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Figure 1 Computational domain of the fouling on a single row of tubes
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Figure 2 (Color online) Forces and moments acting on the adhered
particle
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Table 1 The parameters used in the simulation*"
K,SO, Prandtl 0.695
2665 nm 96
po (kgim®) om)
10 ~
(N/m?) 3.0x10 (1m) 3~10
0.3 , D (m) 0.038
8
i) 4.1x10 4D
) 03 14D
,f 0.2 2D
(K) 420 (mfs) 2~10
" 136]
P 24.87x10 .C 0.4%
, &Y
o (kg/) 0.9057 @ 0.54
3 )
1 , [10]
2
1 1
D 38 mm,
2D, 4D, 3D
11D. D 60 . ,
LBM
1,=38/60 mm. LBM ,
FVM .LBM 430,

— — 3um§k, RaliE— 3 umFk, BEE
B S5um§i, Rl e 5umFk, BihiE
1005) o %gﬁﬂgi, RINRE O THHKL, BIHRE |
Q
£
1y 10
&
=
g |
£l
0‘1 L L 1 1 1
1 2 3 4 5 6 7 8910

FRIER (um)

3

Figure 3 The critical shear velocities for ash particle with and without
impact
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Figure9 The evolution of the shape of fouling layer and streamlines for d,=3 um, ui,=5 m/s

10 dp=5 um, uix=5 m/s

(@) 1.2 h: (b) 2.5 h; (c) 5 h; (d) 10.0 h

Figure 10 The shape of fouling layer and streamlines for d,=5 pum, u;;=5 m/s. (a) 1.2 h; (b) 2.5 h; (c) 5 h; (d) 10.0 h
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Figure 11 (Color online) The simulation fouling shape for d,=3 um,
Uin=5 m/s compared with a real fouling picture
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Figure 12 (Color online) The simulated and experimental values of the
fouling mass on the leeward side of a tube
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Coupled LBM-FVM-CA simulation of particle deposition and
removal processes on tubes

TONG ZiXiang, HE YaLing, LI YinShi & TAN HouZhang

Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, School of Energy and Power Engineering, Xi’an Jiaotong
University, Xi’an 710049, China

A numerical model was proposed to simulate the fouling processes on the tubes, which contained the evolution of the
fouling shape and the particle deposition/removal mechanisms. Firstly, the coupled lattice Boltzmann method (LBM) and
finite volume method (FVM) was established to simulate the air flow. The flow around the tubes was simulated by the
LBM due to its convenience in complex boundary conditions. The downstream flow was simulated by the FVM to save
the computational source. A reconstruction operator was derived for the information transfer from macroscopic
parameters to multiple-relaxation-time LBM. The cellular automata model, energy conservation model and moment
analysis were included to simulate the particle motion, collision, deposition and removal. Then, because the time step in
the simulation was several orders of magnitude shorter than the real fouling time, a time ratio was proposed for the
conversion between simulation and real time. Finally, the evolutions of the fouling shapes along with time for different
particle diameters and inlet velocities were simulated and analyzed. The results showed that the proposed coupled model
can be used to study the particle deposition, removal and the changing of the fouling layers. When the mass concentration
was the same, the fouling of small particle grew faster. The fouling area grew exponentially with time. It grew rapidly in
the beginning, then grew slower and finally reached an asymptotic balance value. When the particle concentration was
specified, the fouling rate first grew with and then decreased with the increasing inlet velocity. Therefore, there was a
velocity range in which the fouling rate was high. As for the shape of the fouling layer, the removal was severe on the
windward side, but the direct impaction of the particles formed the cone-shaped fouling layers. The cone-shape changed
the air flow and stopped the deposition on the windward side. The fouling layers grew on the entire leeward side of the
tubes and finally stopped when the removal was equal to the deposition. The simulated fouling shape was compared with
the real picture of the fouling on a tube of an economizer and the fouling shapes on the leeward side coincided well with
each other. The growth of the fouling mass was also compared with the existing experiment. The simulated mass had the
same trend with the experiment. This demonstrated that the time ratio can be used to convert the time scale. The
distribution of the particle sizes and the properties of the real particles should be considered in the future works.

industrial waste heat, fouling, particle deposition, removal, lattice Boltzmann method, finite volume method
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