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DFT study on the adsorption of SO, and catalytic formation

of SO, on the a—Fe,0, surface
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Abstract: A large amount of SO, and a small amount of SO, are emitted from coal—fired power plants.The generation of SO, is not only

harmful to the environment but also dangerous to the safe operation of the power plant.Current studies show that Fe, O, contained in the fly

ash and the boiler wall have a significant catalytic effect on the SO, formation. However the research on the path and mechanism of

S0, catalytic formation by Fe, O, is not deep enough.In this paper the a—Fe,0,( 001) surface was established firstly and the adsorp—

tion configuration of SO, and O, on a—Fe,0,( 001) surface was studied by density functional theory( DFT) .The stable adsorption configura—

tion of SO, and the dissociation pathway of O, on Fe,0,( 001) surface were obtained.The reaction path and energy barrier of catalytic for—

mation of SO; on a—Fe, 05 surface were studied by using transition state search method.Then the energy barrier of catalytic formation

of SO, in gas phase reaction were compared.The results show that the most stable adsorption configuration of SO, is that O and S atom

in SO, are adsorbed above Fe atoms on o — Fe,O; while S atom is not easy to be adsorbed above lattice oxygen of a—Fe,O; crystal. The

adsorption energy of O, on a—Fe, 0, surface is greater than the maximum adsorption energy of SO, which means that O, is more easily ad—
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sorbed on a—Fe, 0, surface.In addition O, is easy to dissociate and form O atom on the defect Fe,O; surface with oxygen vacancy which
indicates that a— Fe,O; with oxygen vacancy is easier to promote the dissociation of O, and the generation of adsorbed oxygen on the sur—
face.The L—H mechanism of SO, formation is that SO, and O atoms in the gas phase are adsorbed firstly on the a—Fe,O; surface and
then combine to form SO; and the reaction energy barrier is 231.65 kJ/mol.The E-R mechanism is that SO, in the gas phase reacts with
adsorbed oxygen on a—Fe, 0, surface to form SO, while the reaction energy barrier is 24.82 kJ/mol which is less than that of L-—H mecha—
nism and far less than that of SO, formation in gas phase reaction.The above results confirm that Fe, O, has a significant catalytic effect on
the formation of SO; and the E-R mechanism is the dominant reaction mechanism.The existence of oxygen vacancy promotes the dissocia—
tion of O, on the surface of a — Fe,0; and the surface adsorbed oxygen plays an important role in the catalytic process.

Key words: a—Fe,05; SO, adsorption; SO;; density functional theory; catalytic reaction
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