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Abstract: This paper describes the formulations for the viscoplasticity of metals based on the
Chaboche and Delobelle model. The implementations of the viscoplastic models were detailed herein
and then implemented via user subroutines for material models (UMAT) in ABAQUS. Two typical
metals, i.e., 316 Stainless Steel and Zircaloy-4, were chosen as examples and their viscoplastic behav-
iors were captured. Numerical simulations are compared to reported experiments in order to validate
the models and the UMAT codes. The typical viscoplastic behaviors of both metals, such as stress
relaxation and creep, were captured well through the available experiments. We have publicized all
the data and codes.

Keywords: UMAT; viscoplasticity; 316 stainless steel; zircaloy-4

1. Introduction

The stress corrosion cracking (SCC) of cladding tube structures caused by a pellet-clad
interaction (PCI) seriously threatens the operation safety of nuclear facilities [1–4]. In order
to ensure the structural integrity of nuclear fuel cladding during service, it is necessary to
accurately calculate the stress and strain levels of cladding materials in service conditions.

316 Stainless Steel and Zircaloy-4 have become widely used cladding materials due
to their excellent high temperature mechanical properties, good oxidation resistance and
corrosion resistance [5–7]. Elastic deformation, plastic deformation and high temperature
creep are the main deformation behaviors of cladding materials under service conditions.
Current fuel rod simulation codes such as FRAPCON, FPIN2 and FALCON, typically sim-
plify complex cladding deformation problems into one-dimensional or two-dimensional
problems based on axisymmetric, plane strain and one-dimensional radial representa-
tion [8–10]. However, this method cannot model the multiaxial mechanical behavior of the
cladding. Not only that, empirical formulas are generally used in these codes to describe
the plasticity and creep behavior of the cladding [11]. This approach greatly limits the
generalisability and accuracy of the models despite their simplicity in theory and implemen-
tation. Therefore, since 2008, Williamson et al. from the Idaho National Laboratory (INL)
have been developing the multidimensional finite element fuel code BISON [12–14]. At the
same time, Williamson [15,16] carried out a multidimensional thermomechanical analysis
of the multipellet steady and transient light water reactor fuel rod behavior based on the
ABAQUS commercial finite element code. A power-law creep formulation for describing
the deformation behavior of Zircaloy cladding is implemented via an ABAQUS user creep
subroutine. However, 316 stainless steel and Zircaloy-4 have coupled plasticity and creep
behavior at high temperatures [17]. The classical rate-independent elastoplastic constitutive
model, the Norton creep equation [18], or the widely used Johnson-Cook model cannot
realize the coupled calculation of plastic deformation and creep, so it is necessary to use a
unified viscoplastic model to model the mechanical behavior of cladding materials.

The expression of the unified viscoplastic constitutive equation usually includes two
aspects: I. the choice of the viscosity function, that is, the expression of the relationship
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between viscous stress and equivalent plastic strain rate; and II. the choice of the hard-
ening equations, that is, the expression of the internal variables [19,20]. The viscosity
equation and the hardening equation are connected through the yield function including
overstress , in order to implement the coupled calculation of plasticity and creep. Chaboche
and Rousselier [21,22] succeeded in modeling the rate-dependent mechanical behavior of
316 Stainless Steel based on a unified viscoplastic model including a nonlinear isotropic
hardening rule, nonlinear kinematic hardening rule, and viscosity equation in the form of
the power function. Since then, this model has been widely used to model the nonlinear
mechanical behavior of metals and polymers, and it is called the Chaboche model [23–27].
Unlike 316 Stainless Steel, several experimental studies have been carried out to show that
Zircaloy-4 has anisotropic viscoplastic properties due to its microstructural texture [28–32],
and that Zircaloy-4 has a more complex kinematic hardening behavior. Delobelle [33–35]
developed a unified viscoplastic constitutive model for Zircaloy-4 modeling by including
a viscosity equation in the form of the hyperbolic sine function and three back-stresses
playing roles successively instead of simultaneously, with some complicated coupling
criteria, and he implemented an approach to modeling the anisotropic yield and plastic
flow behavior of Zircaloy-4 by using four fourth-order tensors.

Unfortunately, the above two unified viscoplastic constitutive models are not built
into the ABAQUS materials library, and there is neither a detailed description of the
numerical solution procedure for the unified viscoplastic constitutive model used for
modeling nuclear materials nor the available UMAT codes in the reported literature. In this
paper, the Chaboche and Delobelle viscoplastic models for 316 stainless steel and Zircaloy-4,
respectively, are implemented via the ABAQUS user material subroutine (UMAT). The
specific details of the implementation of these two complex constitutive models, based on
the return mapping algorithm and the semi-implicit integration method, are given, and
the numerical simulation results are compared with the reported experimental results in
order to validate the model and UMAT code. Compared with the existing in-house codes,
the two user subroutines developed based on commercial software in this paper allowed
open-source access; this can make full use of the advantages of ABAQUS in structural
geometric modeling, multi-axial stress analysis and nonlinear finite element solutions, in
order to facilitate a more accurate mechanical analysis of cladding structures based on
ABAQUS in academia and industry.

2. Viscoplastic Constitutive Equation
2.1. The Framework of the Unified Viscoplastic Constitutive Model

Based on the infinitesimal strain theory, the total strain of the constitutive model can
be decomposed into the elastic part and viscoplastic part, and the physical mechanism
of this method is described in detail in the textbook of Dunne and Petrinic [36]. So, the
expression for the total strain ε is as follows:

ε = εe + εvp (1)

where εe is the elastic strain tensor and εvp is the viscoplastic strain tensor. The constitutive
relation of the elastic deformation part can be expressed by the generalized Hooke’s law
as follows:

εe = E−1 : σ (2)

where E is the fourth-order elastic tensor, and σ is the Cauchy stress tensor. The plastic
strain rate ε̇vp is expressed based on the associated flow rule as follows:

ε̇vp = ṗ
∂ f
∂σ

(3)
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where f is the yield function, which is equal to the plastic potential function in the associated
flow rule and is defined as follows:

f = f (σeq, σy, p, Xi, Xi), i = 1, 2, · · · (4)

where σeq is the equivalent stress, which is a certain norm of the Cauchy stress tensor, and
the specific expression of the equivalent stress is determined by the yield criterion. σy is
the initial yield stress. Xi and Xi are internal variables in scalar form and second-order
tensor form, respectively, which determine the hardening behavior in the viscoplastic
constitutive equation. ∂ f /∂σ in Equation (3) means that the direction of the plastic strain
rate is perpendicular to the normal direction of the yield surface, which is known as the
normality hypothesis of plasticity. p is the equivalent plastic strain, also called accumulated
plastic strain, which reflects the loading history of the materials. ṗ is the equivalent plastic
strain rate, indicating the length of the plastic strain increment path in the plastic strain
space. The expression of ṗ under the J2 flow rule is as follows:

ṗ =

(
2
3

ε̇vp : ε̇vp
)1/2

(5)

The equivalent plastic strain rate is determined by the viscosity equation φ:

ṗ = φ(σv) (6)

where σv is the viscous stress, also known as overstress [19], which is the time-dependent
part of the total stress in the constitutive equation. The yield function including overstress
is as follows:

f = σv > 0 (7)

Equation (7) shows that the plastic flow behavior described by the unified viscoplastic
constitutive model is jointly determined by the hardening rules and the viscosity equation.
The viscosity equation can also be defined as follows:{

ṗ = 0 , f ≤ 0
ṗ = φ( f ) > 0 , f > 0

(8)

In summary, to carry out the modeling of material mechanical behavior based on the
unified viscoplastic constitutive model, the following three parts need to be determined:
I. the yield criterion, that is, the expression of the equivalent stress σeq; II. the hardening
rule, that is, the expression of the internal variables Xi and Xi; and III. the expression of the
viscosity equation ϕ.

2.2. Isotropic Viscoplastic Constitutive Model for 316 Stainless Steel

The viscoplastic constitutive modeling of 316 Stainless Steel is based on the Chaboche
model [21,22], and the yield function f expressions based on the von Mises yield criterion,
nonlinear isotropic hardening rule and nonlinear kinematic hardening rule are as follows:

f = σeq − R− σy

=

[
3
2
(s− α) : (s− α)

]1/2
− R− σy

(9)

where s is the deviatoric stress tensor:

s = σ − 1
3

tr(σ)I (10)

where tr(σ) is the trace of the stress tensor, that is, tr(σ) = σ11 + σ22 + σ33. I is the unit
second-order tensor, that is, I = δij~ei~ej. The scalar internal variable R in Equation (9) is the
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drag-stress describing the isotropic hardening behavior of the materials, and the second-
order tensor internal variable α in Equation (9) is the back-stress describing the kinematic
hardening behavior of the materials. The expressions of drag-stress R and back-stress α
evolution are as follows:

Ṙ = b(Q− R) ṗ (11)

2

∑
i=1

αi (12)

α̇i = Ci

(
2
3

ai ε̇
vp − αi ṗ

)
(13)

where b and Q are isotropic hardening parameters, and C1, C2, a1 and a2 are kinematic
hardening parameters. Equation (13) is the nonlinear kinematic hardening rule proposed
by Armstrong and Frederick [37]. Chaboche [21] first used the back-stress expression of the
addition of multiple Armstrong-Frederick rules to obtain better modeling capabilities of
kinematic hardening behavior. The viscosity equation φ is defined by Norton’s power law:

ṗ = φ( f ) =
(

f
K

)n
(14)

where K and n are viscoplastic parameters. Substituting Equations (9) and (14) into
Equation (3), the expression of viscoplastic strain rate based on the Chaboche model can be
obtained as follows:

ε̇vp =
3
2

(
f
K

)n s− α

σeq
, f > 0 (15)

Specific details about the implementation of the isotropic viscoplastic constitutive model
for 316 Stainless Steel are detailed in Section 3.2.

2.3. Anisotropic Viscoplastic Constitutive Model for Zircaloy-4

The viscoplastic constitutive modeling of Zircaloy-4 is carried out based on the Delo-
belle model [33–35]. The Hill yield criterion [38] is used to describe the unique anisotropic
yield behavior of Zircaloy-4, and the expression of the yield function f is as follows:

f = σeq =

[
3
2
(s− α) : M : (s− α)

]1/2
(16)

where M is the fourth-order anisotropy coefficient tensor. Unlike the 316 Stainless Steel’s
model, there is no initial yield stress term in the yield function of the Zircaloy-4 model,
indicating that there is no initial elastic domain in the Zircaloy-4 model, and the initial Hill
yield surface is a point. Considering Voigt notation, we have the following:

M =



M11 M12 M13 0 0 0
M12 M12 M23 0 0 0
M13 M23 M33 0 0 0

0 0 0 M44 0 0
0 0 0 0 M55 0
0 0 0 0 0 M66

 with

M11 + M12 + M13 = 0

M12 + M22 + M23 = 0

M13 + M23 + M33 = 0

(17)

The modeling is based on the assumption of orthotropy and incompressibility because of
the essentially radial orientation of the crystallites in the Zircaloy-4 microstructure [34],
which leads to only six independent components of the anisotropy coefficient tensor. The
fourth-order coefficient tensors N, Q and R, that describe the anisotropic plastic behavior
below also have the same form. The hardening internal variable expression is given by
the following:
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α̇ = q
[

2
3

Y∗N : ε̇vp −Q :
(

α− α(1)
)

ṗ
]
−
[

rm

(
αeq

α0

)m0

+ rm1

(
αeq

α0

)m1
]

: N : R :
α

αeq
(18)

α̇(1) = q1

[
2
3

Y∗N : ε̇vp −Q :
(

α(1) − α(2)
)

ṗ
]

(19)

α̇(2) = q2

[
2
3

Y∗N : ε̇vp −Q : α(2) ṗ
]

(20)

Y∗ = Y0 + Yiso + Yθ (21)

Ẏiso = biso
(
Ysat

iso −Yiso
)

ṗ (22)

Ẏθ = bθ

(
Ysat

θ f (θ)−Yθ

)
ṗ (23)

f (θ) = 1− | cos θ| , θ = arccos
(

3
2

α : R : α̇

αeqα̇eq

)
(24)

αeq =

(
3
2

α : R : α

)1/2
, α̇eq =

(
3
2

α̇ : R : α̇

)1/2
(25)

where q1 and q2 are kinematic hardening parameters, and biso, bθ , Y0, Ysat
iso and Ysat

θ are
scalar internal variable hardening parameters. Equations (18)–(20) are kinematic hardening
rules in the form of an Armstrong-Frederick rule. The second term on the right side of
Equation (18) is the static recovery term, which is used to describe the hardening recovery
behavior independent of plastic strain, and rm, rm1, m0 and m1 are temperature-dependent
material parameters. The internal variable Y∗ is the asymptotic value of the back-stress in
the evolution process, which has a similar expression to the nonlinear isotropic hardening
rule. The viscosity equation φ is defined as follows:

ṗ = φ( f ) = ε0

[
sinh

(
f
N

)]k
(26)

where ε0, N and k are viscoplastic parameters. Creep test results are well described
using the viscosity equation in the form of a hyperbolic sine function [33]. Substituting
Equations (16) and (26) into Equation (3), the expression of viscoplastic strain rate based
on the Delobelle model can be obtained as:

ε̇vp =
3
2

ε0

[
sinh

(
f
N

)]k M : (s− α)

σeq
, f > 0 (27)

Specific details about the implementation of the anisotropic viscoplastic constitutive model
for Zircaloy-4 are detailed in Section 3.3.

3. Computational Algorithm

The unified viscoplastic constitutive model proposed in Section 2 was implemented
through the ABAQUS user material subroutine. The stress update algorithms of the
316 Stainless Steel model and Zircaloy-4 model are deduced based on semi-implicit integra-
tion and return mapping algorithm. The algorithm derived in this section is based on the
discretization of the unified viscoplastic constitutive equation, that is, for a time interval
[tn, tn+1], the variable values at tn being known and the total strain increment ∆ε being
given, the purpose of the algorithm detailed hereafter is to calculate the variable values at
time tn+1.
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3.1. Return Mapping Algorithm

The return mapping algorithm is widely used in computational plasticity [36,39]. In
general, this approach consists of two parts called “elastic predictor” and “plastic corrector”.
The generalized Hooke’s law given by Equation (2) can also be written as follows:

σ = 2Gεe + λtr(εe)I (28)

where G is the shear modulus and λ is the Lame’s constant. Elastic strain can be decom-
posed as follows:

εe = εe
t + ∆εe = εe

t + ∆ε− ∆εvp (29)

For simplicity, the subscript t in this section indicates the variable at time tn, and the
variable without subscript t indicates the variable at time tn+1. Substitute Equation (29)
into Equation (28):

σ = 2G(εe
t + ∆ε− ∆εvp) + λtr(εe

t + ∆ε− ∆εvp)I (30)

Considering the incompressible assumption, that is tr(∆εvp) = 0, Equation (30) can be
expressed as follows:

σ = 2G(εe
t + ∆ε) + λtr(εe

t + ∆ε)I − 2G∆εvp (31)

Let:
σtri = 2G(εe

t + ∆ε) + λtr(εe
t + ∆ε)I (32)

where σtri is the trial stress, also known as “elastic predictor”. 2G∆εvp is called “plastic
corrector”. Substitute Equation (32) into Equation (31):

σ = σtri − 2G∆εvp (33)

After derivation, it can be obtained from the above equation:

σeq = σtri
eq − 3G∆p (34)

According to the above derivation, we can get the basic calculation process of the return
mapping algorithm as shown in Figure 1:

Figure 1. The stress-strain update process based on return mapping algorithm, and the corresponding
yield surface.
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First, assuming that the total strain increments are all elastic strain increments, the
yield function f tri of the trial stress state can be obtained (¬– in Figure 1):

f tri = σtri
eq − σy (35)

Secondly, if there is f tri ≤ 0, it means that the material has not entered the yield state, and
the stress σtri

eq corresponding to the trial stress is the updated stress. If there is f tri > 0, it
means that the material enters the yield state. At this time, the yield function of the real
state should be calculated (–® in Figure 1). Considering Equation (34), the yield function
of the true state is as follows:

f = σeq − σy =
(

σtri
eq − 3G∆p

)
− σy = σv (36)

Therefore, obtaining the equivalent plastic strain increment ∆p that satisfies both the
hardening rules and the viscous equation is the key problem of the stress update algorithm.
Specific details about the derivation of the equivalent plastic strain increment ∆p of the
316 Stainless Steel model and the Zircaloy-4 model are detailed in Sections 3.2 and 3.3.
Finally, if ∆p is obtained, the updated stress can be calculated based on the flow rule and
generalized Hooke’s law (¬–® in Figure 1):

∆εvp = ∆pn (37)

∆σ = E−1∆εe = E−1 : (∆ε− ∆εvp) (38)

σ = σt + ∆σ (39)

where n is the direction of plastic flow, that is, n = ∂ f /∂σ. As shown in Equation (38),
the algorithm implementation of the constitutive model in this paper is carried out based
on the constant stiffness iterative method. The scheme of the return mapping algorithm
process is illustrated in Figure 2.

Figure 2. Flow diagram of return mapping algorithm.
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3.2. Stress Update Algorithm of 316 Stainless Steel Model

The isotropic viscoplastic constitutive model for 316 Stainless Steel in Section 2.2 is
discretized according to the semi-implicit integration scheme as follows:

f(n+1) = σeq − R(n+1) − σy = σtri
eq − 3G∆p(n+1) − R(n+1) − σy (40)

α(n+1) = α(n) + ∆α(n+1) (41)

∆α(n+1) = ∆α1(n+1) + ∆α2(n+1) (42)

∆α1(n+1) = C1

(
a1∆ε

vp
(n+1) − α1(n)∆p(n+1)

)
(43)

∆α2(n+1) = C2

(
a2∆ε

vp
(n+1) − α2(n)∆p(n+1)

)
(44)

R(n+1) = R(n) + ∆R(n+1) (45)

∆R(n+1) = b
(

Q− R(n)

)
∆p(n+1) (46)

According to Equation (14):

ṗ =
dp
dt

=
∆p
∆t

= φ( f ) = φ(∆p, α, R) (47)

Since the expressions of α and R both contain ∆pn+1, Equation (47) is a nonlinear equation
about ∆pn+1, which can be solved using the Newton-Raphson iterative method. Therefore,
it is necessary to derive the Newton-Raphson iteration scheme, rearrange Equation (47),
and let:

ψ(∆p, α, R) = ∆p− φ(∆p, α, R)∆t = 0 (48)

Take the first-order Taylor expansion of ψ:

ψ +
∂ψ

∂∆p
d∆p +

∂ψ

∂α
: dα +

∂ψ

∂R
dR = 0 (49)

Substituting Equation (48) into Equation (49):

∆p− φ∆t +
(

1− ∂φ

∂∆p
∆t
)

d∆p− ∂φ

∂α
: dα∆t− ∂φ

∂R
dR∆t = 0 (50)

Substituting Equations (11)–(13) into Equation (50), eliminate dα, dR and rearrange give (k
is the number of iteration):

d∆p(k+1) =
φ(k) − ∆p(k)/∆t

1
∆t − (

∂φ
∂∆p )

(k) + 3
2 (

∂φ
∂σeq

)(k)(C1a1 + C2a2)− (
∂φ

∂σeq
)(k)
(

C1n(n) : α
(k)
1 − C2n(n) : α

(k)
2

)
− (

∂φ
∂R )

(k)b
(

Q− R(k)
) (51)

where:

φ(k) =

(
σtri

eq − 3G∆p(k) − R(k) − σy

K

)n

(52)

∂φ

∂α
= − ∂φ

∂σeq
n (53)

(
∂φ

∂σeq
)(k) =

n
K

(
σtri

eq − 3G∆p(k) − R(k) − σy

K

)n−1

(54)
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(
∂φ

∂R
)(k) = − n

K

(
σtri

eq − 3G∆p(k) − R(k) − σy

K

)n−1

(55)

(
∂φ

∂∆p
)(k) = −3nG

K

(
σtri

eq − 3G∆p(k) − R(k) − σy

K

)n−1

(56)

Calculate the updated internal variables and equivalent plastic strain increment:

∆p(k+1) = ∆p(k) + d∆p(k+1) (57)

α(k+1) = α
(k+1)
1 + α

(k+1)
2 (58)

α
(k+1)
1 = α1(n) + ∆α

(k+1)
1 = α1(n) + C1

(
a1n(n) − α1(n)

)
∆p(k+1) (59)

α
(k+1)
2 = α2(n) + ∆α

(k+1)
2 = α2(n) + C2

(
a2n(n) − α2(n)

)
∆p(k+1) (60)

R(k+1) = R(n) + ∆R(k+1) = R(n) + b
(

Q− R(n)

)
∆p(k+1) (61)

The above is the Newton-Raphson iterative scheme for solving the nonlinear equation
about ∆p(n+1). When RES = |∆p− φ( f )∆t| → 0, the iteration ends, that is, the ∆p that
satisfies both the hardening rules and the viscosity function has been found within the time
incremental step [tn, tn+1]:

∆p(n+1) = ∆p(k+1) (62)

Calculate the updated plastic strain increment:

∆ε
vp
(n+1) = ∆p(n+1)n(n) (63)

where:
n(n) = (

3
2

s− α

σeq
)(n) (64)

Calculate the updated stress:

∆σ(n+1) = E−1 :
(

∆ε(n+1) − ∆ε
vp
(n+1)

)
(65)

σ(n+1) = σ(n) + ∆σ(n+1) (66)

3.3. Stress Update Algorithm of Zircaloy-4 Model

The anisotropic viscoplastic constitutive model for Zircaloy-4 in Section 2.3 is dis-
cretized according to the semi-implicit integration scheme as follows:

f(n+1) = σeq = σtri
eq − 3G∆p(n+1) (67)

α(n+1) = α(n) + ∆α(n+1) (68)

α
(1)
(n+1) = α

(1)
(n) + ∆α

(1)
(n+1) (69)

α
(2)
(n+1) = α

(2)
(n) + ∆α

(2)
(n+1) (70)
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∆α(n+1) =q
{

2
3

Y∗(n+1)N : ∆ε
vp
(n+1) −Q :

[
α(n) − α

(1)
(n)

]
∆p(n+1)

}
− ∆t

[
rm

(
αeq

α0

)m0

+ rm1

(
αeq

α0

)m1
]

N : R :
α(n)

αeq

(71)

∆α
(1)
(n+1) = q1

{
2
3

Y∗(n+1)N : ∆ε
vp
(n+1) −Q :

[
α
(1)
(n) − α

(2)
(n)

]
∆p(n+1)

}
(72)

∆α
(2)
(n+1) = q2

{
2
3

Y∗(n+1)N : ∆ε
vp
(n+1) −Q : α

(2)
(n)∆p(n+1)

}
(73)

Y∗(n+1) = Y0 + Yiso(n+1) + Yθ(n+1) (74)

Yiso(n+1) = Yiso(n) + ∆Yiso(n+1) (75)

Yθ(n+1) = Yθ(n) + ∆Yθ(n+1) (76)

∆Yiso(n+1) = biso

(
Ysat

iso −Yiso(n)

)
∆p(n+1) (77)

∆Yθ(n+1) = bθ

(
Ysat

θ f (θ)(n) −Yθ(n)

)
∆p(n+1) (78)

According to Equation (26):

ṗ =
∆p
∆t

= φ(∆p, α) (79)

Similar to the 316 Stainless Steel model, the Newton-Raphson iterative scheme for solving
the equivalent plastic strain increment ∆p(n+1) of the Zircaloy-4 model is derived; rearrange
Equation (79), and let:

ψ(∆p, α) = ∆p− φ(∆p, α)∆t = 0 (80)

Take the first-order Taylor expansion of ψ:

ψ +
∂ψ

∂∆p
d∆p +

∂ψ

∂α
: dα = 0 (81)

Substituting Equation (80) into Equation (81):

∆p− φ∆t +
(

1− ∂φ

∂∆p
∆t
)

d∆p− ∂φ

∂α
: dα∆t = 0 (82)

Substituting Equations (18)–(20) into Equation (82), eliminate dα and rearrange to give (k is
the number of iterations):

d∆p(k+1) =
φ(k) − ∆p(k)

∆t + ( ∂φ
∂σeq

)(k)∆t
[
rm

(
αeq
α0

)m0
+ rm1

(
αeq
α0

)m1
]
n(n) : N : R : α(k)

αeq

1
∆t − ( ∂φ

∂∆p )
(k) + q( ∂φ

∂σeq
)(k)
{

2
3 Y∗(k)n(n) : N : n(n) − n(n) : Q :

[
α(k) − α(1)(k)

]} (83)

where:

φ(k) = ε̇0

{
sinh

(
σtri

eq − 3G∆p(k)

N

)}k

(84)

(
∂φ

∂σeq
)(k) =

ε̇0k
N

{
sinh

(
σtri

eq − 3G∆p(k)

N

)}k−1

cosh

(
σtri

eq − 3G∆p(k)

N

)
(85)
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(
∂φ

∂∆p
)(k) = −3Gε̇0k

N

{
sinh

(
σtri

eq − 3G∆p(k)

N

)}k−1

cosh

(
σtri

eq − 3G∆p(k)

N

)
(86)

Calculate the updated internal variables and equivalent plastic strain increment:

∆p(k+1) = ∆p(k) + d∆p(k+1) (87)

α(k+1) =α(n) + ∆α(k+1)

=α(n) + q
{

2
3

Y∗(n+1)N : ∆ε
vp
(n+1) −Q :

[
α(n) − α

(1)
(n)

]
∆p(n+1)

}
− ∆t

[
rm

(
αeq

α0

)m0

+ rm1

(
αeq

α0

)m1
]

N : R :
α(n)

αeq

(88)

α(1)(k+1) =α
(1)
(n) + ∆α(1)(k+1)

=α
(1)
(n) + q1

{
2
3

Y∗(n+1)N : ∆ε
vp
(n+1) −Q :

[
α
(1)
(n) − α

(2)
(n)

]
∆p(n+1)

} (89)

α(2)(k+1) =α
(2)
(n) + ∆α(2)(k+1)

=α
(2)
(n) + q2

{
2
3

Y∗(n+1)N : ∆ε
vp
(n+1) −Q : α

(2)
(n)∆p(n+1)

} (90)

Y∗(k+1) = Y0 + Y(k+1)
iso + Y(k+1)

θ (91)

Y(k+1)
iso = Yiso(n) + ∆Y(k+1)

iso = Yiso(n) + biso

(
Ysat

iso −Yiso(n)

)
∆p(k+1) (92)

Y(k+1)
θ = Yθ(n) + ∆Y(k+1)

θ = Yθ(n) + bθ

(
Ysat

θ f (θ)(n) −Yθ(n)

)
∆pk+1 (93)

The iteration ends when RES = |∆p− φ( f )∆t| → 0:

∆p(n+1) = ∆p(k+1) (94)

The plastic strain increment is then determined from:

∆ε
vp
(n+1) = ∆p(n+1)n(n) (95)

where:

n(n) = (
3
2

M : (s− α)

σeq
)(n) (96)

Calculate the updated stress using Equations (65) and (66).

4. Verification and Validation of FE Modeling and UMAT Code

In order to verify the accuracy of the unified viscoplastic constitutive model and its al-
gorithm implementation, numerical simulations of the viscoplastic mechanical behavior of
materials were carried out using the ABAQUS user material subroutine of the 316 Stainless
Steel model and the Zircaloy-4 model, and these were compared with the experimental
results. The reported experimental studies are described in the cylindrical coordinate
system due to the use of hollow circular cross-section rod specimens [22,34,40]. In order to
correspond to the Cartesian coordinates system adopted for the theory and modeling in
this paper, we have: 11 = x = r, 22 = y = θ, 33 = z = z, 12 = xy = rθ, 13 = xz = rz and
23 = yz = θz.

The user must correctly define the number of “*Depvar” and the parameters of “*User
Material” in order for the UMAT subroutine to work properly. The former is the number of
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solution-dependent state variables in the UMAT subroutine, corresponding to “STATEV(K)”
in the UMAT code, and the latter is the material parameter, corresponding to “PROP(K)” in
the UMAT code. The above operations can be done in the “.inp” file or in the ABAQUS
GUI environment. The finite element analysis carried out in this paper is based on the
ABAQUS 2021 version.

Before carrying out the verification of the algorithm and UMAT code, the convergence
of the 316 Stainless Steel and Zircaloy-4 subroutines should be verified based on a simple
uniaxial tensile simulation. The global convergence of the UMAT code in the FE calculation
is guaranteed by the ABAQUS implicit analysis solver, that is, the iteration of the incremen-
tal step will only end when the residual force reaches the required precision [41]. In order
to verify the local convergence of the UMAT subroutine, the RES-iteration curves of the
UMAT at the last global iteration step in the different incremental steps of the 316 Stainless
Steel and the Zircaloy-4 subroutines in the FE calculation are, respectively, output, as shown
in Figure 3:

Figure 3. Convergence curves of UMAT subroutines: (a) 316 Stainless Steel UMAT, (b) Zircaloy-4
UMAT.

RES is the residual equivalent plastic strain rate: RES = |φ− ∆p/∆t| (see the descrip-
tions in Sections 3.2 and 3.3 for detail). It can be seen from Figure 3 that the two UMAT
subroutines can achieve sufficient local convergence in each global iteration step.

4.1. 316 Stainless Steel

Chaboche et al. [22] used the 316 Stainless Steel hollow circular cross-section rod
specimen shown in Figure 4a to carry out uniaxial tensile tests at room temperature for
different strain rates, and stress relaxation test at room temperature were also carried out:
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Figure 4. 316 Stainless Steel specimen and finite element model: (a) 316 Stainless Steel specimen [40],
(b) uniaxial loading boundary condition, (c) meshing model.

The gauge length of the specimen is a unidirectional stress state along the axis z-
direction, so the finite element model is considered as a simple 1× 1× 1 cube, as shown in
Figure 4b. The displacement boundary condition is defined in the z-direction of the model
to simulate the uniaxial tensile behavior of the materials, and the symmetric boundary
condition in the z-direction is applied on the other side. The model has meshed into
1000 C3D8 elements for simulation, as shown in Figure 4c. The material constants of
316 Stainless Steel at room temperature are shown in Table 1.

Table 1. Material constants for 316 Stainless Steel at room temperature and 550 ◦C [22,40].

T (◦C) E (GPa) ν σy (MPa) b Q (MPa) a1 (MPa) C1 a2 C2
K

(MPa·s1/n)
n

RT * 185 0.3 82 8 60 58 2800 270 25 151 24
550 141.26 0.3 31 31 27.8 86.3 6939 114.8 957.69 173 10

* RT means room temperature.

Figure 5a is the stress-strain curve of 316 Stainless Steel for different strain rates at
room temperature:
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Figure 5. Comparison of 316 Stainless Steel experimental and numerical results at room temperature:
(a) uniaxial tensile stress-strain curves for different strain rates, (b) stress relaxation curve.

The numerical simulation results are in good agreement with the experimental re-
sults, and the 316 Stainless Steel modeling and UMAT code are verified. When the stress
is less than the yield stress σy, the stress-strain curves for different strain rates overlap,
and the stress-strain behavior of the materials show rate-dependence only after yield-
ing, which is the basic characteristic of the elasto-viscoplastic constitutive model. From
Equations (7) and (14), we have the following:

σv = Kṗ1/n (97)

that is:
σ ∝ ε̇ (98)

The above equation shows that the stress of the materials is positively correlated with
the strain rate, that is, the greater the strain rate when the material is loaded, the greater
the stress when the material is loaded to the same strain, which is consistent with the
phenomenon described by the stress-strain curve in Figure 5a. Figure 5b shows the stress
relaxation curve of 316 Stainless Steel at room temperature, and the numerical simulation
results are in good agreement with the experiment. When the materials maintain a certain
strain, as time increases, the stress gradually decreases until the stress caused by the
viscosity of the material disappears completely. It is worth noting that the viscous stress is
caused by the plastic strain, as shown in Equation (97). Therefore, if the materials be held
at a strain level corresponding to the stress that does not reach the yield stress, materials
will not exhibit stress relaxation behavior.

Startup-run-shutdown conditions or load fluctuation conditions are common oper-
ating states of nuclear reactor structures, such as cladding and pressure vessels, during
service, and these conditions may lead to the fatigue failure of the materials [42]. The
simulation capabilities of the UMAT subroutine developed in this paper cover the low
cycle fatigue behavior of materials. Hyde et al. [40] used the 316 Stainless Steel hollow
circular cross-section rod specimen shown in Figure 4a to carry out the low cycle fatigue
test (LCF test) at 550 ◦C. The test is controlled by strain, the loading waveform is a tri-
angular wave, the strain amplitude is 0.006, the strain ratio is −1, and the period is 80 s.
Numerical simulations also use the finite element model shown in Figure 4b,c, setting the
same displacement boundary conditions in the z-direction as the LCF test. As shown in
Figure 6a, the stress-strain loops predicted by the model for the first and fiftieth cycles are
in good agreement with the test:
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Figure 6. Comparison of model predictions of cyclic hardening behavior of 316 Stainless Steel with
experimental data at 550 ◦C: (a) stress-strain loops of the 1st cycle and the 50th cycle, (b) half stress
range (∆σ/2)-cycle number (N) curve.

Figure 6b shows the relationship between the half stress range and the number of
cycles, and the numerical simulation results are in good agreement with the experimental
results. The model successfully predicted the cyclic hardening behavior of 316 Stainless
Steel at high temperature. The combined isotropic and kinematic hardening rules governing
the cyclic hardening behavior in the constitutive equations are shown in Equations (11)–(13).

4.2. Zircaloy-4

Delobelle et al. [34] used the Zircaloy-4 circular tube specimen shown in Figure 7a to
carry out the uniaxial tensile test for different strain rates and creep test in the axial and
hoop directions, the tests were carried out at 350 ◦C.

In the uniaxial tensile test, the circular tube specimen is subjected to a displacement-
controlled loading in the z-direction, and the gauge length of the specimen is a unidirec-
tional stress state along the z-direction, so the finite element model is considered as a simple
1× 1× 1 cube, as shown in Figure 7b. The displacement boundary condition is defined
in the z-direction of the model to simulate the uniaxial tensile behavior of the specimen,
and the symmetric boundary condition in the z-direction is applied on the other side. The
model has meshed into 1000 C3D8 elements for simulation, as shown in Figure 7c. Two
different metallurgical states of Zircaloy-4 were used for the test, namely recrystallized (R
state) Zircaloy-4 and cold worked stress relieved (CWSR state) Zircaloy-4. The Zircaloy-4
material constants of the two metallurgical states are shown in Table 2.

Compared with Zircaloy-4 in the CWSR state, the material constants of Zircaloy-4
in the R state lack the parameters of the internal variable Yiso shown in Equation (22),
because the Zircaloy-4 in the R state has cyclic loading stability, and Yiso mainly controls
the cyclic hardening behavior of the materials. Therefore, the Yiso term is not considered
in the modeling of the viscoplastic mechanical behavior of Zircaloy-4 in R state, and the
relevant parameters can be set to zero when using UMAT to carry out the simulation of
Zircaloy-4 in R state. Figure 8 shows the stress-strain curves of R state and CWSR state
Zircaloy-4 for different strain rates at 350 ◦C.
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Figure 7. Zircaloy-4 specimen and finite element model: (a) Zircaloy-4 specimen and loading
system [30,34], (b) boundary condition for uniaxial loading in the z-direction, (c) meshing model,
(d) boundary condition for uniaxial creep in the z-direction, (e) boundary condition for uniaxial creep
in the y-direction.
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Table 2. Material constants for Zircaloy-4 at 350 ◦C [34].

Recrystallized Zircaloy-4 Cold Worked Stress Relieved Zircaloy-4

E = 78, 000 MPa, ν = 0.4 E = 73, 000 MPa, ν = 0.42
N = 6.5 MPa, k = 2.4, ε̇0 = 6.58× 10−8 s−1 N = 15 MPa, k = 2.4, ε̇0 = 1.5× 10−6 s−1

q = 8000, q1 = 600, q2 = 65 q = 9000, q1 = 400, q2 = 10
rm = 2.4× 10−12 MPa·s−1 rm = 1.53× 10−8 MPa ·s−1, rm1 = 1× 10−43 MPa·s−1

α0 = 10 MPa, m0 = 8 α0 = 10 MPa, m0 = 2.7, m1 = 28
Y0 = 69 MPa, Ysat

θ = 13 MPa Y0 = 177 MPa, Ysat
iso = −40 MPa, Ysat

θ = 30 MPa
bθ = 35 biso = 2.5, bθ = 5

M11 = 0.398, M22 = 0.62, M33 = 0.666 M11 = 1.1, M22 = 1.2, M33 = 0.666
M13 = −0.222, M23 = −0.444, M12 = −0.176 M13 = −0.28, M23 = −0.38, M12 = −0.82

M44 = M55 = M66 = 3.8 M44 = M55 = M66 = 3.4
N11 = 1.038, N22 = 0.72, N33 = 0.666 N11 = 0.699, N22 = 0.562, N33 = 0.666

N13 = −0.492, N23 = −0.174, N12 = −0.546 N13 = −0.401, N23 = −0.265, N12 = −0.297
N44 = N55 = N66 = 0.295 N44 = N55 = N66 = 0.33
Q11 = Q22 = Q33 = 0.666 Q11 = Q22 = Q33 = 0.666

Q44 = Q55 = Q66 = 1 Q44 = Q55 = Q66 = 1
Q13 = Q23 = Q12 = −0.333 Q13 = Q23 = Q12 = −0.333

R11 = 0.303, R22 = 0.637, R33 = 0.666 R11 = 0.626, R22 = 0.88, R33 = 0.666
R13 = −0.166, R23 = −0.5, R12 = −0.137 R13 = −0.206, R23 = −0.46, R12 = −0.42

R44 = R55 = R66 = 2.07 R44 = R55 = R66 = 2.75

Figure 8. Uniaxial tensile stress-strain curves of CWSR state and R state Zircaloy-4 for different
strain rates.

The numerical simulation results are in good agreement with the experimental results,
which verifies the correctness of Zircaloy-4 modeling and UMAT code. According to
Equations (7) and (26), we have the following:

σv = N sinh−1

[(
ṗ
ε̇0

)1/k
]

(99)
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Similar to 316 Stainless Steel, the stress of Zircaloy-4 is positively correlated with the strain
rate (Equation (98)), that is, the greater the strain rate when the material is loaded, the
greater the stress when the material is loaded to the same strain, which is consistent with
the phenomenon described by the stress-strain curve in Figure 8.

Based on the test device in Figure 7a, Delobelle et al. [34] carried out uniaxial creep
tests of Zircaloy-4 in different material orientations. The loading method of the uniaxial
creep test in the z-direction is the same as that of the uniaxial tensile test in the z-direction,
and the force sensor located at the clamping end of the specimen ensures that the Zircaloy-4
round tube is in a constant stress loading state. The hoop creep loading of the Zircaloy-4
circular tube is controlled by the pressurizing system, and a constant hoop stress is applied
to the specimen to carry out the creep test. This loading scheme is closer to the service
conditions of the materials used in nuclear fuel cladding structures. Since the gauge length
of the Zircaloy-4 tube is a unidirectional stress state when the creep tests are carried out
in two directions, the finite element model is still considered as a simple 1× 1× 1 cube.
As shown in Figure 7d, the stress boundary condition is defined in the z-direction of the
model to simulate the uniaxial creep behavior of the specimen in the axial direction, and
the symmetrical boundary condition in the z-direction is applied on the other side. As
shown in Figure 7e, the stress boundary condition is defined in the y-direction of the model
to simulate the uniaxial creep behavior of the specimen in the hoop direction, and the
symmetric boundary condition in the y-direction is applied on the other side. The model has
meshed into 1000 C3D8 elements for simulation, as shown in Figure 7c. The creep stresses
of Zircaloy-4 in the R state are 125 MPa, 135 MPa, 150 MPa, and 170 MPa, respectively, and
the creep stresses of Zircaloy-4 in the CWSR state are 170 MPa and 250 MPa, and each creep
stress level is maintained for 200 hours and then increased to the next stress level. Figure 9
shows the incremental uniaxial creep curves of Zircaloy-4 in R state and CWSR state at
350 ◦C:

Figure 9. Incremental uniaxial creep curves for z-direction and y-direction loading: (a) R state,
(b) CWSR state.

The numerical simulation results are basically consistent with the experimental results.
Neglecting the uncertainties in the loading control and deformation acquisition of the
high-temperature creep test, the strain amplitudes, as well as the flow directions, are, on
the whole, correctly modeled, so the simulation results are generally acceptable. The model
and UMAT code successfully simulated the anisotropic creep behavior of Zircaloy-4 in the
R state and the CWSR state, and the anisotropic creep behavior of the materials was more
obvious at higher creep stress.
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4.3. Multiaxial Stress State Analysis

In order to verify the ability of the developed two subroutines to simulate the multiax-
ial stress state, the finite element analysis of the thick-walled pipe structure under internal
pressure based on the 316 Stainless Steel and Zircaloy-4 subroutines was carried out. The
geometric models and boundary conditions were recommended by the Axisymmetric thick
cylinder benchmark in the National Agency for Finite Element Methods and Standards
(NAFEMS) [41], as shown in Figure 10:

Figure 10. Thick-walled pipe structure finite element model: (a) Geometric model and boundary
conditions, (b) meshing model.

The geometric model is considered to be a 1/4 model of the thick-walled pipe structure
on the XY plane. As shown in Figure 10a, symmetrical boundary conditions are applied on
the two symmetrical surfaces, and the z-direction displacement is constrained on the upper
and lower surfaces to ensure that the analysis results of the model can be arrayed in the
z-direction. Uniform internal pressure is applied on the inside surface of the pipe, in which
the 316 Stainless Steel model applies the internal pressure (IP) from 0 to 200 MPa with a
ramp loading waveform within 20 s, and the Zircaloy-4 model applies the internal pressure
from 0 to 300 MPa with a ramp loading waveform within 30 s. The model has meshed into
2300 C3D8 elements for simulation, as shown in Figure 10b. The results of the multiaxial
stress state analysis are shown in Figure 11.

Figure 11a,b are the von Mises stress distribution diagrams of the 316 Stainless Steel
and Zircaloy-4 thick-walled pipe models respectively. It can be seen that the von Mises
stress gradually decreases from the inside surface of the pipe to the outside surface. In the
cylindrical coordinate system, the radial stress σr and hoop stress σθ are output along path
A and path B, and they are compared with the results of NAFEMS benchmark, as shown
in Figure 11c,d. Since the NAFEMS benchmark is based on the elastic-perfectly plastic
constitutive model, only qualitative comparative analysis is carried out in this paper. It can
be seen that the radial stress σr is the compressive stress near the inside pipe wall, and close
to zero near the outside pipe wall. As the IP increases, the compressive stress on the inside
pipe wall increases gradually. The hoop stress σθ is tensile stress, and the distribution of
hoop stress σθ is related to IP. When the IP is small at the initial stage of loading, the σθ near
the inside pipe wall is greater than the σθ near the outside pipe wall. With the increase of IP,
the area of maximum hoop stress gradually moves to the outside pipe wall. When the IP
increases to a higher level, the σθ near the outside wall is larger than the σθ near the inside
wall. The reason for this phenomenon is that with the increase of IP, plastic flow occurs
in the area close to the inside pipe wall, and the main load-bearing area of the structure
gradually moves to the outside pipe wall. Compared with the NAFEMS benchmark, both
the 316 Stainless Steel and Zircaloy-4 UMAT subroutines can complete the modeling of the
multiaxial stress state of the thick-walled pipe structure under internal pressure.
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Figure 11. The results of the thick-walled pipe structure FE analysis: (a) von Mises stress distribu-
tion of 316 Stainless Steel model, (b) von Mises stress distribution of Zircaloy-4 model, (c) Stress
components along path A compared with NAFEMS benchmark, (d) Stress components along path B
compared with NAFEMS benchmark.

5. Conclusions

Within this study, we present the implementation of the ABAQUS user material
subroutines of the Chaboche unified viscoplastic constitutive model and the Delobelle
unified viscoplastic constitutive model for 316 Stainless Steel and Zircaloy-4. The Chaboche
model includes nonlinear isotropic hardening, nonlinear kinematic hardening, and a vis-
cosity equation in the form of a power function. The Delobelle model includes a viscosity
equation in the form of the hyperbolic sine function and three back-stresses playing roles
successively instead of simultaneously, and the anisotropic viscoplastic behavior of the
materials is considered. The derivation of the stress update algorithm that implements the
Chaboche model and the Delobelle model is based on the return mapping algorithm and
the semi-implicit integration scheme, and the UMAT user subroutines for 316 Stainless
Steel and Zircaloy-4 are developed. The simulation results with the use of subroutines were
verified against existing experimental data from the literature. The models and UMAT
subroutines successfully simulated the viscoplastic mechanical behavior of 316 Stainless
Steel and Zircaloy-4. The numerical implementation scheme of the constitutive model in
this paper is not limited to the implementation of the Chaboche model and the Delobelle
model but, as a set of general methods can also be used for the numerical implementation
of other material rate-dependent plastic behavior modeling.

The simulation results successfully captured the rate-dependent stress-strain behavior,
stress relaxation behavior and cyclic hardening behavior of 316 Stainless Steel, and the
rate-dependent stress-strain behavior and anisotropic creep behavior of Zircaloy-4 in
two metallurgical states. This demonstrates that the simulation capability of the user
subroutines we developed covers the various loading conditions of the cladding materials
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in service. We hope our efforts provide useful material models and available source codes
to help for users from academia or industry to carry out more accurate mechanical analyses
of cladding structures.
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