolution test chart. After
that, the wavefront carries the information of the object which is imaged via a 4f imaging system
(Both lenses have a focal length of 200mm) on a transmission mask. Then the mask encodes the
image which carries the spectral information. The encoded spectral image is spatially modulated
by the dispersion grating, different wavelengths correspond to different spatial positions during
this process [24]. Finally, the wavelength-dependent images are intensity-superimposed on the
CCD plane and recorded by the 2D CCD, as shown in the Fig. 2(b). In this system, we collected
and reconstructed 50 frames of the element of the resolution test chart. The spectral resolution is
0.25nm. The spatial resolution is 2.83lp/mm. Since the dispersion grating disperses the spectral
image in the lateral direction, the vertical lines in the 4 element will overlap each other so that a
large part of the information will be overwritten. Figure 2(c) shows the reconstruction images by
the TwIST and TVAL3 algorithms, respectively. In order to compare the reconstruction quality
of the two algorithms more clearly, we plot the intensity curve of the reconstructed image at the
blue line, as shown in the right panel of Fig. 2(c). Compared with the intensity curve of the static
image (Fig. 2(d)), the TVAL3 algorithm reconstructs the vertical lines with a higher contrast, and
all the vertical lines are reconstructed clearly and distinguishably in the displayed frames, while
more background noise is involved for the recovery results of the TwIST algorithm.

What’s more, in the case of different compression ratios, the reconstruction quality of the
two algorithms is compared. The reconstruction results of the 13th frame (corresponds to
799.01nm) under different compression ratios are shown in Fig. 2(e) and (f). Figure 2(e) shows
the phenomenon that as the number of acquisition frames increases, the reconstructed vertical
lines becomes more and more blurred, while the reconstructed vertical lines of the TVAL3
algorithm have always been distinguishable. Figure 2(g) and (h) are the intensity curves (located
at the same place as the blue line drawn at the Fig. 2(c)) of the reconstruction results of the TwIST
and TVAL3 algorithms when the number of acquisition frames varies from 20 to 50 frames.
As these two figures clearly showing, the intensity contrast of reconstructed vertical lines by
TwIST algorithm goes from high to low. In other words, the reconstruction quality of the TwIST
algorithm decreases with the decrease of the compression ratio. Compared with the TVAL3
algorithm, the reconstruction quality of the TVAL3 algorithm within 50 frames is close to the
original static image. In addition, the reconstruction speed of the observation images with the
frame number ranging from 20 frames to 50 frames under different algorithms is compared. As
shown in Fig. 2(i), the running time of the TVAL3 algorithm (from 20 to 50 frames are 53s, 57s,
85s, 87s, 115s, 124s, 141s, respectively) is much shorter than that of the TwIST algorithm (from
20 to 50 frames are 96s, 124s, 166s, 197s, 216s, 271s, 307s, respectively). Meanwhile, ratio
between running times of TwIST and TVAL3 algorithms is shown in the inset in Fig. 2(i). As can
be seen from the inset, the reconstruction speed of the TVAL3 algorithm is about twice as fast as
that of the TwIST algorithm. Therefore, the TVAL3 algorithm not only has better reconstruction
quality, but also faster reconstruction speed.

3.2. Reconstructions of light propagation

The experimental arrangement is shown in the Fig. 3(a). A beam of pump pulse acts on the
medium based on the Kerr effect, which leads to the heterogeneous change of the refractive index
of the medium [9,25]. At the same time, a beam of a chirped pulse passes through the medium as
a probe pulse. Around the place where the pump light acts, the probe light will be birefringent at
the corresponding position due to the Kerr effect. Only the probe light in this area can be detected
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Fig. 2. Static experimental results. (a) Experimental setup for the spectral measurement of
resolution test chart; (b) Observation image recorded by CCD; (c) Selected reconstructed
image from TwIST and TVAL3 algorithms (left and middle) and intensity curve (right); (d)
Recorded static image of test resolution target from external CCD (left) and intensity curve
of the vertical lines (right); (e) and (f) Reconstructed results of the 13th frame under different
compression ratios by TwIST and TVAL3 algorithms; (g) and (h) Intensity curves of the
reconstruction results of the TwIST and TVAL3 algorithms from (e) and (f); (i) Running
time of the TwIST and TVAL3 algorithms.
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by the subsequent system. Therefore, the probe pulse carries the information of light propagation.
According to the principle of spectral-temporal coupling, the temporal information of the light
propagation can be transferred into the spectral information and collected by the compressed
camera. Figure 3(b) show the reconstructed images of three straight-propagating light pulses
captured by this system under different algorithms (see Visualization 1, Visualization 2 and
Visualization 3). The number of frames captured in each group is 30 frames. The frame interval
in the three groups are 229fs, 384fs, and 337fs, which corresponds to the frame rate of 4.37, 2.6
and 2.97 trillion Hz respectively. The result of Fig. 3(b) shows one frame from six frames.

Fig. 3. Light propagation experimental results. (a) Experimental arrangement; (b) Three
sets of reconstructed images of flying light pulse by TwIST and TVAL3 algorithms.

In order to have a clear comparison between the TwIST and the TVAL3 algorithms, we fitted
the motion trajectory of the center of the light spot, as shown in Fig. 4(a) and (b). The straight
lines of different colors in Fig. 4(a) and (b) correspond to the light spot trajectories marked by
the corresponding colored arrows in Fig. 3(b). The center coordinates of the three groups of light
spots reconstructed by the TVAL3 algorithm are basically on the fitted line, while the second
group of light spots (blue line) reconstructed by the TwIST algorithm have many deviation points.
What’s more, the fit of the three groups of fitted curves are also calculated, as shown in Fig. 4(c).
The fitting degree of three group of the reconstruction results of TwIST algorithm are 0.93, 0.94,

https://doi.org/10.6084/m9.figshare.21252045
https://doi.org/10.6084/m9.figshare.21252087
https://doi.org/10.6084/m9.figshare.21252090
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0.85, respectively. However, these values in the reconstruction results of TVAL3 algorithm are
0.95, 0.99, 0.97, respectively. It is clearly shown that TVAL3 algorithm has a higher degree of fit,
and they are all close to 1. So, the reconstruction results of TVAL3 have a better fit. In addition,
computational imaging will always resolve some noise beyond the original signal. Therefore, the
radial size of the reconstructed spot should be as close to the width of collected spot as possible.
In other words, the smaller the width of the spot, the better the reconstruction effect. In order to
compare the difference in the shape of the reconstructed light spots, we performed shape fitting
on the first group of light spots reconstructed by the TwIST algorithm and the TVAL3 algorithm,
as shown in Fig. 4(d). The reconstruction spot of the TwIST algorithm has 32 pixels on the long
axis and 20 pixels on the short axis, while the reconstructed spot of the TVAL3 algorithm has 23
pixels on the long axis and 17 pixels on the short axis. In contrast, the light spot reconstructed by
the TVAL3 algorithm should be closer to the original image. In addition, the length of the short
axis has little difference with the width of the observed image of the collected light spot. Finally,
conclusion can be got that the reconstruction quality of the TVAL3 algorithm is better than that
of the TwIST algorithm.

Fig. 4. Analysis of dynamic reconstruction results. (a) and (b) Fitted motion trajectory
of light spot center of TwIST and TVAL3 algorithms, respectively; (c) The fit of the three
groups of fitted curves; (d) Shapes of the reconstructed light spots

4. Conclusions

In conclusion, we successfully used the TVAL3 algorithm in the reconstruction process of
the compressed ultrafast spectral temporal photography. Compared with the TwIST algorithm
which is commonly used in the ultrafast imaging techniques based on CS algorithms, TVAL3
algorithm combines the augmented Lagrangian function method and the alternating minimization
method on the basis of the original TV model, and then uses the steepest descent method to
solve the inverse problem. We have experimentally proved that the TVAL3 algorithm can
noticeably improve the spatial resolution of reconstructed objects at high frame rates and sub-nm
spectral resolution. Moreover, under different compression ratios, TVAL3 algorithm can not
only reconstruct clear images, but also significantly improve the speed of reconstruction. In the
process of reconstructing the spot motion, the motion trajectory of the spot reconstructed by
the TVAL3 algorithm can well fit the fitting trajectory. Besides, due to the optical system, the
collected light spot will be distorted, but the shape of the light spot reconstructed by the TVAL3
algorithm can be closer to the real light spot. Therefore, in the subsequent observation of the
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ultrafast process of unknown results, such as femtosecond laser direct writing, phase transition
and laser filamentation, the reconstruction accuracy of the TVAL3 algorithm should be higher.
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