13 2 Vol.13, No.2
2021 6 Thermal Spray Technology Jun., 2021

(BEREAF @EMHBEZERXELLRE, W% 710049)

2. (LST) (SOFC)
Ni Fe SS430 LST
LST/Ni LST
Ni

Fe LST/Fe
10% $S430 LST/SS430 SOFC
i
HiET RS TG1744 A XEHE: 1674-7127(2021)06-0001-09

DOI 10.3969/j.issn.1674-7127.2021.02.001

Microstructure and Properties of Plasma-Sprayed Lanthanum-Doped
Strontium Titanate/Metal Composite Coatings

Chen Xu, Fang Shuaishuai, Li Chengxin, Li Changjiu’

(State key Laboratory of Mechanical Behavior for Materials, Xi'an Jiaotong University, Xi'an 710049)

Abstract: As a novel material of bi-layer interconnect for solid oxide fuel cells (SOFC), La-doped SrTiO, (LST) is
usually sintered in a reducing atmosphere at a high temperature of above 1400  to achieve high conductivity and
gas-tightness. Such high temperature sintering will lead to the formation of low conductive phases and non-active
phases at the interfaces between functional layers in SOFC cells. Using atmospheric plasma spraying (APS) to
deposit the LST interconnect can avoid the above adverse effect. By increasing the deposition temperature, dense
LST coating with enhanced inter-lamellar bonding can be prepared by APS. However, the electrical conductivity
of LST coating at 850 is only half the value of sintered LST bulk, which is several orders of magnitude lower
than that of metallic interconnect.

To improve the conductivity of the interconnect, LST/Ni, LST/Fe, and LST/SS430 composite interconnects
are designed. The interconnects were deposited by APS using the powder blend with mixing the dense LST
powders of 30~60 pm with metallic powders of 10~50 pm with different metal proportions in this study. APS
was performed with the substrates preheating to ~450  using Ar-H, plasma jet at a plasma arc power of 42 kW.
The effects of metal material types and contents on the microstructure, conductivity and stability of the composite
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coatings were investigated. The microstructure of the composite interconnects was examined by scanning
electron microscopy and the crystalline structure of the interconnects were characterized by X-ray diffraction.
The conductivity of the composite coatings was measured by the standard DC four-probe method in an anode
atmosphere (97% H,/3% H,0). The gas-tightness of the composite coatings was evaluated by gas permeability
measurements. The stability of the interconnect was also examined by subjecting the interconnect to the repeated
thermal cycles.

The results show that by adding 5 vol.% Ni in the feedstock powder, the electrical conductivity of dense LST/
Ni interconnect coating is ~187 S/cm at 850 , which is comparable to that of sintered LST bulk. The conductivity of
the composite coatings is significantly increased with the increasing proportion of Ni. However, due to the thermal
mismatch between LST and Ni lamellae, cracking in the direction along the coating thickness occurs during
thermal cycles for the composite coating with an excessively high proportion of Ni, which would significantly
decrease the gas-tightness of the coating. The conductivity of LST/Fe composite coating was not remarkably
improved because of the serious oxidation of Fe particles during the spray process. The electron transport across
the metal constituent was blocked by the iron oxide scales. On the other hand, by adding 10 vol.% SS430 to
the LST feedstock powder, the dense LST/SS430 interconnect coating was deposited by APS. The LST/SS430
interconnect exhibits a high electrical conductivity of ~300 S/cm at 850 and favorable stability against thermal
cycles. The results illustrate that the optimized composite interconnect by APS fulfills the requirement of SOFC
interconnect with high performance.
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