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Joint Optimization for SSIM-Based CTU-Level Bit
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Abstract—Structural similarity (SSIM)-based distortion DSSIM
is more consistent with human perception than the traditional
mean squared error DMSE. To achieve better video encoding
quality, many studies on optimal bit allocation (OBA) used
DSSIM as the distortion metric. However, the MSE-based rate
distortion optimization (RDO) was still used in these studies.
The inconsistency between the optimization goals of OBA and
RDO results in a non-optimal SSIM-based encoding performance.
To solve this problem, we propose an accurate coding tree unit
level DSSIM-DMSE model, which enables performing the SSIM-
based RDO with simpler R-DMSE cost scaled by the SSIM-based
Lagrangian parameter λSSIM. Moreover, based on this model, the
R-DSSIM model can be accurately estimated based on the joint
relationship of R-DSSIM-λSSIM. With the accurate R-DSSIM model,
the SSIM-based OBA problem is then solved. Accordingly, the
SSIM-based OBA and SSIM-based RDO are unified together in
our scheme, called SOSR. Compared with the HEVC reference
encoder HM16.20, SOSR saves 5%, 11%, and 17% bitrate under
the same SSIM in the commonly used all-intra, hierarchical and
non-hierarchical low-delay-B configurations, which is superior to
existing state-of-the-art SSIM-based OBA schemes.

Index Terms—Optimal bit allocation, rate distortion optimiza-
tion, SSIM.

I. INTRODUCTION

High Efficiency Video Coding (HEVC) standard has
achieved significant compression performance improvement
compared with the previous H.264/AVC [1]. However, due to
the widely available applications such as video on demanding,
video streaming, and video chatting, the burden of video
transmission and storage is still growing. Faced with this
situation, how to control the encoding to achieve the minimum
possible distortion with the limited bits becomes a fundamental
challenge.

HEVC encoding is controlled by many encoding parameters
(e.g., quantization parameter (QP) and Lagrange multiplier λ),
as well as a large number of encoding modes (e.g., block
partition mode and prediction mode) [2]. In practice, encoder
usually select the best combination of parameters and modes in
the steps as follows. First, the encoder determines how many
bits (R) are allocated to each encoding unit to achieve the
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minimal distortion (D) according to the R-D property of each
unit, known as optimal bit allocation (OBA). The appropriate
encoding parameters such as λ are then determined aiming
at achieving the allocated bits for each unit. By applying
the determined parameters, the encoder traverses all possible
modes to encode an unit, and the mode with the minimum
R-D cost (D+λR) is selected as the best mode, known as rate
distortion optimization (RDO). These steps can be performed
at different levels from the group of pictures, frame, to coding
tree unit (CTU), where the CTU-level optimization greatly
affect the encoding performance and is therefore investigated
in this study.

In many studies such as [3]–[8] including the HEVC refer-
ence encoder HM [9], the mean squared error (MSE) is used
as the distortion metric, denoted by DMSE. In this way, the op-
timization goals of OBA and RDO are consistent, both aiming
to minimizing the average MSE of a frame. Thereby, OBA and
RDO can be solved uniformly by the Lagrangian optimization
method [10], [11]. Usually, such an unified optimization is
referred to as rate control collectively in many MSE-based
studies [5], [8], [12]. However, MSE measures the pixel-wise
difference between the encoded and the original videos. It
has been validated to be poorly correlated with the human
perception [13]. Minimizing MSE will not achieve an optimal
perceptual quality. To solve this problem, many perceptual
quality metrics such as the well-known Structural SIMilarity
index (SSIM) [13] have been adopted into distortion measure
(denoted by DSSIM) in recent studies [14]–[25]. SSIM evaluates
the similarity of luminance, contrast, and structures between
two images, to which human perception is highly sensitive,
thereby achieving better consistency with human perception
than MSE.

Specifically, Ou et al. [14] established the R-DSSIM mod-
el for the macroblocks of H.264/AVC, based on which an
SSIM-based OBA scheme was proposed. In [15], Wang et
al. proposed a macroblock-level maximum distortion descend
method to solve the SSIM-based OBA problem of H.264/AVC.
In [16], Gao et al. proposed a Nash bargaining game-based
OBA scheme by considering SSIM as the utility of each CTU
in HEVC. In [17], Zhou et al. proposed an R-DSSIM model for
CTUs based on the discrete cosine transform (DCT)-domain
SSIM index [20], based on which the SSIM-based OBA was
solved. By using SSIM in OBA, better perceptual quality has
been achieved in these studies. However, it is worth noting
that the MSE-based RDO was still used in above studies,
which is inconsistent with the objective of SSIM-based OBA.
Accordingly, the encoding mode with the minimum R-DMSE
cost rather than that with the minimum R-DSSIM cost will be
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selected. The resulting encoding is not optimal in terms of the
R-DSSIM performance.

Therefore, to achieve better R-DSSIM performance, the opti-
mization goals of OBA and RDO should have to be based on
SSIM consistently. However, there is a problem that prevents
this strategy, that is, calculating R-DSSIM cost for RDO is too
time-consuming. Since HEVC has a large number of possible
modes to encode a CTU [1], using DSSIM in RDO will bring
a huge increase in mode decision time, as can be found in
[26]–[28]. An effective solution to this problem is to establish
a DSSIM-DMSE model, based on which the complex R-DSSIM
cost can be mapped to a simpler R-DMSE cost. In general,
there are two widely used DSSIM-DMSE models. In [21], Yeo et
al. approximated DSSIM as a local variance-normalized DMSE.
Besides, in [20], Wang et al. proposed to approximate DSSIM as
the transform coefficients-normalized DMSE based on the DCT-
domain SSIM index [29]. In addition, there are also some other
related studies, such as [30] that proposed a hyperbolic model
of the DSSIM and quantization step. All these models help to
improve the R-DSSIM performance of RDO without increasing
computational burden. In particular, the Yeo’s model and the
DCT-domain model have led to a series of SSIM-based RDO
schemes for H.264/AVC and HEVC, such as [22]–[24], [31]
that are based on Yeo’s model and [18]–[20], [25] that are
based on the DCT-domain model. However, there are two
limitations in these studies. First, our experimental results
will show that accuracy of the widely used Yeo’s model and
the DCT-domain model is less than satisfactory. In addition,
these studies typically only focused on the SSIM-based RDO
without studying the R-DSSIM relationship, so that the SSIM-
based OBA has not been solved.

In this study, these problems are comprehensively solved
through the following steps. Specifically, an accurate CTU-
level DSSIM-DMSE model is proposed by a theoretical derivation
with reasonable simplifications, based on which the SSIM-
based RDO can be performed by a simpler R-DMSE cost scaled
by an SSIM-related Lagrangian multiplier. After performing
the SSIM-based RDO, the resulted R, DSSIM, and the applied
Lagrangian multiplier of each CTU are used to accurately
estimate the R-DSSIM model. At last, the accurate R-DSSIM
model is used to solve the SSIM-based OBA problem of the
next frame. In this way, the SSIM-based OBA and SSIM-based
RDO are unified, called SOSR.

The contribution of the proposed model lies in three aspects.
1) We propose an HEVC scheme that unifies SSIM-based
OBA and SSIM-based RDO together, resulting in better R-
DSSIM performance. 2) A CTU-level DSSIM-DMSE model is
proposed, which is more accurate than the two widely used
models. This model will benefit related SSIM-based studies
in the future. 3) Our scheme enables the R-DSSIM model
to be accurately calculated by the SSIM-based R-D-λ joint
relationship, which directly benefits solving the SSIM-based
OBA problem.

The rest of the paper is organized as follows. Section II
introduces the background. Section III describes the proposed
SOSR scheme. Experimental results and discussions are pre-
sented in Section IV. Finally, Section V concludes this paper.

II. BACKROUND

A. SSIM

SSIM measures the luminance similarity, contrast similarity,
and structural similarity between the pristine image x and
distorted image y. Specifically, the similarity is calculated
pixelwise, which is defined in [13] as follows:

SSIMi =
2µxi

µyi + C1

µ2
xi

+ µ2
yi + C1

· 2σxyi + C2

σ2
xi

+ σ2
yi + C2

, (1)

where i indicates the i-th pixel in a frame, C1 and C2 are
constants to prevent dividing by zero, and µ, σ2, σxy are mean,
variance, and covariance, respectively, which are calculated by

σ2
xi

=
∑L

l=1
ωl(xi+l − µxi)

2,

σ2
yi =

∑L

l=1
ωl(yi+l − µyi)2,

σxyi =
∑L

l=1
ωl(xi+l − µxi

)(yi+l − µyi),

µxi
=
∑L

l=1
ωlxi+l, µyi =

∑L

l=1
ωlyi+l,

(2)

where L = 121 and ωl(l = 1, 2, · · ·L) represents an 11× 11
Gaussian filter [13].

SSIM is a quality index ranging from 0 to 1, with larger val-
ues indicating better quality. Thus, the SSIM-based distortion
of a unit (a frame or a CTU) can be calculated as:

DSSIM = 1− 1

M

∑
i∈unit

SSIMi, (3)

where M is the number of pixels in the unit and ‘i ∈ unit’
indicates all the pixels located in the unit.

B. OBA and RDO

For encoding optimization, distortion is usually assumed to
be a differentiable function of the encoding bits, which can
be expressed as Dk = Dk(Rk) for the k-th CTU in a frame.
Accordingly, the OBA problem can be formulated as follows:

arg min
Rk

N∑
k=1

Dk(Rk), s.t.,
N∑
k=1

Rk ≤ Rc, (4)

where Rk is the to-be-allocated bits, N is the number of CTU
in a frame, and Rc is the constrained bits. This problem can
be solved by minimizing the unconstrained problem as follows
by the Lagrangian optimization method [10], [11]:

arg min
Rk

N∑
k=1

(Dk(Rk) + λRk). (5)

To achieve the allocated Rk, the lagrangian multiplier λk is
determined for the k-th CTU based on the association between
R-D-λ:

λk = −∂Dk(Rk)

∂Rk
. (6)

Using λk as the encoding parameter, RDO searches the best
mode m that has the minimum R-D cost to encode the CTU,
i.e.,

arg min
m

Dk(m) + λk ·Rk(m). (7)
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Fig. 1. Comparison of the CTU-level DSSIM-DMSE models, including the Yeo’s model (9), the DCT-domain model (10), the proposed model (20), and (21)
improved by the regression method. The data are collected from the 100-th frame of five videos encoded in AI and LDB configurations at QP 32. Specifically,
A1: Traffic1600p, B1:Kimono1080p, C1:BasketballDrill480p, D1:BasketballPass240p, E1:FourPeople720p.
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Fig. 2. The average PCC between µx and µy of all pixels in a frame. The
plots show the average values of the first 100 frames for eighteen 8-bit test
videos in AI and LDB configurations. The video numbers are in accordance
with that in the common test configuration [32].

In many existing SSIM-based OBA studies [14]–[17], the
distortion metrics of OBA and RDO are DSSIM and DMSE,
respectively. Accordingly, the optimization goal (5) of OBA
and the optimization goal (7) of RDO are inconsistent. As a
result, the corresponding R-DSSIM performance is not optimal.

To solve this problem, some studies proposed to map the
R-DSSIM cost to the R-DMSE cost that has a lower complexity
[21]–[24]. Specifically, based on a DSSIM-DMSE model denoted
by f(·), the R-DSSIM cost is equivalent to a modified R-DMSE
cost as follows:

DSSIM + λSSIM ·R
=f(DMSE) + λSSIM ·R,

(8)

where the Lagrangian multiplier λSSIM = −∂DSSIM

∂R
.

C. DSSIM-DMSE model

However, modeling the DSSIM-DMSE relationship is not easy.
In the first column of Fig. 1, we illustrate the actual values
of DSSIM-DMSE of ten example frames that were encoded
by HM16.20 in all-intra (AI) and low-delay-B (LDB) con-
figurations. It can be seen that there is no evident one-to-
one mapping between DSSIM and DMSE. This is because that
DSSIM captures the structural degradation of the local regions,
whereas DMSE calculates the pixel-wise error. Therefore, the
DSSIM-DMSE relationship depends on the image content, which
varies over different CTUs in a frame.

To solve this problem, Yeo et al. developed a DSSIM-DMSE
model in [21], where DSSIM is expressed as the variance-
normalized DMSE as follows:

DSSIM = 1 +
DMSE

(2σ2
x + C2)

, (9)

where 1/SSIM of a block is used as DSSIM in [21], σ2
x is

the variance of the original image block. This model has low
computation complexity. However, its modeling accuracy for
HEVC is less than satisfactory, which can be seen in the
second column of Fig. 1.

In recent study [17], Zhou et al. adopted a DCT-domain
DSSIM-DMSE model for HEVC, which can be expressed as

DSSIM =
DMSE

S2
, (10)
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Fig. 3. The average PCC between σ2
x and σ2

y of all pixels in a frame. The
experimental setting is consistent with that in Fig. 2.

where

S =
1
T

∑T
t=1

√∑Nt−1
i=1 (Xt(i)2+Yt(i)2)

Nt−1 + C2

E

(√∑Nt−1
i=1 (Xt(i)2+Yt(i)2)

Nt−1 + C2

) . (11)

In this model, Xt(i) and Yt(i) are the i-th DCT coefficients
in the t-th subblock of the original and reconstructed CTUs,
respectively, Nt is the number of DCT coefficients of the
subblock, and E(·) denotes the expectation operation in the
whole frame. This model was proposed in [20], which is
derived based on the DCT-domain SSIM index [29]. However,
as shown in the third column of Fig. 1, this model also fails to
accurately model the DSSIM-DMSE relationship in some videos.

To solve this problem, an accurate DSSIM-DMSE model will
be proposed in the next section, and its modeling performance
has been shown in Fig. 1 for comparison.

III. THE PROPOSED JOINT OPTIMIZATION SCHEME

In this section, we proposed a joint optimization scheme
of SSIM-based OBA and SSIM-based RDO. Specifically, an
accurate CTU-level DSSIM-DMSE model is proposed first. Then,
based on the proposed model, SSIM-based OBA and SSIM-
based RDO are unified in our scheme.

A. Relationship between DSSIM and DMSE

To explore the CTU-level relationship between DSSIM and
DMSE, we empirically use the same assumption as [21] and
[17], that is µxi = µyi . This assumption is easy to comprehend
because that the coding process will reserve luminance infor-
mation as much as possible. We use some sample experiments
to validate the assumption in terms of Pearson correlation
coefficient (PCC) [33] that is in accordance with the SSIM
calculation. As shown in Fig. 2, the PCCs between µxi and
µyi exceed 0.99 for different videos even at QP=37. With this
assumption, the SSIM value at the i-th pixel as in (1) can be
rewritten as follows:

SSIMi ≈ 1−
σ2
xi

+ σ2
yi − 2σxyi

σ2
xi

+ σ2
yi + C2

(12)
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TABLE I
RELATIVE ERROR BETWEEN THE ACTUAL DSSIM CALCULATED BY (3)

AND THE VALUES CALCULATED BY (15).

A B C D E avg.

AI 0.0% 0.1% 0.1% 0.6% 0.2% 0.2%
LDB 0.1% 0.2% 0.5% 1.1% 0.3% 0.5%

Substituting (2) into (12), SSIM can be calculated as

SSIMi = 1−
∑L
l=1 ωl(xi+l − yi+l)2

σ2
xi

+ σ2
yi + C2

= 1− (xi − yi)2
∑L

l=1

ωl
σ2
xi−l

+ σ2
yi−l

+ C2

= 1− e2
i ·Wi,

(13)

where e2
i represents the pixel-level squared error and Wi

denotes the weight related to the content around the pixel.
Specifically,

e2
i = (xi − yi)2,

Wi =

L∑
l=1

ωl
σ2
xi−l

+ σ2
yi−l

+ C2
.

(14)

In the calculation of Wi, the variance σ2
y of the distorted frame

is unavailable before encoding. In practice, we approximate
it by σ2

x. The PCCs between σ2
x and σ2

y are illustrated in
Fig. 3. Although not as high as that between µx and µy , the
PCCs exceed 0.96 for all test videos, which justifies that the
approximation is available.

Based on (13) and (3), DSSIM of a CTU can be calculated
as

DSSIM =
1

M

∑
i∈CTU

e2
i ·Wi. (15)

In Table I, we measure the difference between the actual DSSIM
calculated by (3) and the estimated values calculated by (15).
The results show that the simplifications used in (15), i.e.,
µx = µy and σ2

x = σ2
y , only bring less than 0.5% error.

According to (15), DSSIM approximates a pixel-weighted
MSE, where the weights depend on the image content around
each pixel. Therefore, to obtain a CTU-level DSSIM-DMSE
model, it is necessary to simplify the weighting from pixels
to sub-block and then to CTU.

Specifically, first, note that σ2
x in Wi are calculated based on

Gaussian weighting in a local area as in (2), and then further
filtered by Gaussian in (14), implying that Wi will be similar
within a small region. We calculate the average coefficients of
variation (the ratio of the standard deviation to the mean) of
Wi in a 4× 4 block. The average results for the videos from
class A to class E are 0.22, 0.22, 0.17, 0.19, 0.25, respectively,
which verify the similarity of Wi in local areas. Thereby, we
use the average Wi of a 4 × 4 sub-block for weighting as a
simplification of the pixel weighting in (15), i.e.,

DSSIM ≈
1

M

T∑
t=1

(∑
i∈blkt

e2
i ·

1

16

∑
i∈blkt

Wi

)
, (16)

where blkt denotes the t-th 4×4 subblock in a CTU. Table II
lists the relative error of (16) compared to (15). The results

TABLE II
RELATIVE ERROR OF (16) COMPARED TO (15). THE EXPERIMENTAL

SETTING IS CONSISTENT WITH THAT IN FIG. 2.

A B C D E avg.

AI 3% 4% 3% 3% 3% 3%
LDB 4% 6% 4% 3% 4% 4%

TABLE III
PCC BETWEEN MSE AND QUANTIZATION STEP FOR THE SUBBLOCKS.

A B C D E avg.

AI 0.93 0.91 0.88 0.87 0.83 0.88
LDB 0.91 0.89 0.85 0.84 0.81 0.86

show that the simplification brings only 3% and 4% error in
average in AI and LDB configurations, respectively.

Secondly, in [34], Wang and Kwong proposed that MSE of
a macroblock increases linearly with the quantization step in
H.264/AVC. A similar model can also be found in [35], where
MSE is proposed to be proportional to the quantization step in
the coding unit level of HEVC. We find that the relationship
still holds for the subblocks of HEVC, which can be described
as: ∑

i∈blkt

e2
i ≈ ρtQt, (17)

where ρt is the linear model parameter related to image con-
tent, and Qt is the applied quantization step of the subblock.
We calculate the PCC between

∑
i∈blkte

2
i and Qt for different

videos. The results in Table III show that in AI and LDB
configurations, the corresponding average PCCs are 0.88 and
0.86, respectively, which verifies the rationality of (17).

Based on (17), DMSE of a CTU can be calculated as

DMSE =
1

M

T∑
t=1

ρtQt, (18)

while the DSSIM in (16) can be rewritten as:

DSSIM =
1

M

T∑
t=1

(
ρtQt ·

1

16

∑
i∈blkt

Wi

)
. (19)

Since the same quantization step is usually applied for all the
sub-blocks in a CTU, the following CTU-level DSSIM-DMSE
relationship can be obtained based on (18) and (19):

DSSIM =

∑T
t=1

(
ρt · 1

16

∑
i∈blkt Wi

)∑T
t=1 ρt

DMSE,

= Θ ·DMSE,

(20)

where the Θ is used to represent the slope. In (20), ρt is related
to the image content. Due to the similarity in the image content

between the collocated CTUs, we calculate ρt as
∑

i∈blkt
e2i

Qt

based on the encoding results of its encoded-collocated block
for simplification.

To compensate for the error caused by the simplification,
the least squares regression between the collocated CTUs is
applied, which can be expressed as:

DSSIM = θ ·Θ ·DMSE + η, (21)
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TABLE IV
COMPARISON BETWEEN YEO’S MODEL (9), DCT-DOMAIN MODEL (10),
THE PROPOSED (20), AND THE ENHANCED MODEL (21) WITH THE LEAST

SQUARES REGRESSION IN TERMS OF PCC.

AI LDB

class Yeo DCT (20) (21) Yeo DCT (20) (21)

A 0.77 0.88 0.95 0.99 0.78 0.88 0.91 0.93
B 0.66 0.81 0.93 0.98 0.64 0.79 0.86 0.91
C 0.8 0.84 0.94 0.99 0.82 0.85 0.93 0.97
D 0.85 0.8 0.95 0.99 0.85 0.77 0.93 0.95
E 0.87 0.8 0.98 0.99 0.88 0.8 0.97 0.98

avg. 0.77 0.82 0.95 0.99 0.77 0.81 0.91 0.94

where θ and η are the linear parameters updated between the
collocated CTUs.

As shown in the 4-th column of Fig. 1, the proposed (20)
achieves better modeling performance than Yeo’s model and
the DCT-domain model for the test videos. And, the proposed
(21) further improves the performance. To quantitatively evalu-
ate the modeling accuracy of the proposed model, we calculate
the PCC and the relative error between the actual DSSIM of
the CTUs in a frame and the estimated values calculated by
different models. The results are summarized in Table IV and
Table V, respectively. The conclusion can be drawn from the
results, that is, the proposed model (21) and (20) achieved the
best and second best accuracy, respectively.

B. Joint SSIM-based OBA and SSIM-based RDO

In the above subsections, an accurate CTU-level DSSIM-
DMSE model is established. Benefit from the proposed model,
SSIM-based OBA and SSIM-based RDO can be unified in the
proposed SOSR scheme as follows.

1) SSIM-based OBA: To solve the SSIM-based OBA prob-
lem, we adopt the widely used hyperbolic function as the R-
DSSIM model, which is expressed as

DSSIM = α ·Rβ , (22)

where α and β are the model parameters. To verify its
effectiveness, we compare it with the exponential [10] and
logarithmic [17] models. Table VI summarizes the R-DSSIM
modeling accuracy of the three models in terms of R squared.
It can be seen from the results that the adopted model has the
best modeling accuracy.

Substituting (22) into (6), the R-λSSIM model can be ob-
tained:

λSSIM = −αβ ·Rβ−1. (23)

With (23) in hand, we can search the optimal λSSIM by the
Bisection method [36] to meet the bits constraint in (4).

2) SSIM-based RDO: After the optimal λSSIM is calculated,
the SSIM-based RDO process can be re-written as follows by
substituting the proposed DSSIM-DMSE model (21) into (8):

arg min
m

DSSIM + λSSIM ·R

= arg min
m

(θΘDMSE + η) + λSSIM ·R

= arg min
m

DMSE +
1

θΘ
λSSIM ·R

(24)

TABLE V
COMPARISON BETWEEN YEO’S MODEL (9), DCT-DOMAIN MODEL (10),
THE PROPOSED (20), AND THE ENHANCED MODEL (21) WITH THE LEAST

SQUARES REGRESSION IN TERMS OF RELATIVE ERRORS.

AI LDB

class Yeo DCT (20) (21) Yeo DCT (20) (21)

A 15% 27% 4% 3% 17% 27% 8% 6%
B 13% 22% 6% 3% 15% 21% 11% 7%
C 31% 23% 12% 4% 33% 23% 21% 12%
D 51% 28% 17% 4% 49% 26% 28% 16%
E 23% 18% 15% 4% 24% 18% 18% 6%

avg. 27% 23% 11% 4% 28% 23% 18% 10%

TABLE VI
R-DSSIM MODELING PERFORMANCE COMPARISON BETWEEN THE

EXPONENTIAL, LOGARITHMIC, AND HYPERBOLIC MODELS IN TERMS OF
THE R SQUARED.

AI LDB

class exponential logarithmic hyperbolic exponential logarithmic hyperbolic

A 0.98 0.96 0.98 0.80 0.84 0.92
B 0.94 0.95 0.96 0.79 0.84 0.87
C 0.96 0.97 0.98 0.85 0.88 0.92
D 0.97 0.97 0.97 0.85 0.89 0.94
E 0.85 0.86 0.89 0.73 0.76 0.81

avg. 0.94 0.94 0.96 0.81 0.85 0.89

According to (24), the SSIM-based RDO can be achieved
based on the R-DMSE cost with the Lagrangian multiplier
λMSE, which is a scaled λSSIM, i.e.,

λMSE =
1

θΘ
λSSIM. (25)

In this way, there is no need to calculate DSSIM for all the
candidate modes, while the R-DSSIM cost is still minimized in
the RDO process.

3) Joint R-DSSIM-λSSIM-based R-DSSIM Parameter Estima-
tion: After encoding the CTU with the mode selected by
the SSIM-based RDO, the actual DSSIM and R are generated.
Thereby, in the joint R-D-λ relationship:{

DSSIM = α ·Rβ ,
λSSIM = θΘλMSE = −αβ ·Rβ−1,

(26)

only α and β are unknown. Thus, they can be uniquely solved
as follows: 

α =
DSSIM

R−θΘλMSER/DSSIM
,

β = −θΘλMSER

DSSIM
.

(27)

The solved parameters will be used to solve the SSIM-based
OBA (Section III-B1) for the subsequent frame.

In [8], the MSE-based R-D-λ joint relationship is used for
R-DMSE model estimation, which is similar as the method in
(26). It is worth noting that without the λSSIM-λMSE relation-
ship proposed in (25), the value of λSSIM that is associated
with the R and DSSIM generated by encoding is unknown, and
then the R-D-λ joint relationship in (26) cannot be uniquely
solved. Therefore, to the best of our knowledge, this is the first
time the R-D-λ joint relationship exploited in the SSIM-based
studies.
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IV. EXPERIMENTS AND DISCUSSIONS

A. Experiment Setup

This section presents the experimental comparison to
demonstrate the advantage of the proposed SOSR scheme.
In particular, we have implemented the SOSR into HM16.20.
Since main goal of this paper is to solve the inconsistency of
the optimization goals of OBA and RDO in existing SSIM-
based OBA studies, the state-of-the-art SSIM-based OBA
studies, i.e., Gao’s scheme [16] and Zhou’s scheme [17], are
the main competitors of our study. In addition, Li’s scheme [8],
which is a state-of-the-art rate control scheme based on MSE,
is used as a reference for encoding performance comparison.

For performance evaluation, we use the same setup as [16]
and [17]. Specifically, AI and LDB (both hierarchical and
non-hierarchical) configurations are adopted in performance
evaluation. In each configuration, the video sequences from
class A to class E are encoded at four QPs (22, 27, 32, and 37)
[32]. Then, the resulted bitrates are set as the bit constraints for
an OBA scheme. For performance evaluation, JCTVC-K0103
[5] and JCTVC-M0036 [6] are set as the anchor schemes
for intra and inter encoding, respectively. By comparing a
scheme to the anchor, the R-DSSIM performance of the scheme
is evaluated in terms of SSIM-based Bjøntegaard delta bit
rate (BDBR) and Bjøntegaard delta SSIM (BD-SSIM) [37].
BDBR calculates the relative increase of bitrate at the same
SSIM compared with the anchor, while BD-SSIM calculates
the absolute gain of SSIM at the same bitrate. The negative
BDBR and positive BD-SSIM indicate an improved R-DSSIM
performance. Besides, different implementations of SSIM will
yield different BD-SSIM values. Thus, BDBR that is a relative
measure is more credible to verify the R-DSSIM performance
than BD-SSIM. In this paper, the standard implementation of
SSIM [38] is adopted.

Besides, the video sequences in class F contain unnatural
screen content, while SSIM is only designed to evaluate
natural image quality. Therefore, class F is usually exclud-
ed in the studies dedicated to optimizing the SSIM-based
video quality, such as [16]–[18], [25]. In addition, compared
with the LDB configuration, random access configuration can
achieve better encoding quality, leaving less room for quality
improvement. Thus, it is also usually excluded in the SSIM-
based studies [16]–[18], [25]. Therefore, the video sequences
in class F and the random access configuration are not included
in the R-D performance comparison in main body of this
paper. Instead, the corresponding results of the proposed SOSR
scheme as well as the results in the low-delay-P configuration
are provided in the Appendix.

B. R-D Performance Comparison

For intra encoding, Table VII summarizes the R-DSSIM
performance of different schemes. Compared with JCTVC-
K0103, the proposed SOSR scheme achieves 9.6% BDBR
saving and 0.0019 BD-SSIM improvement, both of which
are better than the results of Gao’s scheme. In addition, the
proposed scheme is also compared with JCTVC-M0257 that
is the default intra OBA scheme of HM16.20. As shown in
Table VII, the BDBR and BD-SSIM gains of the proposed

TABLE VII
R-D PERFORMANCE OF INTRA ENCODING IN TERMS OF BDBR (SSIM)

AND BD-SSIM. CONFIGURATION: AI.

anchor: K0103 [5] anchor: M0257 [39]

BDBR (SSIM) BD-SSIM BDBR (SSIM) BD-SSIM

class Gao [16] SOSR Gao [16] SOSR SOSR SOSR

A -2.0 -15.1 0.0010 0.0009 -7.4 0.0004
B -2.0 -11.0 0.0009 0.0014 -6.1 0.0007
C -4.1 -8.4 0.0023 0.0033 -3.5 0.0013
D -4.1 -3.3 0.0022 0.0030 -1.1 0.0010
E -1.6 -10.1 0.0003 0.0011 -7.8 0.0008

avg. -2.7 -9.6 0.0013 0.0019 -5.2 0.0008

TABLE VIII
R-D PERFORMANCE OF INTER ENCODING COMPARED WITH LI [8] IN

TERMS OF BDBR (SSIM) AND BD-SSIM. ANCHOR: JCTVC-M0036 [6].

hierarchical LDB non-hierarchical LDB

BDBR (SSIM) BD-SSIM BDBR (SSIM) BD-SSIM

class Li SOSR Li SOSR Li SOSR Li SOSR

A -5.4 -19.0 0.0003 0.0010 -8.4 -28.1 0.0005 0.0017
B -4.9 -15.1 0.0006 0.0019 -9.8 -22.0 0.0016 0.0035
C -1.8 -8.6 0.0006 0.0031 -3.1 -11.5 0.0012 0.0050
D -1.6 -8.2 0.0011 0.0053 -3.0 -13.9 0.0022 0.0104
E -4.6 -6.9 0.0004 0.0006 -5.2 -11.7 0.0005 0.0011

avg. -3.7 -11.2 0.0006 0.0026 -5.9 -17.4 0.0012 0.0043

model are 5.2% and 0.0008, respectively, which further verify
the effectiveness of the proposed model.

For inter encoding, Table VIII summarizes the R-D perfor-
mance comparison with Li’s [8] scheme, which is implemented
in HM16.20 based on their source codes. The results show
that the proposed SOSR scheme presents better performance
than Li’s scheme in terms of both BDBR and BD-SSIM.
Specifically, SOSR saves more than 11% and 17% encoding
bits at the same SSIM respectively in hierarchical and non-
hierarchical LDB configurations, while Li’s scheme saves only
3.7% and 5.9%, respectively. In Table IX, comparison with
Zhou’s scheme [17] is presented. Zhou’s scheme was imple-
mented based on HM16.19. Because there is little difference
in inter encoding performance between this platform and the
HM16.20 we used, we refer to the results in their paper
for comparison. Moreover, their results are evaluated based
on the SSIM implemented in DCT-domain [20]. Therefore,
for fair comparison, our method is also evaluated based on
the DCT-domain SSIM. As can be seen from Table IX, the
proposed SOSR achieves better BDBR and competitive BD-
SSIM compared with Zhou’s scheme. Moreover, it can be seen
from Table VIII and Table IX that under the standard imple-
mentation of SSIM and the DCT-domain SSIM, the proposed
SOSR shows similar excellent BDBR performance, which
further validates the superior performance of our method.

C. Analysis of the Proposed Model

Compared with other similar schemes, the main innovation
of our proposed SOSR scheme lies in the novel DSSIM-DMSE
model, the joint optimization of SSIM-based OBA and SSIM-
based RDO, as well as the accurate R-DSSIM model estimation.
This subsection analyzes the contribution of each of these
innovations to the encoding performance.
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TABLE IX
R-D PERFORMANCE OF INTER ENCODING COMPARED WITH ZHOU [17] IN
TERMS OF BDBR (SSIM) AND BD-SSIM THAT ARE CALCULATED BASED

ON THE DCT-DOMAIN SSIM. ANCHOR: JCTVC-M0036 [6].

hierarchical LDB non-hierarchical LDB

BDBR (SSIM) BD-SSIM BDBR (SSIM) BD-SSIM

class Zhou SOSR Zhou SOSR Zhou SOSR Zhou SOSR

A -5.8 -13.4 0.0030 0.0038 -11.7 -18.4 0.0067 0.0059
B -4.9 -12.9 0.0027 0.0037 -13.9 -17.1 0.0076 0.0061
C -4.9 -9.3 0.0027 0.0043 -12.3 -12.3 0.0074 0.0067
D -12.2 -11.4 0.0074 0.0058 -22.8 -19.6 0.0139 0.0116
E -5.1 -6.8 0.0027 0.0010 -9.4 -12.2 0.0064 0.0018

avg. -6.6 -10.8 0.0037 0.0039 -14.0 -15.9 0.0084 0.0064

TABLE X
R-DSSIM PERFORMANCE OF THE PROPOSED SOSR SCHEME WITH THREE

DIFFERENT DMSE -DSSIM MODELS IN TERMS OF BDBR (SSIM).

class Yeo (9) DCT (10) proposed (21)

A -13.6 -16.2 -19.0
B -11.2 -13.1 -15.1
C -5.0 -6.7 -8.6
D -4.8 -6.0 -8.2
E -6.3 -6.8 -6.9

avg. -7.8 -9.4 -11.2

First, in the SOSR scheme, we replace the proposed DSSIM-
DMSE model with the Yeo’s model (9) and the DCT-domain
model (10), respectively. Table X shows the corresponding
SSIM-based BDBR comparison in the hierarchical LDB con-
figuration. As can be seen from the results, the proposed SOSR
scheme can achieve R-DSSIM performance improvement based
on all the three models. Similar to the accuracy comparison of
the three models in Table IV, the Yeo’s model has the worst
R-DSSIM performance, achieving 7.8% BDBR savings, and the
DCT-domain model has the second best R-DSSIM performance,
achieving 9.4% BDBR savings. The proposed DSSIM-DMSE
model performs best, achieving 11.2% BDBR savings, which
highlights the significance of the proposed model in R-DSSIM
performance improvement.

Secondly, we disabled the SSIM-based RDO in the proposed
SOSR scheme. Specifically, after allocating bits by the SSIM-
based OBA as described in Section III-B1, the MSE-based
default scheme of HM16.20 [6] is adopted to calculated λMSE,
which is used to achieve the allocated bits and is used for
RDO. In this way, the proposed SOSR degenerates into the
conventional method as [14]–[17] that combines the SSIM-
based OBA and MSE-based RDO. As shown in Table XI, after
the SSIM-based RDO is disabled, the encoding performance
is greatly reduced. The difference in encoding performance
between different models is also reduced. Specifically, com-
pared with the results in Table X, the BDBR savings of SOSR
with the Yeo’s model, DCT-domain model, and the proposed
DSSIM-DMSE model are reduced to 2.3%, 4.4%, and 4.4%,
respectively.

As has been discussed, the performance degradation is due
to the inconsistent optimization goals of OBA and RDO at this
time. Moreover, the default scheme of HM uses the traditional
regression method for R-λMSE model estimation [6]. As shown
in Fig. 4, compared with the R-DSSIM-λSSIM relationship-based

TABLE XI
R-DSSIM PERFORMANCE OF THE PROPOSED SOSR SCHEME WITH THREE

DIFFERENT DMSE -DSSIM MODELS IN TERMS OF BDBR (SSIM) WHEN
THE SSIM-BASED RDO IS DISABLED.

class Yeo (9) DCT (10) proposed (21)

A -5.5 -9.6 -9.9
B -1.5 -4.7 -4.8
C -1.3 -2.6 -2.4
D -3.1 -4.1 -4.3
E -1.9 -2.9 -2.9

avg. -2.3 -4.4 -4.4
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Fig. 4. CTU-level relative error between the actual encoding bits and the
targeted bits for the proposed SOSR with SSIM-based RDO and SOSR with
MSE-based RDO.

estimation in (26) we used, the traditional method brings larger
error between the target encoding bits and the actual encoding
bits. Accordingly, the allocated bits will not be accurately
achieved, thereby deviating from the optimal encoding.

In summary, we can conclude that the three innovations all
contribute to the R-DSSIM performance improvement of the
proposed SOSR scheme.

D. SSIM vs. PSNR

In addition to SSIM, the MSE-based peak signal-to-noise
ratio (PSNR) is also widely used to evaluate quality of an
encoded video. Therefore, in this subsection, we calculate the
PSNR-based BDBR and BD-PSNR of different schemes for
reference. The results are shown from Table XII to Table XIV
for AI, hierarchical LDB and non-hierarchical LDB, respec-
tively. As shown in these tables, the proposed SOSR is inferior

TABLE XII
R-D PERFORMANCE COMPARISON FOR INTRA ENCODING IN TERMS OF
BDBR (PSNR) AND BD-PSNR. SYMBOL ‘—’ INDICATES THAT THE

RESULT WAS NOT PROVIDED IN THE CORRESPONDING PAPER.
CONFIGURATION: AI.

anchor: K0103 [5] anchor: M0257 [39]

BDBR (PSNR) BD-PSNR BDBR (PSNR) BD-PSNR

class Gao [16] SOSR Gao [16] SOSR SOSR SOSR

A — 4.1 0.08 -0.22 3.2 -0.18
B — 5.2 0.06 -0.20 2.8 -0.12
C — 3.1 0.15 -0.17 2.0 -0.12
D — 2.9 0.19 -0.20 1.5 -0.10
E — 6.4 0.07 -0.32 3.8 -0.20

avg. — 4.3 0.11 -0.22 2.7 -0.14
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M0036’s Encoded Frame, 759kbps
SSIM=0.8717, PSNR=33.30dB

Our Encoded Frame, 759kbps
SSIM=0.8963, PSNR=32.70dB

Original Frame
BQSquare, 380th frame

Bit Allocation Map DSSIM Map (1-SSIM) DMSE Map

M0036

Ours

Fig. 5. Visual comparison of frames encoded by JCTVC-M0036 [6] and the proposed SOSR. The DSSIM map is calculated by 1-SSIM. The DMSE map
illustrates the pixel-wise DMSE. Example frame: BQSquare, 380th frame, 759kbps, non-hierarchical LDB.

TABLE XIII
R-D PERFORMANCE COMPARISON FOR INTER ENCODING IN TERMS OF

BDBR (PSNR) AND BD-PSNR. ANCHOR: JCTVC-M0036 [6].
CONFIGURATION: HIERARCHICAL LDB.

BDBR (PSNR) BD-PSNR

class Li [8] Zhou [17] SOSR Li [8] Zhou [17] SOSR

A -2.1 -3.2 0.2 0.07 0.12 -0.04
B -2.6 -3.0 3.3 0.06 0.11 -0.08
C -0.8 -2.7 1.1 0.03 0.09 -0.05
D -0.7 -3.3 1.7 0.03 0.13 -0.08
E -5.8 -3.2 4.0 0.17 0.12 -0.06

avg. -2.4 -3.1 2.3 0.07 0.11 -0.06

TABLE XIV
R-D PERFORMANCE COMPARISON FOR INTER ENCODING IN TERMS OF

BDBR (PSNR) AND BD-PSNR. ANCHOR: JCTVC-M0036 [6].
CONFIGURATION: NON-HIERARCHICAL LDB.

BDBR (PSNR) BD-PSNR

class Li [8] Zhou [17] SOSR Li [8] Zhou [17] SOSR

A -2.6 -5.2 4.3 0.08 0.23 -0.22
B -4.9 -2.9 11.6 0.12 0.1 -0.23
C -2.2 -5.5 6.1 0.09 0.25 -0.21
D -1.8 -5.8 3.5 0.07 0.26 -0.13
E -4.3 -5.5 7.6 0.13 0.25 -0.19

avg. -3.2 -5.0 6.6 0.10 0.22 -0.20

to other schemes in terms of BDBR (PSNR) and BD-PSNR.
Compared with HM16.20, our scheme has 2.7%, 2.3%, 6.6%
bits increase under the same PSNR in AI, hierarchical LDB,
and non-hierarchical LDB configurations, respectively. This is
not surprising, because PSNR is calculated based on MSE,
which is not the optimization objective of our scheme.

Fig. 5 illustrates the difference in encoding results caused by
different optimization objectives, where an example frame is
respectively encoded by our scheme and JCTVC-M0036 at the
same bitrate. JCTVC-M0036 minimizes DMSE of a frame and
is the default inter rate control scheme of HM16.20. Therefore,
the encoded frame has better PSNR than the frame encoded
by our scheme. However, we can find that the frame encoded
by [6] does not have a good visual quality compared with that
encoded by our scheme.

Specifically, as shown in the bit allocation map, JCTVC-
M0036 allocates a large number of bits to the region marked
in blue box and a small number of bits to region marked in red
box. Among them, the blue boxed region is highly textured,
while the red boxed region has simpler structures. After
encoding with JCTVC-M0036, all these regions do not have
significant DMSE distortion. However, the water ripple shown
in the red boxed region with a lot of structural information,
has become smooth after encoding. These structural distortions
will attract the attention of the viewer and lead to the decline
of subjective perceived quality.

On the other hand, we can see that DSSIM map correctly
identifies these structural distortions. Correspondingly, our



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

(a) (b) (c) (d)

2.1mbps 2.1mbps

4.8mbps 4.8mbps

3.7mbps 3.7mbps

350kbps 350kbps

315kbps 315kbps

98kbps 98kbps

Fig. 6. Visual quality comparison of frames encoded by the proposed SOSR scheme, Gao [16], and Li [8] at different bitrate. The frames from the first to the
last row are BlowingBubbles 48th frame, KristenAndSara 60th frame, and Johnny 60th frame. (a) Li [8], non-hierarchical LDB. (b) SOSR, non-hierarchical
LDB. (c) Gao [16], AI. (d) SOSR, AI.

TABLE XV
ENCODING TIME COMPARISON.

Gao [16] Li [8] Zhou [17] SOSR

AI 101.0% - - 100.6%
LDB - 101.3% 102.7% 102.2%

scheme allocates more bits to the water ripple region. It can be
clearly seen that structure of this region is preserved and the
visual quality is improved. At the same time, because the total
bits are constrained, the bits allocated to the blue boxed region
by our scheme are reduced, so this region has larger DMSE
distortion. However, because of the visual masking effect [40],
quality of the blue boxed region is still good, whether based
on the visual observation or the DSSIM map. Thus, the frame
encoded by our scheme has better visual quality. Therefore,
it is reasonable to use DSSIM as the distortion metric in the
optimization objective.

In Fig. 6, we further compare the visual quality performance
of the proposed SOSR with two available encoders Gao [16]
and Li [8]. Both Gao [16] and Li [8] achieve better R-DSSIM
performance than the default HM. Fig. 6 demonstrates that
the frames encoded by the proposed SOSR has better visual
quality than the other two schemes. In particular, SOSR better
retains the structural information as shown in the zoomed-in
regions in Fig. 6, while the other schemes bring some severe
distortions, such as blurring, which reduces the visual quality.

E. Complexity Comparison

To evaluate the computational complexity of our scheme,
Table XV compares its encoding time with the default HM
encoder (i.e., JCTVC-M0257 for AI and JCTVC-M0036 for
LDB). The test was carried out on an AMD 3900X processor

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

class A class B class C class D class E average

ti
m

e 
p

er
 f

ra
m

e 
/s

ec
.

Yeo DCT proposed

Fig. 7. Complexity comparison of three different DSSIM-DMSE models
implemented in HM16.20, including Yeo’s model (9), DCT-domain model
(10), and the proposed model (21).

with 32GB memory. The results show that our scheme and the
other three competitors have brought only a small increase
in encoding time. In addition, compared with the other two
SSIM-based schemes (i.e., Gao [16] and Zhou [17]), the time
increase of our scheme is slightly smaller.

Besides, we also measure the complexity of the DSSIM-DMSE
model estimation which is a main component of the proposed
SOSR. Fig. 7 illustrates the average processing time for a
frame of different models. As can be seen from the results,
Yeo’s model (9) has the lowest complexity. Besides, since the
fast DCT algorithm exists [41], the DCT-domain model (10)
has the second highest complexity, while the proposed model
(21) has similar but just a little larger time-consuming to that
of the DCT-domain model.

V. CONCLUSION

In this study, a scheme called SOSR is proposed to unify
the SSIM-based optimal bit allocation (OBA) and SSIM-based
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rate-distortion optimization (RDO) for HEVC. To achieve
this goal, an accurate CTU-level DSSIM-DMSE model is first
proposed, which has been validated to be more accurate
than two widely used models. With this model, the SSIM-
based RDO can be performed based on the low-complexity
R-DMSE cost with an SSIM-related Lagrangian multiplier,
which is determined by the SSIM-based OBA. Moreover,
the joint relationship of SSIM-based R-D-λ can be exploited
to achieve more accurate R-DSSIM model estimation, which
further benefit the solving of OBA. In this way, OBA and
RDO are optimized based on SSIM consistently in this study.
Experimental results have validated that the proposed SOSR
has a superior R-DSSIM performance compared with other
state-of-the-art studies in three commonly used configurations.
According to our experimental analysis, the accurate DSSIM-
DMSE model and the SSIM-based joint optimization of OBA
and RDO both contribute to the R-DSSIM performance im-
provement.

APPENDIX

TABLE A1
R-D PERFORMANCE OF SOSR FOR VIDEOS OF CLASS F IN DIFFERENT

CONFIGURATIONS.

PSNR-based performance SSIM-based performance
BDBR(PSNR) BD-PSNR BDBR(SSIM) BD-SSIM

AI 4.7 -0.2244 -2.3 -0.0007
hier. LDB 3.4 -0.3114 -5.8 0.0021

non-hier. LDB -1.9 0.8839 -20.1 0.0054
random access -5.3 0.4311 -19.2 0.0022

TABLE A2
R-D PERFORMANCE OF SOSR IN HIERARCHICAL LOW DELAY P

CONFIGURATION.

PSNR-based performance SSIM-based performance
class BDBR(PSNR) BD-PSNR BDBR(SSIM) BD-SSIM

A 0.0 -0.0363 -10.2 0.0026
B 3.2 -0.0885 -9.0 0.0018
C 1.9 -0.0668 -7.0 0.0024
D 1.6 -0.0688 -8.1 0.0049
E 5.0 -0.0885 -5.9 0.0007

Avg. 2.3 -0.0698 -8.1 0.0025

TABLE A3
R-D PERFORMANCE OF SOSR IN NON-HIERARCHICAL LOW DELAY P

CONFIGURATION.

PSNR-based performance SSIM-based performance
class BDBR(PSNR) BD-PSNR BDBR(SSIM) BD-SSIM

A 1.5 -0.1176 -14.5 0.0042
B 8.2 -0.1776 -13.8 0.0038
C 5.6 -0.1757 -12.0 0.0050
D 3.2 -0.1167 -13.7 0.0098
E 9.0 -0.2151 -7.4 0.0009

Avg. 5.9 -0.1605 -12.3 0.0047

TABLE A4
R-D PERFORMANCE OF SOSR IN RANDOM ACCESS CONFIGURATION.

PSNR-based performance SSIM-based performance
class BDBR(PSNR) BD-PSNR BDBR(SSIM) BD-SSIM

A -3.4 0.1446 -7.7 0.0016
B -2.0 0.0719 -4.3 0.0011
C -2.2 0.1288 -4.5 0.0014
D -1.9 0.1394 -4.9 0.0033
E -1.4 0.0489 -4.9 0.0007

avg. -2.2 0.1067 -5.3 0.0016

It can be seen from Table A1 that except for the BD-SSIM
in all intra configuration, our scheme has achieved significant
improvements in both SSIM-based BDBR and BD-SSIM in
all other configurations. However, it should be noted that the
videos of class F contain unnatural screen content, while SSIM
is only designed to evaluate natural image quality. Therefore,
the rationality of SSIM for videos of class F needs to be further
studied.

From Table A2 to Table A4, we can see that the proposed
SOSR achieves 12.3%, 8.1%, and 5.3% SSIM-based BDBR
savings in non-hierarchical low delay P, hierarchical low delay
P, and random access configurations. Moreover, SOSR also
achieves a PSNR-based BDBR savings of 2.2% in random
access configuration. This is because the temporal spacing
between frames in the same hierarchical level in the random
access configuration is larger than that in LDB configuration.
Thereby, the regression-based R-λMSE model estimation [6]
used by HM is more inaccurate. In contrast, the accurate R-
D-λ joint relationship-based modeling method used in SOSR
helps to solve this problem.
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