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Abstract: Slippery liquid-infused porous surfaces (SLIPSs) have become an effective method to
provide materials with sliding performance and, thus, achieve liquid repellency, through the process
of infusing lubricants into the microstructure of the surface. However, the construction of microstruc-
tures on high-strength metals is still a significant challenge. Herein, we used a femtosecond laser
with a temporally shaped Bessel beam to process NiTi alloy, and created uniform porous structures
with a microhole diameter of around 4 µm, in order to store and lock lubricant. In addition, as the
lubricant is an important factor that can influence the sliding properties, five different lubricants
were selected to prepare the SLIPSs, and were further compared in terms of their sliding behavior.
The temperature cycle test and the hydraulic pressure test were implemented to characterize the
durability of the samples, and different liquids were used to investigate the possible failure under
complex fluid conditions. In general, the prepared SLIPSs exhibited superior liquid repellency. We
believe that, in combination with a femtosecond laser, slippery liquid-infused porous surfaces are
promising for applications in a wide range of areas.

Keywords: SLIPS; femtosecond laser; NiTi alloy; liquid repellency; sliding performance

1. Introduction

Achieving anti-adhesion and self-cleaning properties for material surfaces has at-
tracted the extensive attention of researchers, as it can be profitable in various areas, such
as in marine environments for anti-fouling [1–5], medical devices for anticoagulation [6,7],
consumer goods for packaging [8–10], etc. In 2011, Wong et al. first reported a slippery
liquid-infused porous surface (SLIPS) inspired by Nepenthes pitcher plants. Lubricants
were infused into the prepared micro/nanostructures, and provided the substrates with
stable and effective liquid repellency and fouling resistance [11]. Zhu et al. fabricated a
type of coating with rough structures on glass, metal, and PET substrates via layer-by-layer
assembly. After lubricant infusion, the surfaces showed superior sliding performance
compared to various liquids. With different substrate materials used, SLIPSs can be made
flexible and transparent to extend their applications [12]. Karkantonis et al. processed
two types of topography on stainless steel using femtosecond laser scanning. By adopting
the replica method, the structures were further prepared on polystyrene and polypropy-
lene sheets. After infusion with silicone oil, the three substrates showed anti-adhesive
characteristics when tested with liquid foods such as water, milk, and highly viscous
honey [8]. Zouaghi et al. made comparisons between a conventional fluorosilane-modified
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superhydrophobic surface and a lubricant-infused surface in terms of fouling resistance
against dairy products. The rough superhydrophobic surface failed, as nanoscale proteins
could enter and become trapped inside the microscale structures, while the lubricant on the
SLIPS could provide a molecular-level barrier to resist the adhesion. The protein adhesion
compared to the untreated surface decreased by 63 wt.%, proving that SLIPSs are more
reliable in complex environments [9,13].

Despite the great potential of SLIPSs in liquid repellency and fouling resistance, it
is still a challenge to prepare SLIPSs on high-strength and hard materials such as metals.
The preparation process involves three requirements [11,14–17]: (1) The lubricants should
be able to wet the surface and enter the gap between rough structures. (2) The substrate
should be preferentially wetted by the lubricant rather than the external liquids. (3) The
lubricant and the external liquids should be immiscible. Therefore, the construction of the
microstructure and the selection of lubricants become particularly crucial. Microstructure
construction can be roughly classified into bottom-up (material addition) and top-down
(material removal) approaches, or combined approaches [18,19]. Zhu et al. prepared a
double-layer coating via a spraying method. The top layer was sprayed with a combination
of graphite fluoride and PTFE to reduce the surface energy. The second layer was sprayed
with a combination of α-zirconium phosphate and epoxy to help the coating adhere to
the substrates. By infusion with Krytox GPL105, the SLIPS coating was formed on the
steel plate [20]. Mousavi and Pitchumani et al. used an electrodeposition method on
conductive copper sheets to produce multiscale structures with heights of 30–40 µm. Then,
the sheets were treated with a chemical etching to induce relatively shallow textures. After
low surface modification and silicone oil infusion, the prepared superhydrophobic surface
and SLIPS were compared in terms of their anti-corrosion properties [21]. However, the
abovementioned methods either include complex operating steps, or can only be applied
to a limited range of materials. Moreover, additive coatings fabricated on some smooth
substrates are likely to come off or wear away, causing the loss of slippery properties, while
substrate-based microstructures do not have this problem.

A femtosecond (fs) laser, with high peak power and short pulse width, is an on-site
processing method that is able to directly create precise micro/nanostructures on almost
any material [22–30]. Moreover, the process is simple and highly controllable, making
it a powerful technique for the construction of SLIPS substrates [7,31–35]. Herein, we
converted a Gaussian laser beam to the Bessel profile, and the continuous laser pulses
were transformed into pulse trains through a method of pulse shaping. The shaped laser
created a uniform porous microstructure on the NiTi alloy surface, which was able to
lock the lubricant after liquid infusion. Because the applied lubricant is another crucial
factor that greatly affects the sliding properties of SLIPSs, five lubricants (silicone oil of
three viscosities, perfluorodecalin (PFD), and perfluoropolyether (PFPE)) were chosen to
infuse the laser-ablated porous surfaces and characterize their practical performances under
the tested conditions, in order to study the sliding patterns and provide a reference for
lubricant selection.

2. Materials and Methods
2.1. Materials

NiTi alloy substrates were received from Baoji Seabird metal material Co., Ltd. (Baoji,
China), and cut into square pieces (20 mm × 20 mm). Silicone oil of different viscosities and
perfluoropolyether (Fomblin® Y, PFPE) were obtained from Shanghai Aladdin Biochemical
Technology (Shanghai, China). Perfluorodecalin (PFD) was obtained from J&K Scientific
Ltd. (Beijing, China)

2.2. SLIPS Fabrication

The process of SLIPS fabrication here involved three main steps: laser ablation, low-
surface-energy treatment, and lubricant infusion, as shown in Figure 1a. Before the laser
ablation, the NiTi alloy pieces were polished with sandpaper (800 mesh and 1200 mesh,
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in sequence) to guarantee that the surface was even in the focus point and the ablated
structure was uniform. Then, all of the samples were washed in an ultrasonic bath with
ethanol and water to remove dust and sand particles. The optical path of the laser system
is shown in Figure 1b. During laser processing, the femtosecond (fs) laser generated
by the fiber femtosecond laser system (FemtoYL-40, YSL Photonics, Wuhan, China) was
controlled to be 400 fs (pulse width), 2.5 MHz (frequency), 1030 nm (wavelength), and
2.974 W (power). Then, the pulse wave generated by the signal generator functioned as an
external trigger, and converted the fs laser pulses into clustered pulse trains, regulated to be
2 kHz (selecting frequency) and 20% (duty ratio). Each pulse train consisted of 250 single
pulses, and the corresponding energy of an independent pulse chain was calculated to be
1487 µJ (Figure 1c). After being reflected and transported by several mirrors, the initial
laser passed through a convex lens and a long-focus lens, and was shaped from a Gaussian
beam into a Bessel beam. Next, the Bessel laser beam entered the microscopic system,
and was focused through an objective lens (×20, NA = 0.40, Nikon, Japan) onto the metal
sample, which was placed on a controllable object stage. The object stage moved regularly
in line arrays at a speed of 12,000 µm/s and a scanning distance of 6 µm to match the pulse
trains (Figure 1d).
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Figure 1. Femtosecond laser fabrication of porous microstructures on the NiTi alloy substrates:
(a) Fabrication of the SLIPS on the NiTi alloy. (b) Optical path of the femtosecond laser fabrication
system. (c) Illustration of externally triggered laser pulse trains. (d) Scanning path controlled by the
object stage.

After the laser processing, the NiTi alloy samples were exposed to air for 7 days to
absorb carbon as a low-surface-energy treatment and, thus, achieve mild hydrophobic
properties. Subsequently, different types of lubricating oil—including silicone oil of three
viscosities (10 mPa·s (SiO-10), 200 mPa·s (SiO-200), and 500 mPa·s (SiO-500)), PFD, and
PFPE—were infused into the treated samples to fill the porous structures and form a thin
oil layer on the surface, endowing the surface with sliding properties.

2.3. Characterization

Contact angles (CAs) and sliding angles (SAs), as well as the sliding performances of
the tested liquids on the prepared SLIPSs, were characterized using a contact angle meter
(JC-2000D, Powereach, Shanghai, China). The droplet adhesion forces of deionized water
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and ethanol were tested with a surface tension meter (DCAT11, DataPhysics, Filderstadt,
Germany). The laser-ablated porous structure was observed with a scanning electron
microscope (SEM, Flex1000, Hitachi, Tokyo, Japan). In the durability test, high-temperature
cycling was carried out in a heating chamber (KCSHWHS, AISRY, China), and the hydraulic
pressure test was carried out in an industrial pressurized cabin (YX-JL-QF30-40L, YUEXIN,
Guangzhou, China).

3. Results and Discussion
3.1. SLIPSs on the NiTi Alloy

The fabrication of SLIPSs includes structure construction on substrates and the in-
fusion of lubricants (Figure 1a). An appropriately rough structure is one of the essential
criteria in preparing SLIPSs. Herein, the fs laser pulse was triggered by an external signal
and temporally divided into pulse trains. Through adjusting the object stage with the
corresponding running speed and scanning line distance, laser pulse trains were able to
match with the running path and, thus, ablate the ordered and uniform structure. In
addition, as the Bessel beam had a large depth of field and small spot size, it showed a
specific advantage of processing porous structures with a high depth-to-diameter ratio
on metal surfaces. As shown in the optical path in Figure 1b, the fiber femtosecond laser
system output the infrared Gaussian beam, and it was subsequently shaped into a Bessel
beam by a convex lens and a long-focus lens, increasing the depth of field and reducing
the spot size. Therefore, the energy of each pulse train was absorbed by the NiTi alloy and,
accordingly, created a deep microhole on the surface. SEM images of the top view and
cross-sectional view show the details of the laser-ablated structure from the surface and
the inside (Figure 2a). The porous structure at a micro scale was neatly distributed on the
NiTi alloy, with a spacing of around 6 µm. The distribution period can be controlled by the
scanning path and the laser frequency, as mentioned above. The microhole diameter was
about 4 µm, as a result of the laser power and the spot size of the Bessel beam. Meanwhile,
a large number of nanoparticles could be seen scattered around the microholes, because
the material was molten, sputtered, and then solidified on the surface during processing
caused by the high peak power of the fs laser. The cross-sectional view showed the vertical
depth and the spatial pattern of the microporous structure. The microholes featured a depth
of about 6 µm, and the shape of the internal channels sloped irregularly at the interior of
the NiTi alloy, which could be attributed to the adopted Bessel beam. This special structure
can be filled with sufficient lubricant and provide beneficial lubricant storage conditions.

The general process of SLIPS fabrication on a laser-ablated surface is shown in
Figure 1a. After cleaning the surface, the native NiTi alloy exhibited a hydrophilic property,
with an intrinsic CA of 79.2◦ (Figure 2b). Its SA exceeded 60◦, and the water droplet
was unable to slide off the surface. After fs laser ablation, the CA was reduced to 16◦.
According to the Cassie–Baxter model, the microstructure on the surface can amplify its
wettability, making the hydrophilic surface more hydrophilic, and vice versa. As the SLIPS
substrate should be preferentially wetted by the lubricant, a low-surface-energy treatment
was required here. Instead of using chemical modification, which is more complex and
causes environmental pollution, we simply placed the samples in the ambient environment,
and the laser-ablated NiTi alloy surfaces were able to absorb the element carbon in the
atmosphere, resulting in the CA increasing to 102◦, although it still showed poor sliding
performance (SA > 60◦). Then, the samples were dispensed with lubricants and placed in a
vacuum environment for 5 min to help the oil penetrate into the microporous structure and
become locked in the pore channels.

Five types of lubricants—including silicone oil of three viscosities (10 mPa·s, 200 mPa·s,
and 500 mPa·s), PFD, and PFPE—were adopted, and we further investigated their water
sliding performance (Figure 2c). Among the silicone-oil-infused samples, their static CAs
were around 96◦, and did not show significant fluctuation, as the surface energy of silicone
oil with different viscosities is generally about 21 mN/m. However, the SA increased
as the viscosity became higher. The silicone oil of lower viscosity, featuring a relatively
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higher fluidity, showed a smaller sliding resistance on the top layer, so the droplets were
likely to be more affected by the gravity and slide off the surface. As for the PFD- and
PFPE-infused substrates, they showed a higher CA (114◦ and 112◦, respectively), as the
-CF3 functional group has a lower surface energy [36]. The SAs of most prepared samples
were below 10◦, except for the SLIPS with SiO-500 (SA = 27◦), proving that the applied
lubricants remarkably improved the sliding performance of the NiTi alloy.
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of the SLIPSs prepared using SiO-10, SiO-200, SiO-500, PFD, and PFPE.

3.2. Droplet Adhesion Force

Although SLIPSs display self-cleaning ability by encouraging the droplets to slide
off, partial adhesion or even droplet pinning may occur, as there is a possibility of fast-
moving liquids accidentally touching the substrate. Because the liquid-repellent properties
of SLIPSs are determined by the lubricants applied on the surface, herein, the droplet
adhesion force between the lubricating layers and the droplets was measured to evaluate
the immiscibility of the samples with external liquids. The test was performed on a surface
tension meter. Deionized water and ethanol were chosen as the tested liquids. A droplet
(volume = 10 µL) was dripped onto the tip of the probe, which was fixed on a moving
motor equipped with a high-precision sensor. With the motor controlling the droplet to
vertically descend, reach, and then leave the sample surface, the sensor was able to detect
the adhesion force added to the droplet’s weight and record the change in the pulling force,
as shown in Figure 3a.
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Two states of droplets could be observed during the experiment: In the first case, the
droplet on the probe was torn apart, and part of it was stuck to the surface due to excessive
adhesion force while leaving. The surface displayed poor liquid repellency, as presented
in the line graph where the measured weight value dropped below 0 mg, indicating a
decrease in the droplet size compared to the initial value, i.e., “adhesion” (Figure 3b).
In the other case, the droplet received less adhesion force and was able to be detached
from the sample surface intact, exhibiting a high degree of immiscibility for the large
surface energy difference between the lubricating layer and the droplet, i.e., “separation”
occurred. In the water droplet adhesion test, all SLIPSs maintained good performance,
and no water droplets were stuck to the samples. More specifically, silicone-oil-infused
samples with lower viscosity had less adhesion, and the perfluorinated lubricants PFD and
PFPE manifested the lowest adhesion force of all. The situation changed when the test was
performed with ethanol. The PFPE-infused sample was still able to separate the droplet
from the surface and keep the weight unchanged, while the other samples failed to some
extent. As can be seen in the graph (Figure 3b), the droplet weights fell to negative values
when the probe returned to its original position. This is because ethanol has a lower surface
tension (21.9 mN/m) compared to water (72.8 mN/m), making it easier for it to spread out
and stick to the surface [37]. As for the applied lubricants, substances with lower surface
energy—such as PFPE—have a relatively wider range of liquid resistance, and make the
SLIPS less likely to be subject to droplet pinning, reducing the risk of failure (especially
under dynamic conditions).



Micromachines 2022, 13, 1160 7 of 10

3.3. Droplet Sliding Performance

Since the static droplets were adhered to the SLIPSs in the droplet adhesion force test,
the sliding performance with different liquids was further characterized. The prepared
SLIPSs were tilted at 20◦, and an equal volume of droplets was dripped onto the sample
surfaces. The CCD recorded the droplets from entering to leaving the field of view at
25 fps, and the images were analyzed to compare the total sliding time of the movement.
As shown in Figure 4, the time increased with rising viscosity in the silicone-oil-infused
samples, while most of the SLIPSs effectively allowed the droplets to slide quickly within
2 s. Even SiO-500 showed a decent performance, with time = 6.28 s. As for ethanol, due
to its much lower surface tension, it can be clearly seen that the droplets spread out on
the surface, maintaining a very low CA, but could still fall off the tilted surface, with
times ranging from 1 s to 13 s. In terms of milk, which contains a complex composition
and can be seen as common liquid food in daily life, the prepared surfaces also exhibited
excellent sliding properties to keep themselves uncontaminated, even though the sliding
time fluctuated to a great extent with the different lubricants used (0.4 s~11.8 s). All of
the prepared samples effectively allowed different liquids to slide off. It can be concluded
that SLIPSs have the ability to repel various kinds of liquids, even if the droplets exhibit
temporary affinity for the lubricating layer. Therefore, although SLIPSs have the risk of
being adhered to by droplets—especially low-surface-tension liquids—they still possess
unique sliding properties, and allow droplets to slide off the surface at certain angles,
giving the substrates a liquid-repellent ability.
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3.4. Durability Test

SLIPSs have potential applications in the fields of aircraft, aerospace, marine trans-
portation, etc., which often involve harsh environments. Therefore, durability tests were
conducted, including the temperature cycle test and the hydrostatic test. A heated chamber
was used to perform the high-temperature cycle test. SLIPS samples were tilted at 20◦ and
placed in the chamber, and the temperature was changed every 2 h between 15 ◦C and
90 ◦C, for a total of 48 h, i.e., 24 temperature cycles (Figure 5a). As shown in Figure 5b,
the CAs did not fluctuate very much among the silicone oil samples, while the change
in their SAs after the test increased as the viscosities became lower. In particular, the
SA of the SiO-10 sample increased greatly from 2◦ to 32.3◦, while the SA of the SiO-500
sample remained stable. Under the influence of the 20◦ inclined surfaces, the low-viscosity
lubricant, while providing good sliding properties, was also more likely to be lost along
the surface—especially in the presence of external contaminants sliding through during
practical use. Moreover, it is noteworthy that the most significant change after the test
was for the PFD-infused surface. Through observing the surface, it was found that the
lubricant had completely evaporated and none remained. Its wettability was close to that
of the NiTi alloy after 7 days (marked by the red lines), and failure occurred, indicating
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that the volatility of the lubricant was another main reason for the failure of the SLIPS. The
other three groups were relatively stable in terms of their tested values (SA = 20◦~30◦),
and maintained decent sliding properties, showing that the SLIPSs kept high-temperature
stability in general.
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The hydraulic pressure test was further carried out on the SLIPSs. The samples were
placed in an industrial pressurized cabin for 18 h in a simulated water depth of 30 m
(approximately 300 MPa), in order to assess their resistance to water pressure (Figure 5c).
The results are shown in Figure 5d. Samples infused with SiO-10 (SA = 48.7◦) and PFD
(SA > 60◦) lost their sliding performance during the test. Lubricants with lower viscosity,
such as SiO-10, were prone to being extruded from the microstructure by high water
pressure because of their higher fluidity, and since the density of the overflowed silicone oil
(0.96 kg/m3) is slightly lower than that of water, it subsequently floated to the water surface,
causing the loss of the lubricant. In conclusion, the SLIPSs with low-viscosity silicone oil
can provide excellent sliding properties, while those prepared with high-viscosity oil show
better durability in general. Moreover, the SLIPS with PFD experienced failure because of
its volatile nature, and its wettability returned to the intrinsic value of the substrate. The
remaining three samples showed relatively small changes in SA, and maintained good
sliding performance after the test (SA of SiO-200 and PFPE < 20◦; SA of SiO-500 = 28.3◦).
Therefore, the SLIPSs treated with SiO-200, SiO-500, and PFPE have the ability to resist
high water pressure.

4. Conclusions

In this paper, we used a femtosecond laser to fabricate porous microstructures on
NiTi alloy surfaces. Though adapting the proper laser parameters with the running path
of the object stage, microscale holes were uniformly created on the surface, providing
beneficial lubricant storage conditions for the SLIPSs’ construction. After infusing the NiTi
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alloy substrate with lubricant, the surfaces were endowed with excellent sliding properties,
with most of the sample surfaces having an SA of less than 10◦. Meanwhile, to maximize
the performance, comparisons between lubricants as slippery substances were made for
different applications. Five different lubricants—including silicone oil of three viscosities,
PFD, and PFPE—were used to prepare SLIPSs, and a series of tests were conducted to
quantify their sliding behaviors. It was found that relatively low-viscosity silicone oil
had superior sliding performance, while high-viscosity silicone oil showed more stable
durability in the temperature cycle test and the hydraulic pressure test. Additionally, it
was found that samples infused with PFD failed easily because of its highly volatile nature.
In addition, water and ethanol were used to characterize the prepared samples for their
ability to repel multiple liquids. Relatively, the perfluorinated lubricants PFD and PFPE
showed better hydrophobic properties for the tested liquids, due to their low surface energy,
while all of the prepared samples presented outstanding sliding properties for different
external liquids, achieving the function of liquid repellency on the surface. Combined with
the femtosecond laser preparation method, slippery liquid-infused porous surfaces are
expected to be prepared on more material substrates and used in more extensive fields.
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