SMART MATERIALS

ZHANG LX

1. General introduction on Smart Materials

1.1 Brief history of "Smart Materials"

1.2 Types of Smart Materials

1.3 Contents of the present course

Smart Materials-MSE-XJTU Chapter 1 General Introduction

1.1 Brief history of Smart Materials

1) The beginning

"Smart Materials"~1989 Prof. R. E. Newnham

Smart materials have the ability to perform both sensing and actuating functions. -----adapt to changes in the environment.

• Passive /active/very smart

passive: response to external change without assistance ;

active: an appropriate response through an actuator circuit;

very smart: responds by altering one or more of its property coefficients.

2) Textbook definition

Smart Materials: A material which can sense a change in its environment, produce a change in response to an external stimulus or both, i.e. it can **sense and actuate**

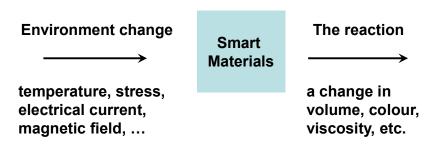
In other words, a material which changes one of its property coefficients in response to an external stimulus, and where this change in coefficient can be used to control the stimulus

Sensor & Actuator

	INPUT	MATERIA	∟_→	OUTPUT	
OUTPUT	CHARGE CURRENT	MAGNET-	STRAIN	TEMPERATUR	E LIGHT
ELEC. FIELD	Permittivity Conductivity	Electmag. effect	Converse piezo-effect	Elec. caloric effect	Elecoptic effect
MAG. FIELD	Magelect. effect	Zemeability	Magneto- striction	Mag.caloric effect	Mag.optic effect
STRESS	Piezoelectric effect	Piezomag. effect	Elastic constant	—	Photoelastic effect
HEAT	Pyroelectric effect		Thermal expansion	Specific heat	
LIGHT	Photovoltaic effect		Photostriction	_	Refractive index
Diagonal Coupling Sensor Off-diagonal Coupling = Smart Material Actuator					
					-1

3

Smart Materials-MSE-XJTU Chapter 1 General Introduction

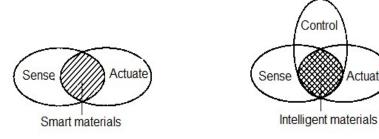

3) Booklet of IOM³

Dr. Diane Talbot, 2003

"Smart": something which is astute or 'operating as if by human intelligence'.

Smart materials is: One which reacts to its environment all by itself

Reversible / irreversible reaction



In many cases the reaction is reversible.

4

Illustration:

Smart materials, smart structure /system Intelligent materials/structures, adaptive structures, etc.

Intelligent materials is the high order of the smart materials

Intelligent:

a "drive/control" or "processing" function

Smart or adaptive structures:

an electronic control circuit to provide the necessary feedback

Smart Materials-MSE-XJTU Chapter 1 General Introduction

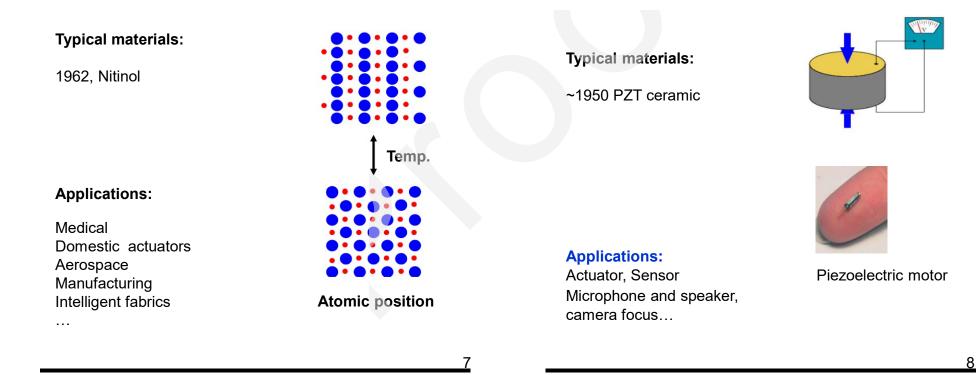
1.2 Types of Smart Materials

Environment: external stimuli

- Temp., Mechanical stress Shape memory alloys (SMAs)
- Stress field, Electric field **Piezoelectric materials**
- Magnetic field Magnetostrictive materials
- Electric or Magnetic field Magneto (electro) rheological materials
- Light, Temp. Electric field, ... Chromic materials

. . .

Actuate


• Shape memory alloys

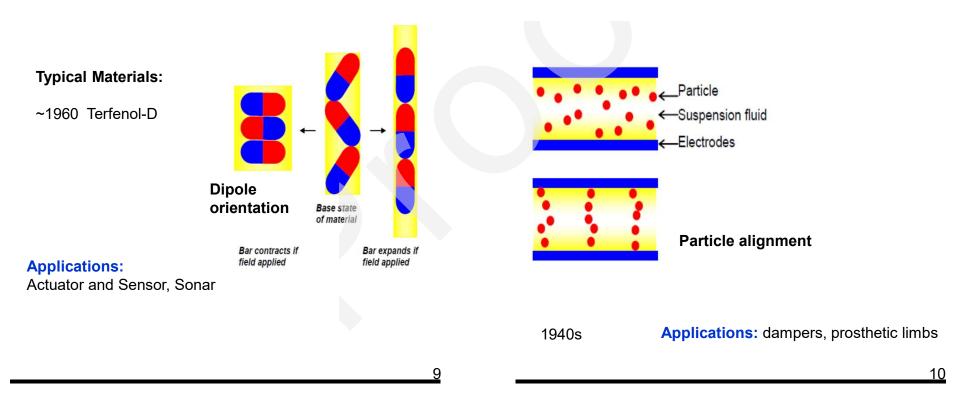
A material memorizes a particular shape at a specific *temperature*

Smart Materials-MSE-XJTU Chapter 1 General Introduction

• Piezoelectric Materials

Generate electric signals when applied force, or a shape change with *voltage* (electrostriction)

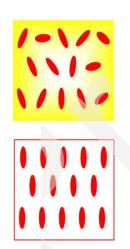
4


• Magnetostrictive materials

The change in shape related to a *magnetic* field

Smart Materials-MSE-XJTU Chapter 1 General Introduction

• Rheological Materials


These materials can change from liquid to solid when an electrical current or magnetic field is applied.

• Chromic materials

Which change **color** in response to electrical, optical, thermal, ...changes.

Thermochromic materials, Photochromic mateirals, Electrochromic materials...

1980s

Applications: cold beer, sunglasses

Particle alignment

11

Smart Materials-MSE-XJTU Chapter 1 General Introduction

1.3 Contents of our course

- Brief introduction on smart materials
- Strain and martensitic transformation
- Mechanism of shape memory effect
- Typical shape memory materials
- Fabrication & application of shape memory alloys
- Shape memory ceramics
- Polarization and ferroelectric transition
- Origin of electric field induced strain
- Typical piezoelectric materials
- Typical electrostrictive materials
- Fabrication & application of piezoelectric devices
- Future of ferroelectric devices
- Other smart materials: Magnetostrictive, Pyroelectric, Thermistor, etc.