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Bandgaps are intrinsic physical properties of periodic structures, for example, mechan-
ical metamaterials or phononic crystals, which indicate attenuation of wave propaga-

tion within a specific frequency range. Bandgap calculation of mechanical metamate-

rials is realized via discretizing a representative voluame element (RVE) and impos-
ing complex-valued Bloch wave boundary conditions. It is highly desirable to imple-

ment Bloch wave analysis in real-valued commercial finite element software. We present
and detail an ABAQUS and Python implementation of Bloch wave analysis. Two-

dimensional (2D) soft as well three-dimensional (3D) hard mechanical metamateri-

als are chosen as numerical examples. Material and geometric nonlinearities are tack-
led properly and the effects of pre-strains are explored. Our numerical results are
validated either by similar results reported in the literature or by our experimental

∗Corresponding author.

2150610-1

M
od

. P
hy

s.
 L

et
t. 

B
 2

02
2.

36
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 F

U
D

A
N

 U
N

IV
E

R
SI

T
Y

 o
n 

11
/0

2/
22

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.

http://dx.doi.org/10.1142/S0217984921506107
mailto:limeie@mail.xjtu.edu.cn


June 18, 2022 10:53 147-mplb S0217984921506107 page 2

FA

G. Wang et al.

measurement. The presented numerical strategy would aid the design, analysis and

utilization of mechanical metamaterials for dynamic applications. The codes and
data of the paper could be downloaded from https://github.com/XJTU-Zhou-group/

Calculating-band-gaps-of-nonlinear-mechanical-metamaterials.

Keywords: Bloch wave analysis; bandgap; mechanical metamaterial; finite element.

1. Introduction

Metamaterials are man-made materials that obtain their unusual properties by

structure rather than chemistry. Metamaterials have evolved from electromagnetic,

acoustic, optical and thermal1–5 to more recent and vibrant mechanical ones.6–13

Mechanical metamaterials are rationally designed artificial materials whose uncon-

ventional effective properties or macroscopic behaviors are achieved through exploit-

ing motion, deformation, stress and mechanical energy of its building blocks.13 For

example, a piece of polymeric block with array of holes exhibits negative Poisson’s

ratio when it is compressed.14–16 Other zero or negative material parameters such

as density, elastic moduli and compressibility can also be achieved.

With the help of advanced three-dimensional (3D) printing technology, research

on mechanical metamaterials has succeeded in efforts to create metamaterials

with complicated structures and a variety of soft and hard materials includ-

ing polymer, plastics, metals and ceramics. Recent designs of novel mechanical

metamaterials incorporating origami creases, kirigami cuts, topological protection,

snapping-through elements and negative-stiffness inclusions exhibit very sophisti-

cated mechanical behavior through shape morphing, topological protection, insta-

bilities and nonlinear responses, and call for high-fidelity nonlinear finite element

analysis involving contact, instability, geometric and material nonlinearity.9–13

Dynamics is at the heart of behavior of mechanical metamaterials; the long-

standing interests originate from earlier work on dynamics of wave-based and acous-

tic metamaterials to more recent work on non-reciprocal wave propagation and low

frequency vibration control.7,10,17,18 Dynamics of periodic mechanical metamateri-

als or closely related phononic crystals is compactly described by their bandgaps

or dispersion relations, and thus calculating bandgap is a task of top priority for

dynamics of mechanical metamaterials.19–23

The theory for calculating bandgaps of periodic structures lays its basis on Bloch

theorem which states that for any periodic structure the change in complex wave

amplitude across a unit cell does not depend upon the location of the unit cell

within the structure.19,20 Therefore, one can analyze wave propagation through the

entire structure by only considering wave motion within a single unit cell, result-

ing in enormous savings in computation time and computer storage. The process of

enforcing Bloch boundary conditions within a single unit cell and performing fre-

quency analysis is called Bloch wave analysis. Besides bandgap calculation, Bloch

wave analysis is also a powerful technique to determine the critical load for onset

of buckling and wrinkling of elastic media.

2150610-2

M
od

. P
hy

s.
 L

et
t. 

B
 2

02
2.

36
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 F

U
D

A
N

 U
N

IV
E

R
SI

T
Y

 o
n 

11
/0

2/
22

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.

https://github.com/XJTU-Zhou-group/Calculating-band-gaps-of-nonlinear-mechanical-metamaterials
https://github.com/XJTU-Zhou-group/Calculating-band-gaps-of-nonlinear-mechanical-metamaterials


June 18, 2022 10:53 147-mplb S0217984921506107 page 3

FA

Calculating bandgaps of nonlinear mechanical metamaterials

To invoke Bloch theorem, one admits complex valued plane wave solution for dis-

placement and enforcing periodic boundary conditions on the outer surfaces of the

unit cell. This process can be implemented by home-made finite element codes. How-

ever, it would be desirable to be able to use commercial finite element software due

to its powerfulness of pre- and post-processing, robustness of algorithm and auto-

matic computation of mass and stiffness matrices.20 Usage of commercial software

also facilitates interaction between academia and industry community. Unfortu-

nately, the most popular commercial finite element software, such as ABAQUS,

ANSYS and NASTRAN, are programmed for real valued field equations. There

is an exception, COMSOL, for multiphysics simulation. COMSOL is amenable to

complex valued equations and therefore exclusively used for bandgap of phononic

crystals and mechanical mematerials with small deformations. Nevertheless, its lim-

itation in nonlinear analysis is well-known, and as such, it is not well-suited for

nonlinear analysis and bandgap calculation of complex periodic structures.

ABAQUS is very popular and extensively used in solid mechanics community.

Its strong capability in nonlinear finite element analysis is widely acknowledged and

most trusted. Here, we describe and detail an ABAQUS and Python implementa-

tion of Bloch wave analysis for bandgap computation of two-dimensional (2D) soft

polymeric metamaterials with periodic holes as well as 3D hard metamaterials. The

real valued Bloch boundary conditions and the associated eigenvalue problem are

treated via a user programmed multiple point constraint, UMPC, over two identical

meshes — one for the real part and one for the imaginary part. All the Python files

for ABAQUS as well as the UMPC codes are provided in the supporting informa-

tion of the paper. Our efforts enrich the analysis tools for dynamics of mechanical

metamaterials, and can also be used straightforwardly for bandgap calculation of

other periodic structures.

2. Bloch Wave Analysis for a Periodically Structured Solid

with Finite Deformation

Let us consider a material particle X that undergoes a finite deformation and

deforms to x such that a deformation gradient is defined as

F =
∂x

∂X
. (1)

The equation of motion of the solid without body force is expressed in the unde-

formed configuration as

∇0 · S = ρ0
D2X

Dt2
, (2)

where ∇0 and ρ0 are the gradient operator and the density defined in reference

configuration, S denotes the first Piola–Kirchoff stress tensor and D
Dt is the material

time derivative. Letting the right-hand side acceleration term equal to zero, Eq. (2)

recovers the static equilibrium equation.
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Consider a perturbation superposed on an equlibrium state with finite deforma-

tion, the increment also satisfies the equation

∇0 · Ṡ = ρ0
D2ẋ

Dt2
, (3)

where dots denote increments; increment of stress tensor Ṡ is related to increment

of deformation gradient Ḟ through a linearized constitutive law, i.e. Ṡ = L:Ḟ, with

L a fourth-order tensor representing the linearized stiffness. If a plane wave solution

is admitted, an incremental wave with frequency is characterized by

ẋ(X, t) = Q̇(X) exp(−iωt), (4)

where Q̇ is the incremental displacement and the stress is also complex valued

Ṡ = Σ̇ exp(−iωt). (5)

Plugging equations (4) and (5) into Eq. (3) yields

∇0 · Σ̇ + ρ0ω
2Q̇ = 0. (6)

To calculate bandgaps of a periodic structure using commercial finite element soft-

ware like ABAQUS, the majority of which only permit real-valued field variables,

all fields are split into real and imaginary parts, and thus in this way, the incre-

mental equation (6) is split into two sets of equations for the real and imaginary

parts,20–23

∇0 · Σ̇RE + ρ0ω
2Q̇RE = 0, (7)

∇0 · Σ̇IM + ρ0ω
2Q̇IM = 0. (8)

A periodically structured solid can be constructed by selecting a representative

volume element (RVE) and tessellating the RVE along the basis vectors of direct

lattice ai. According to Bloch’s theorem, any space function satisfies the periodic

boundary conditions

Ψ(X + R) = Ψ(X) exp[ik×R], (9)

where vector R is obtained by ni translations along the ai directions with ni being

integers

R = n1a1 + n2a2 + n3a3 (10)

and k is the wave vector. A counterpart of ai, the so-called basic vectors of reciprocal

lattice bi is also introduced in such a way that ai ·bj = 2πδij with δij being

Kronecker delta function. Wave vector k can be expressed in terms of either ai or bi.

Bandgaps are thus calculated by constructing two identical meshes for the RVE-

one for the real part and one for the imaginary part-and coupling them by imposing

the following Bloch-type displacement boundary conditions:

Q̇RE(X + R) = Q̇RE(X) cos[k ·R]− Q̇IM(X) sin[k ·R], (11)

Q̇IM(X + R) = Q̇RE(X) sin[k ·R] + Q̇IM(X) cos[k ·R]. (12)
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Discretizing Eqs. (7) and (8) by the finite element method and applying boundary

conditions (11) and (12), the eigenfrequencies ω are obtained for any given wave

vector k. Imposing of boundary conditions (11) and (12) are realized by program-

ming a user programmed multiple point constraint, UMPC and the Bloch wave

analysis is performed by a Python script in ABAQUS (Supporting information).

This procedure is applicable for materials undergoing finite deformation, and also

applicable for bandgap calculation of any periodic structures.

3. Bandgap Calculation of a 2D Soft Mechanical Metamaterial

We choose here a 2D soft mechanical metamaterial made of rubber undergoing

finite deformation. The analysis of this type of mechanical metamaterials involves

material nonlinearity as well as geometric nonlinearity, and serves as an excellent

example to demonstrate the effectiveness of the proposed numerical strategy. Here,

we consider a neo-Hookean hyperelastic material with shear modulus G = 1.1 Mpa,

bulk modulusK = 2.0 GPa, Poisson’s ratio µ = 0.4997 and density ρ = 1050 kg/m3.

Figure 1(a) shows an infinite periodically structured elastomer sheet with an array

of perforated holes. Figure 1(b) gives the L×L (L = 20 mm) RVE with two different

hole radii, R1 = 4.57 mm and R2 = 4.16 mm, marked in the figure. The RVE

was discretized by 9520 six-node plane strain, hybrid, quadratic triangular elements

(Abaqus element type CPE6H). Figures 1(a) and 1(c) also give the basic vectors

defined in direct lattice (a) and reciprocal lattice (c). The shaded area in Fig. 1(c)

is the first Brillouin zone in reduced wave vector space.

The primary interest here is to probe the effect of applied pre-strain on the

bandgap structure of the soft mechanical metamaterial. Figure 2 plots various

Fig. 1. (Color online) Bloch wave analysis model of a 2D soft mechanical metamaterial. (a) An
infinite periodically structured elastomer sheet with an array of holes with two different sizes. Basic

vectors of direct lattice ai are shown herein and the domain enclosed by the black dashed line is the

RVE. (b) A L×L square RVE perforated with four holes with two different radii denoted by R1
and R2, respectively. (c) The basic vectors of reciprocal lattice and the corresponding irreducible

first Brillouin zone (shaded orange region GXM).
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Fig. 2. (Color online) Deformation process and stress–strain curve of the RVE for various applied
strains ε. (a) Various deformation states of the RVE for applied strains ε = 0.08, 0.16, 0.24

and 0.28 marked by A, B, C and D, respectively. (b) The nominal strain versus nominal stress

curve.

deformation states and the corresponding stress–strain curve of the RVE, with vari-

ous applied strains 0.08, 0.16, 0.24 and 0.28 and corresponding states marked by A,

B, C and D, respectively. Figures 3(a) and 3(b) plots and compares two bandgaps of

the RVE without (a) and with applied strain 0.28 (b). A noticeable difference lies in

the fact there is only one bandgap for metamaterial without pre-strain, frequencies

from 2000 Hz to 2600 Hz, whereas there exist four bandgaps for the material with

applied 0.28 compressive strain in vertical direction. Besides the primary bandgap

from 2000 Hz to 2600 Hz, there are additional three narrow bandgaps around 1400,

3300 and 6000 Hz. To quantitatively investigate the influence of applied strain on

the bandgaps, Fig. 3(c) plots the variation of mid-gap frequency and the bandgap

width, which are defined as (fL+fU )/2 and 2(fU−fL)
(fL+fU ) , respectively, fL and fU being
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lower and upper frequencies of a bandgap. Figure 3(d) plots the distribution of

bandgap frequency over various applied compressive strains. Figure 3(d) coincides

with the results presented in Figs. 3(a) and 3(b), indicating that imposing compres-

sive strain entails increase of distribution of bandgaps. A physical understanding

of this phenomenon is that applying compressive stress in an elastic body softens

the elastic and reduces its stiffness, eventually modifies its natural frequency dis-

tribution. Note that similar results in Fig. 3 are given by Bertoldi et al.22,23 for

Fig. 3. (Color online) Bandgap structure of a 2D soft mechanical metamaterial without (a) and
with applied pre-strain 0.28 (b). (c) Variation of mid-gap frequency and bandgap width with
applied nominal strain. (d) Distribution of bandgap frequency over various applied compressive

strains.
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Fig. 3. (Continued)

elastomeric phononic crystals undergoing large deformation, which partially vali-

dates our implementation.

4. Bandgap Calculation of a 3D Hard Mechanical Metamaterial

Figure 4 shows the design and CAD drawing of a 3D mechanical metamaterial

and its RVE for bandgap calculation. Also shown herein is the definition of the

wave vector coordinates and the irreducible first Brillouin zone (the tetrahedron

ΓRXM). The mechanical metamaterial is similar to the phononic crystal developed

by D’Alessandro et al.18 and consists of beams with spherical lumped masses. The

RVE is a L×L×L cube with square cross-sections W/2×W/2 (the cross-section of

the metamaterial is W ×W with W = 3.2 mm). The radius of the lumped sphere is
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Fig. 4. (Color online) The CAD drawing of a 3D mechanical metamaterial and its RVE for

bandgap calculation. (a) CAD drawing of a 3D mechanical metamaterial. (b) RVE of the 3D

mechanical metamaterial (left) and the wave vector and the irreducible first Brillouin zone (the
tetrahedron ΓRXM).

R = 8 mm. The mechanical metamaterial is made of curable resin (sterelithography

material, DSM product, Somos Imagine 8000) with Young’s modulus E = 2.48 GPa,

Poisson’s ratio µ = 0.41 and density ρ = 1100 kg/m3.

The RVE was discretized by 89,834 3D four-node linear tetrahedral elements

(Abaqus element type C3D4), and the accuracy of the mesh was ascertained through

a mesh refinement study. Due to structural symmetry, eigenvalue problem was

solved along the boundary of irreducible first Brillouin zone, ΓRXM, which was

2150610-9

M
od

. P
hy

s.
 L

et
t. 

B
 2

02
2.

36
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 F

U
D

A
N

 U
N

IV
E

R
SI

T
Y

 o
n 

11
/0

2/
22

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



June 18, 2022 10:53 147-mplb S0217984921506107 page 10

FA

G. Wang et al.

Fig. 5. (Color online) Bandgaps of a 3D hard mechanical metamaterials ((a) L = 35.2 mm;

(b) L = 73.2 mm).

discretized by 20 points. Bandgaps with various lengths of RVE were calculated and

Fig. 5 shows two of the bandgap structures, corresponding to L = 35.2 mm and

73.2 mm, respectively. In Fig. 5(a) with L = 35.2 mm, there exist two bandgaps,

one in the range of 7532 Hz–21,884 Hz and one in the range of 25,930–31,420 Hz.

For the case with larger length of RVE, L = 73.2 mm, there exist six main bandgaps

marked by shaded gray color, in addition to several narrow bandgaps in red color.

This example demonstrates that achieving desirable bandgap distribution is possible

by designing configurations and tailoring parameters of RVE.

2150610-10

M
od

. P
hy

s.
 L

et
t. 

B
 2

02
2.

36
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 F

U
D

A
N

 U
N

IV
E

R
SI

T
Y

 o
n 

11
/0

2/
22

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



June 18, 2022 10:53 147-mplb S0217984921506107 page 11

FA

Calculating bandgaps of nonlinear mechanical metamaterials

Fig. 6. (Color online) Experimental measurement of the vibration transmittance of a 3D

mechanical metamaterial fabricated by 3D printing. (a) Experimental setup. (b) Transmittance.

To further verify the correctness of our numerical method, we adopted the iden-

tical experimental setup used by D’Alessandro et al.18 and performed experimen-

tal measurement of the 3D printed mechanical metamaterial with L = 35.2 mm.

Figure 6(a) shows the picture of the experimental setup, and the vibration

transmission is measured. The fabricated mechanical metamaterial was placed on

a soft bubble wrap with a sensor A and a sensor B attached on the top and bottom

surfaces of the metamaterials, respectively. A DAQ system was used to acquire the

acceleration data. The metamaterial was excited by a vibration shaker Vibe-Tribe

Troll, and the acceleration sensors were PCB Piezotronics 353B15. Figure 6(b) plots

the vibration transmittance defined by T = 20 log ‖Aout(ω)
Ain(ω) ‖, where Aout is the out-

put sample given by sensor B while Ain is the input sample given by sensor A.

It is shown in Fig. 6(b) that the experimentally measured vibration transmittance

of the finite-size 3D metamaterial (red line) matches well with the data predicted
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by finite-size vibration transmittance simulation (black line), both being in a good

agreement with the bandgap predicted by the RVE bandgap calculation (gray area).

5. Concluding Remarks

Mechanical metamaterials are artificial materials whose peculiar properties depend

on their size and arrangement of unit cells rather than the chemistry of constituent

materials. Efforts are devoted in developing mechanical metamaterials for diverse

applications, among them the application of mechanical metamaterials for dynamics

control and vibration isolation is a flourishing interest. Bandgap structure of a

mechanical metamaterial with periodic unit cell reflects the range of frequencies

in which harmonic wave propagation is blocked, therefore, calculation of bandgap

structure is at the core of dynamics of mechanical metamaterials.

Mechanical metamaterials are typically fabricated by the cutting-edge technol-

ogy of 3D printing and, to date, majority of them are made of polymer-like mate-

rials with nonlinear properties. Deformation of mechanical metamaterials usually

involves finite deformation and geometric nonlinearity. To accurately capture the

bandgaps of these mechanical metamaterials, nonlinear finite element software are

desperately needed, most of them only deal with real-valued field variables.

To this end, we present in this paper an implementation strategy of bandgap cal-

culation in ABAQUS in together with Python script and user subroutine multiple

point constraint. A 2D elastomeric sheet with an array of holes with two different

sizes of radii was chosen as the first example. Hyperelastic material nonlinearity

and large deformation are incorporated in this example. Focus is placed on the

effect of applied compressive strain on the distribution and evolution of bandgaps

of this 2D mechanical metamaterial. The overall trend of the presented 2D exam-

ples follows the similar behavior reported in the literature for soft phononic crys-

tals with large deformation. With the success of the 2D example, we extend the

bandgap calculation of 3D mechanical metamaterials. Bandgap of a 3D beam-in-

mass lattice structure is obtained. The numerical results of 3D hard metamaterials

are compared with the experiments performed over 3D printed samples and good

agreement is achieved. Our efforts presented herein enrich the analysis of mechani-

cal metamaterials and phononic crystals, and also pave the way for the design and

fabrication of mechanical metamaterials.
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