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Soft mechanical metamaterials with hinge-like elements can undergo multi-step recon-20

figuration through folding and contacts, and thus exhibit highly nonlinear responses.21

Numerical simulation of the nonlinear behaviors is essential for the design and control22

of the mechanical metamaterials, but it remains a challenge due to complicated nonlin-23

ear effects. Here, we report the finite element modeling of multi-step reconfiguration of24

a shape-changing metamaterial, and elucidate the underlying mechanism of soft elastic-25

ity. The predicted stress–strain curve together with the folding angles of hinge elements26

shows excellent agreement with experimental data reported in the literature. Moreover,27

we explore the influence of reconfiguration and folding-induced internal stress on the28

bandgap distribution of the mechanical metamaterials. Our efforts provide useful guide-29

lines for the design and application of mechanical metamaterials for both static and30

dynamic situations.31

Keywords: Mechanical metamaterials; self-folding; bandgap; soft elasticity; finite32

element.33

1. Introduction34

Mechanical metamaterials are man-made materials comprising an array of regu-35

lar/irregular arrangement of unit cells, and their unusual or novel properties orig-36

inate from the design and patterning of unit cells rather than from the chemistry37

of their constituents. Soft mechanical metamaterials are made of elastomeric mate-38

rials, mainly readily fabricated via 3D printing or molding, whose behaviors are39

dictated by deformation, stress and motion.1–5 Soft mechanical metamaterials have40

attracted increasing attentions in recent years, because of their diverse potential41
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applications in soft robotics,6,7 deployable and morphing structures,8–10 reusable1

energy dissipation11–14 and flexible electronics.152

Soft elasticity is a notation used in the community of liquid crystal elastomers3

(LCEs). Soft elasticity refers to a phenomenon when a physical system undergoes a4

substantial deformation or an increase in strain at a fixed stress level, i.e. there exists5

a plateau in the stress–strain curve where the strain increases continuously while6

the stress remains a constant. LCE is a cross-linked polymer network entangled with7

rod-like liquid crystal molecules. When the alignment of these rod-like molecules is8

random, it is in an isotropic state; when the liquid crystal molecules align themselves9

along the direction, it is in a nematic state. If the LCE is deformed perpendicular10

to the director’s direction, a soft elasticity phenomenon has been reported,16–1811

in which the LCE stretches at near-constant stress. The soft elasticity of LCE is12

attributed to the reorientation of the nematic director to align along the direction13

of the applied stretch. Reorientations of the director that are not aligned with the14

stretch induce continuous increase of strain while the stress remains unchanged, a15

highly nonlinear response observed in both experiments and simulations.16–1816

A mechanical analogy of soft elasticity can be realized in a special class of soft17

mechanical metamaterials with hinge-like elements. These mechanical metamate-18

rials include kirigami metamaterials, metamaterials with rigid parts and flexible19

hinge elements, etc. Under external loadings, the hinge-like elements undergo local20

buckling instability and the surrounding parts rotate about the hinges, resulting in21

continuous deformation without the need to increase the applied stress level. This22

type of instability-mediated soft elasticity has been demonstrated in soft mechani-23

cal metamaterials under either tension or compression.19–23 For the tension-induced24

soft elasticity, it mainly occurs in some kirigami or cut-mediated metamaterials,25

and it is easier to simulate. For the compression-induced soft elasticity, however, it26

remains a challenge because the modeling involves large deformation nonlinearity,27

and more importantly the nonlinearity due to contacts.2128

Very recently, shape-changing mechanical metamaterials that undergo self-29

guided, multi-step reconfiguration in response to global uniform compression30

have been demonstrated experimentally.21 The topological reconfigurations of the31

mechanical metamaterial were realized by the formation of internal self-contacts32

between the elements of the metamaterial. A relevant multi-step deformation33

mechanical metamaterial was demonstrated by Meng et al.24 by combining sequen-34

tial snapping-through and buckling at the microscopic unit cell level. The metama-35

terial design by Meng et al.24 is different from this study, and more importantly,36

the multi-step deformation was induced by uniaxial compression rather than the37

equi-biaxial compression considered herein. For rational design of the nonlinear38

mechanical elements that undergo multi-step self-guided pathways and for better39

understanding of the underlying nonlinear mechanics and physics, a computer mod-40

eling of the multi-step folding process is crucial for the design and control of such41

mechanical metamaterials. Nevertheless, it remains a blank due to the difficulties42

above-mentioned.43
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Here, we report our efforts to model the nonlinear mechanics of multi-step fold-1

ing of a mechanical metamaterial under uniform compression. The numerical details2

of implementation in a commercial software, ABAQUS, is presented. The character-3

istic stress–strain curve of such a shape-changing metamaterial during a sequence4

of reconfigurations is successfully captured, together with the bending angles of the5

hinges, and good agreement is achieved between numerical simulation and exper-6

imental data reported in the literature. Our finite element modeling (FEM) data7

results confirm the mechanism of existence of multiple plateaus in the stress–strain8

curve, throwing a light on the design of mechanical metamaterials undergoing multi-9

step folding. Foldings, on the one hand, entail reconfiguration and shape change of10

the material, and, on the other hand, generate internal stress through the material.11

Shape change as well as the generated internal stress not only influence the quasi-12

static behavior of the metamaterial, but also may alter the dynamic properties13

of the material. We show the variation of bandgap distribution of the mechanical14

metamaterial due to folding, which would aid in the design of mechanical meta-15

materials for both static and dynamic applications, in particular, the applications16

focusing on vibration isolation and wave propagation.17

2. Methodology18

Figure 1 shows the mechanical metamaterial of interest in this paper and its dimen-19

sions. Figure 1(a) gives the metamaterial sheet with 2 × 2 representative volume20

elements (RVEs). In Ref. 21, Coulais et al. described in detail the material type21

of the finite-size metamaterial sheet (shore 80A; Silex Silicones, Ltd.), the equi-22

biaxial compression performed using Instron machine and the software for force–23

displacement data recording and processing. Our simulation accords closely with24

the material type and loading and boundary conditions used in the experiment by25

Coulais et al.21 Figure 1(b) schematizes an RVE, which is comprised of a cross-26

shaped pattern of 20 squares and enclosed by the red square in Fig. 1(a). In27

Fig. 1(b), the 20 squares are classified into type 1 and type 2 according to their posi-28

tions, with type 1 for central squares and type 2 for surrounding ones. Figure 1(c)29

shows a single square with dimensions W ×W and its two hinge connections. The30

two hinges, one with thin width h2, and another with thick width h1, constitute31

the most flexible part and the next-most flexible part of the square, respectively.32

The angle α is defined as the relative rotation angle between two type-2 squares,33

while the angle β is defined as the rotation angle between type-1 and type-2 squares.34

Defined in this way, the angles α and β represent the folding angles measured at35

the most and the next-most flexible hinges, respectively.36

The equi-biaxial compression of a 2 × 2 mechanical metamaterial was inves-37

tigated by using ABAQUS/Explicit 2017. The 2D finite element (FE) models38

were constructed using plane strain approximation with the element type CPE6M,39

and the accuracy of the mesh was ascertained through a mesh refinement study.40

Two pairs of parallel plates were considered as 2D analytic rigid shells and the41
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Fig. 1. (Color online) Computational model of soft mechanical metamaterial undergoing equi-

biaxial compression. (a) A metamaterial with 2 × 2 RVEs being subjected to equi-biaxial

compression. (b) A close-up view of the RVE enclosed by the red square in panel (a). (c) The

dimensions of a unit square used to construct the metamaterial. Widths of two hinges, denoted by

h2 and h1, are marked, corresponding to the widths of the most and the next-most flexible hinges,

respectively.

loads were applied to the reference points by increasing the displacement in oppo-1

site directions to model the equi-biaxial compression of the metamaterial. Fric-2

tionless surface-to-surface contact was employed between the metamaterial and3

the parallel plates, while frictional self-contact was defined at internal surfaces4

of the metamaterial with a friction coefficient of 0.7. A small viscous pressure5

load was applied to damp out low-frequency dynamic effects and to attain quasi-6

static equilibrium with a minimal number of increments. The response of the elas-7

tomeric metamaterial was captured using a Neo-Hookean hyperelastic material8

model with the initial shear modulus μ0 = 1 MPa and buck modulus K0 = 20 MPa9

(K0/μ0 = 20).10
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3. Results and Discussion1

Figure 2 presents the numerical simulation results of the mechanical metamate-2

rial in Fig. 1(a) under equi-biaxial compression. Figure 2(a) plots the stress–strain3

curve, where the nominal stress is normalized by the shear modulus of the material4

μ. The black solid line in Fig. 2(a) is the experimental result taken from the litera-5

ture,21 and the red solid line is our result from FEM. The corresponding strains and6

the associated deformation snapshots of the points marked by A–F in Fig. 2(a) are7

given in Fig. 3. Figure 2(b) plots the calculated angles, α and β, defined in Fig. 1(b),8

during the whole deformation process, together with the experimental measure-9

ments taken from Ref. 21. The dotted lines with markers, filled black squares and10

Fig. 2. (Color online) Quasi-static behavior of the finite-size mechanical metamaterial undergoing

equi-biaxial compression. (a) Nominal strain versus normalized angle plot. (b) Nominal strain

versus bending angle plot.
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red circles, represent the experiment of α and β angles, while the solid purple line1

and black line represent the corresponding numerical results from FEM simulation.2

In Figs. 2(a) and 2(b), excellent agreement is achieved between numerical results3

and experiment, which verifies the correctness of our numerical scheme.4

A close look at Fig. 2(a) reveals the distinct stress–strain behavior of the5

mechanical metamaterial undergoing multi-step folding. The material first behaves6

elastically until a peak of stress marked by point A is reached. A classical buckling7

occurs at this critical point, marked by a sharp drop of stress in numerical simu-8

lation, whereas a continuous transition occurs in experiment in this state. This is9

because our simulation treats ideal material and structure without imperfections,10

while imperfections are inevitable in the experiment. Buckling causes the most flex-11

ible hinges to bend and the rigid squares to rotate about the hinge. This rotation12

results in continuous increase of strain under almost a constant stress level. This13

gives rise to the first plateau in the stress–strain curve marked from B to C. Bend-14

ing or rotating continues until the state C is attained, where self-contact occurs as15

shown in Fig. 3. A steep increase of applied stress is needed, as marked from C to16

D in Fig. 2(a), to complete the self-contact. Beyond the point D, the self-contacted17

rigid parts act as a single rigid part and rotate about the next-most flexible hinge18

as shown in Fig. 3. Then a second plateau, from D to E, forms and the plateau19

expands until the second self-contact begins and completes at point F . Another20

steep increase of stress is expected after the condensation of the whole metamate-21

rial completes.22

Fig. 3. (Color online) Deformation snapshots of numerical simulation of the mechanical meta-

material at various applied strains.
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From our simulations presented in Figs. 2 and 3, the mechanism of self-guided,1

multi-step pathways of the mechanical metamaterial can be understood as follows.2

The central part of the square in Fig. 1(c) works as a rigid part that rotates about3

two hinges with different flexibilities. Upon compression, bending occurs first at4

the most flexible hinge, and the bending moves the rigid square until it connects5

with another stiff square and forms a self-contact. The connected and self-contacted6

rigid parts act as a single rigid part in the following deformation. If the applied7

compression is increased further, the second bending or rotation occurs at the next-8

most flexible hinge, and the bending continues until another self-contact occurs,9

which prevents further motion.10

We then move on to study the bandgap distribution of the mechanical metama-11

terial, incorporating the influence of shape change and the internal stress field. The12

bandgap calculation chooses an RVE and enforces the Bloch boundary conditions.13

The details of implementation of Bloch boundary conditions in a commercial code14

such as ABAQUS are omitted herein and can be referred to in Ref. 25. Figure 415

presents the bandgap variations of two configurations, for both the undeformed16

state and deformed state, given by the left columns and right columns in Figs. 4(a)17

and 4(b), respectively. Figure 4(a) is for the case with h1 = 2 mm and h2 = 1 mm,18

and Fig. 4(b) is for the case with h1 = 1 mm and h2 = 0.5 mm, both with the same19

W = 4.5 mm. Inserted in Figs. 4(a) and 4(b) are the configurations of an RVE in20

the undeformed and deformed states. The deformed state was chosen as the state21

in the vicinity of occurrence of the first contact. To calculate the bandgap in the22

left column for the undeformed configurations, it is straightforward to perform a23

frequency analysis with Bloch boundary conditions enforced, and the bandgap cal-24

culation is performed in a single analysis step. To obtain the bandgaps in the right25

column in Fig. 4(b), two analysis steps are needed. Dynamic/Explicit was adopted26

in the first step for the quasi-static deformation process, then the linear perturba-27

tion for frequency analysis followed with the deformed configuration and internal28

stress from the first analysis step being retained. Note that the folding-induced vari-29

ations of configuration and, in particular, the induced internal stress have profound30

effects on the bandgap distribution of the mechanical metamaterials. Comparing31

the bandgaps in Fig. 4(a), the left figure has one wide bandgap in the range of 3221–32

4186 Hz and one thin bandgap at around 6500 Hz. For the deformed case, the main33

bandgap distribution remains nearly the same as in the undeformed case. However,34

other additional bandgaps appear in the right column of Fig. 4(a), in particular, a35

very low-frequency bandgap emerges at around 300 Hz. Vibration isolation for low-36

frequency regime is highly desirable for various applications. These results confirm37

that low-frequency bandgap may be obtained by introducing shape morphing and38

the internal stress field. Comparison between two bandgaps in Fig. 4(b) gives sim-39

ilar results as in Fig. 4(a), implying that the influence of internal stress and shape40

variation on bandgap is a general principle. This is similar to previous study on41

buckling-controlled bandgap of photonic crystals.26,2742
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Fig. 4. (Color online) Bandgap distributions of the mechanical metamaterial with/without inter-

nal stress. Left column for the case with initial stress field. Two geometric parameters, namely,

h1 = 2 mm and h2 = 1 mm for panel (a) and h1 = 1 mm and h2 = 0.5 mm for panel (b) with

the same W = 4.5 mm, are considered.

4. Summary1

We numerically investigate the quasi-static and dynamic frequency characteristics2

of a special soft mechanical metamaterial that can undergo self-guided multiple3

foldings and reconfigurations. The soft elasticity behavior of the mechanical meta-4

material during equi-biaxial compression is explored. The existence of plateaus5
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in the stress–strain curve is captured by our simulation and good agreement is1

obtained between the numerical and experimental results. Folding angles are also2

obtained and compared well with the reported experimental data. In addition,3

bandgap distribution of the mechanical metamaterial is also investigated for both4

deformed and undeformed states. Incorporating variations of configuration and5

folding-induced internal stress field alters the distribution of bandgap. The emer-6

gence of a low-frequency bandgap is favored for low-frequency vibration isolation.7

Our efforts provide useful guidelines for the design and application of soft mechan-8

ical metamaterials.9
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