
Efficient Repair Analysis Algorithm Exploration
for Memory With Redundancy and

In-Memory ECC
Minjie Lv , Hongbin Sun , Senior Member, IEEE, Jingmin Xin , Senior Member, IEEE,

and Nanning Zheng , Fellow, IEEE

Abstract—In-memory error correction code (ECC) is a promising technique to improve the yield and reliability of high density memory

design. However, the use of in-memory ECC poses a new problem to memory repair analysis algorithm, which has not been explored

before. This article first makes a quantitative evaluation and demonstrates that the straightforward algorithms for memory with

redundancy and in-memory ECC have serious deficiency on either repair rate or repair analysis speed. Accordingly, an optimal repair

analysis algorithm that leverages preprocessing/filter algorithms, hybrid search tree, and depth-first search strategy is proposed to

achieve low computational complexity and optimal repair rate in the meantime. In addition, a heuristic repair analysis algorithm that

uses a greedy strategy is proposed to efficiently find repair solutions. Experimental results demonstrate that the proposed optimal

repair analysis algorithm can achieve optimal repair rate and increase the repair analysis speed by up to 105� compared with the

straightforward exhaustive search algorithm. The proposed heuristic repair analysis algorithm is approximately 28 percent faster than

the proposed optimal algorithm, at the expense of 5.8 percent repair rate loss.

Index Terms—Memory repair, repair analysis algorithm, in-memory ECC, yield, reliability

Ç

1 INTRODUCTION

PROCESS scaling has steadily improved the density, perfor-
mance, cost and energy efficiency of memory products.

However, with the continuous scaling down of technology,
serious challenges have been posed to memory design, espe-
cially for Dynamic Random Access Memory (DRAM). First,
smaller DRAM cells and peripheral circuitry are more vul-
nerable to manufacturing variations and imperfections [1].
This causes various permanent defects, such as failures of
entire row or column (cluster defects) and single-cell
defects (SCDs), leading to the yield loss of DRAM products.
In particular, the occurrence of SCDs drastically increases
with process scaling down, making them the primary source
of device failures [2]. Meanwhile, DRAM devices are more
susceptible to soft errors induced by cosmic rays [3] and ran-
dom telegraph noise [4], with the decrease in DRAM cell size
and operating voltage. The increase in soft errors also seri-
ously threatens system reliability. Therefore, the yield and
reliability challenges have become the major obstacles that
prevent the continuous scaling down of DRAM.

Redundancy repair [5], [6], [7], [8] and error correction
code (ECC) are two traditional techniques used to improve

the manufacturing yield and reliability of memory system,
respectively. In order to improve the manufacturing yield,
each DRAM array is equipped with several spare rows and
columns to fix the permanent defects identified during mem-
ory test [5], [6], [9]. By replacing defective rows or columns
with spare ones, redundancy repair technique is able to effi-
ciently improve DRAM manufacturing yield for decades.
During redundancy repair, repair analysis algorithm [10],
[11], [12], [13] is used to provide an effective solution for allo-
cating spare rows and columns. Besides, ECC is usually
employed to protect memory data against soft error. Conven-
tionally, ECC is utilized in DRAM at the rank level, where
dual inline memory module with ECC (ECC-DIMM) imple-
ments single-error-correction and double-error-detection
(SECDED) codes by providing an extra chip to store ECC
check bits.

As SCDs have taken a large percentage of on-die defects
with the scaling down of DRAM cells, it becomes inefficient
to merely rely on redundancy repair for high yield. The esti-
mated result in [2] shows that the bit error rate (BER) of
SCDs in DRAM is expected to rapidly increase to around
10�4, when DRAM process technology scales down to 1X
and 1Y nodes. Moreover, advanced three-dimensional (3D)
integration technology may further increase BER in future
DRAM chips. It has been demonstrated that the overhead of
traditional redundancy repair technique is unaffordable in
the case of high BER of SCDs [2]. Besides, due to the
increase of soft error rate, more efficient error tolerating
techniques should be explored for next generation DRAM [2],
[14], [15]. Therefore, DRAM researchers and manufacturers
explore to place ECC inside DRAM dies, which is called in-
memory ECC [16], [17], [18]. The possibilities and challenges

� Minjie Lv is with the School of Cyber Engineering, Xidian University,
Xi’an, Shaanxi 710126, China. E-mail: lv.minjie@stu.xjtu.edu.cn.

� Honbin Sun, Jingmin Xin, and Nanning Zheng are with the College of Arti-
ficial Intelligence, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China.
E-mail: {hsun, jxin, nnzheng}@mail.xjtu.edu.cn.

Manuscript received 26 Aug. 2019; revised 22 Mar. 2020; accepted 2 May 2020.
Date of publication 22 May 2020; date of current version 7 Apr. 2021.
(Corresponding author: Hongbin Sun.)
Recommended for acceptance by O. Mutlu.
Digital Object Identifier no. 10.1109/TC.2020.2996747

IEEE TRANSACTIONS ON COMPUTERS, VOL. 70, NO. 5, MAY 2021 775

0018-9340 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on February 19,2022 at 02:57:51 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-0093-2794
https://orcid.org/0000-0002-0093-2794
https://orcid.org/0000-0002-0093-2794
https://orcid.org/0000-0002-0093-2794
https://orcid.org/0000-0002-0093-2794
https://orcid.org/0000-0003-2153-2906
https://orcid.org/0000-0003-2153-2906
https://orcid.org/0000-0003-2153-2906
https://orcid.org/0000-0003-2153-2906
https://orcid.org/0000-0003-2153-2906
https://orcid.org/0000-0003-1906-2327
https://orcid.org/0000-0003-1906-2327
https://orcid.org/0000-0003-1906-2327
https://orcid.org/0000-0003-1906-2327
https://orcid.org/0000-0003-1906-2327
https://orcid.org/0000-0003-1608-8257
https://orcid.org/0000-0003-1608-8257
https://orcid.org/0000-0003-1608-8257
https://orcid.org/0000-0003-1608-8257
https://orcid.org/0000-0003-1608-8257
mailto:lv.minjie@stu.xjtu.edu.cn
mailto:hsun@mail.xjtu.edu.cn
mailto:jxin@mail.xjtu.edu.cn
mailto:nnzheng@mail.xjtu.edu.cn

to implement in-memory ECC on DDR4 SDRAM devices are
examined in [18]. Several DRAMchips and design prototypes
with in-memory ECC have been reported [19], [20], [21], [22],
[23]. There are also several works that explore the architec-
tures of in-memory ECC either for yield improvement [2],
[24] or reliability enhancement [25], [26].

The use of in-memory ECC poses a new problem: what is
the efficient repair analysis algorithm for memory protected
by both redundancy and in-memory ECC. In the case that in-
memory ECC is employed for yield improvement, an opti-
mal repair analysis algorithm taking these two techniques
into consideration can achieve high yield. Even if in-memory
ECC is employed mainly for reliability, a more efficient
repair scheme can be achieved with small reliability degra-
dation by borrowing a small amount of error correction capa-
bilities provided by in-memory ECC. Although the repair
analysis algorithm for memory with redundancy and in-
memory ECC is a fundamental technique for future memory
design, it has been rarely investigated in the research com-
munity. To the best of our knowledge, no previous study has
been conducted on this technique.

This paper aims to make the first step towards exploring
the efficient repair analysis algorithms formemory equipped
with both redundancy and in-memory ECC. We first evalu-
ate four straightforward algorithms through experiments
and demonstrate that the simple use of conventional or
slightly modified conventional repair analysis algorithms is
inadequate for memory with redundancy and in-memory
ECC, especially for high defect density scenarios. Although
exhaustive search can achieve optimal repair rate, its repair
analysis speed is extremely slow and unacceptable. There-
fore, we propose an efficient optimal repair analysis algo-
rithm, that uses preprocessing/filter algorithms, hybrid
search tree (HST) structure and depth-first search (DFS)
strategy to significantly reduce the computational comp-
lexity of exhaustive search and speed up repair analysis.
Moreover, we further propose a heuristic repair analysis
algorithm for memory with redundancy and in-memory
ECC based on the observation during optimal algorithm
exploration. The proposed heuristic algorithm essentially
uses a greedy strategy to efficiently find the repair solution.
Experimental results demonstrate that both of the proposed
optimal and heuristic repair analysis algorithms can speed
up the original straightforward exhaustive search algorithm
by up to 105�when the defect density is high. The proposed
optimal algorithm can achieve the optimal repair rate, while
the proposed heuristic algorithm is around 28 percent faster
at the penalty of 5.8 percent repair rate loss. We believe that
the exploration in this paper will encourage other research-
ers to exploit more efficient solutions for memory with
redundancy and in-memory ECC.

2 BACKGROUND

2.1 Memory Protected by Redundancy
and In-Memory ECC

In current large-capacity DRAM designs, each memory die
generally consists of several memory banks, where each
bank is an independent array that has its own address and
data buses and can be concurrently accessed. Modern
DRAM designs usually use hierarchical design technique to

improve the performance of high-density memory. Thus,
DRAM bank is organized as a hierarchical structure, where
each memory bank is composed of several blocks and each
block is composed of dozens of subarrays. Fig. 1 illustrates
the diagram of memory subarray protected by redundancy
and in-memory ECC. There are usually hundreds or even
thousands of rows (wordlines) and columns (bitlines) in a
subarray. Redundancies are equipped to each subarray as
spare rows and columns. These spare rows and columns can
be used to repair defects by replacing the defective rows or
columns through programming the one-time programmable
laser fuses or electrical fuses associated to each subarray.
When integrating in-memory ECC, a memory row can com-
prise dozens of ECC codewords, and each codeword consists
of data bits and the corresponding check bits. The memory
should integrate ECC logic, while DRAM external interface
remains mostly unchanged. The embedded ECC logic enco-
des data written to DRAM to generate check bits and checks
or corrects the data read out from DRAM array before trans-
mitting them to the memory channel. For a large DRAM
array with wide data bus (e.g., 16-bit data width), the data
bus may be routed to several subarrays that can be concur-
rently addressed and accessed [27]. These subarrays share
the same address bus and each of them provides several data
bits (4, 2 or 1) to form the entire data bus. This technique is
usually referred to as data bus division. In this case, the data
and check bits of one ECC codeword are distributed to these
subarrays, and each subarray is equipped with its own
redundancies [5]. This scenario certainly complicates repair
analysis to some extent. Nevertheless, the repair analysis
algorithm exploration in this paper assumes that all data and
check bits in one ECC codeword are located in one subarray,
as illustrated in Fig. 1.

In-memory ECC has been proposed for yield enhance-
ment very early and the synergistic effect of combining
redundancy repair and in-memory ECCwas first reported in
1990 [28]. However, the overhead of in-memory ECC on
DRAM area and performance was unacceptably high in the
past (e.g., 50 percent for DRAMs that should operate in a
unit of single byte [25]), which inhibited the wide adoption
of in-memory ECC. Recently, as the error rate of SCDs
increases with the scaling down of DRAM cells, SCDs take a
very large percentage of on-die defects. It is very inefficient
to repair a large amount of SCDs by redundant rows and col-
umns. On the contrary, ECC can efficiently repair the distrib-
uted SCDs, except for two or more SCDs located in one
codeword.Moreover, the ECC encoding and decoding speed
has been significantly improved because of the advances on

Fig. 1. Memory subarray protected by redundancy and in-memory ECC.

776 IEEE TRANSACTIONS ON COMPUTERS, VOL. 70, NO. 5, MAY 2021

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on February 19,2022 at 02:57:51 UTC from IEEE Xplore. Restrictions apply.

fabrication technologies, and the access granularity per
DRAM device has been increased according to the continu-
ous growth of memory bandwidth requirement. These con-
ditions have amortized the performance and area overhead
of in-memory ECC and made it possible to implement in-
memory ECC in DRAM devices. Therefore, in-memory ECC
becomes attractive to memory design community and is
promising to overcome DRAM scaling challenges [16], [17],
[18]. DRAM manufacturers have presented several DRAM
products and design prototypes employing in-memory
ECC [19], [21], [22], [23].

There are also some works that propose to overcome
DRAM scaling challenges through fault tolerant architec-
ture design [15], [29], [30]. These architectures are techni-
cally feasible and cost-efficient. However, they inevitably
need to considerably modify current DRAM architecture
design and operating flow. In-memory ECC is fully compat-
ible and easy to implement compared with these designs.
In-memory ECC can also be employed for reliability
enhancement. Several studies have explored how to effec-
tively use in-memory ECC to improve the reliability of
memory systems [14], [29]. Nevertheless, yield improve-
ment is the primary purpose to integrate in-memory ECC
[2], [16], [19], [21], [22], [28]. A repair analysis algorithm is a
fundamentally needed technique when in-memory ECC is
used or partially used to repair defects for yield enhance-
ment. It is critical to the yield and overall cost efficiency of
memory equipped with both redundancy and in-memory
ECC [24], [31], [32].

2.2 Traditional Repair Analysis Algorithms

This paper aims to explore efficient repair analysis algorithms
formemory equippedwith redundancy and in-memory ECC.
We briefly summarize conventional memory repair analysis
algorithms in Table 1 and review them as follows. Readers
can refer to [33] for more extensive survey on memory repair
analysis algorithms. The complexity of spare allocation prob-
lem for memory with two-dimensional redundancies (spare
rows and columns) has been proofed to be NP-complete [12].
Thus, exhaustive search-based algorithms [11], [12], [31],
[32], [34], which considers all possible cases, are proposed to
achieve the optimal repair rate. Day et al. [11] propose a fault-
driven algorithm that searches for a repair solution by con-
ducting binary search tree (BST). Each BST node records
the repair solution of previously detected defects. When a
new defect is detected, two solution records are created
from each original solution record, where the first record is
expanded to the row address, and the second record is
expanded to the column address. This algorithm essentially

uses a breadth-first search (BFS) strategy, where its computa-
tional complexity and memory space requirement exponen-
tially grow (in the worst case) with the problem scale (i.e., the
number of defects). Thus, this algorithm is very expensive
and time-consuming for high density memory with high BER
of SCDs.

To reduce the computational complexity of exhaustive
search algorithm, several preprocessing and filter algorithms
are proposed to either terminate the analysis procedure as
early as possible or skip as many faulty cells as possible. The
must-repair algorithms [10], [11] are proposed to repair the
defective lines (rows/columns) that must be repaired to find
a solution. A defective row must be replaced with a spare
row when it contains more defects than the available spare
columns. Similarly, a defective column must be repaired
with a spare column if it containsmore defects than the avail-
able spare rows. The early-abort algorithms [11], [12], [34],
[35] are proposed to identify unrepairable memory arrays
before repair analysis to reduce the timewasted on unrepair-
able memory arrays. In addition, many defects belong to sin-
gle faulty cell that shares no address with any other defects
and can be repaired by only one spare element, regardless of
the spare type. Accordingly, single-faulty-cell filter algo-
rithm is proposed to reduce the number of defects analyzed
in repair analysis by recording and filtering out the single
faulty cells. There are also some exhaustive search algo-
rithms that have been proposed to achieve optimal repair
rate while alleviating the complexity induced by BST. Kuo
and Fuchs [12] propose a branch-and-bound (B&B) algo-
rithm, that takes the difference between the cost of embed-
ding a spare row and spare column into consideration. Lin
et al. [34] propose a PAGEB algorithm, that transforms the
repair analysis problem into Boolean functions handled by a
binary decision diagram. In this way, PAGEB algorithm
achieves optimal repair rate with relatively fast analysis
speed. Cho et al. [31] develop a VERA algorithm, which can
achieve optimal repair rate and relative high analysis speed
by using fault grouping and conducting binary search in
each group. Lee et al. [32] propose an FGPM algorithm, that
also uses fault grouping but all repair cases are searched
through fault group pattern matching rather than construct-
ing binary search tree.

Besides exhaustive search repair analysis algorithms,
there are also several heuristic algorithms [10], [13] that can
process the spare allocation problem with high analysis
speed at the penalty of non-optimal repair rate. Repair-most
(RM) [10] is a well-known heuristic algorithm. RM algorithm
arranges the defective rows and columns in descending order
according to the number of defects in them, repairs the row/
column with the greatest number of defects, and updates the
number of uncovered defects of each row and column. This
process is repeated until no defects remains. The memory
array is unrepairable by RM algorithm if defects remain after
all redundancies are used. FAST algorithm [13] uses the con-
cept of defect grouping to improve the repair rate of RM algo-
rithm. The defects are grouped into single-defect group and
multiple-defect groups depending on their relations with the
defect locations. All defects in a group are repaired with
spares of the same type. The repair solutions are obtained by
checking all possible combinations, which compare the num-
ber of required spares with the number of available spares.

TABLE 1
Comparison of Conventional Repair Analysis Algorithms

Category Algorithm Repair rate Analysis speed

Exhaustive

Fault-driven [11] Optimal Very slow
B&B [12] Optimal Slow
PAGEB [34] Optimal Faster than B&B
VERA [31] Optimal Faster than PAGEB
FGPM [32] Optimal Faster than VERA

Heuristic
Repair-most [10] Low Fast
FAST [13] Medium Very fast

LV ET AL.: EFFICIENT REPAIR ANALYSIS ALGORITHM EXPLORATION FOR MEMORY WITH REDUNDANCY AND IN-MEMORY ECC 777

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on February 19,2022 at 02:57:51 UTC from IEEE Xplore. Restrictions apply.

There are also many built-in repair analysis (BIRA) meth-
ods [36], [37], [38] designed for the yield improvement of
embedded memories. Since BIRA algorithms are usually
implemented by hardware with resource constraints, they
mainly focus on the area overhead and repair analysis speed.
Nevertheless, this paper focuses on the software-based repair
analysis algorithms running on automatic test equipment.

3 EVALUATION ON STRAIGHTFORWARD

ALGORITHMS

This section aims to demonstrate the necessity of efficient
repair analysis algorithmwith optimal repair rate formemory
with redundancy and in-memory ECC. It seems that, in-
memory ECC provides additional fault-tolerant capability
beside redundancy repair, hence the repair analysis problem
should become easier, the conventional repair analysis
algorithms with a slight modification should be sufficiently
capable of solving the problem. To clarify this point, we first
evaluate two straightforward algorithms by slightly modify-
ing conventional repair analysis algorithms. As a conve-
nience, we give the following two definitions: the codeword
that has two or more defects is defined as ECC-uncorrectable-
codeword (EUCW), and the defect in EUCW is defined as
ECC-uncorrectable-defect (EUCD).

The two straightforward algorithms based on conven-
tional repair analysis algorithms are described as follows.

� Repair without considering in-memory ECC (R_w/o_E):
The redundancies are allocated by using conventional
repair analysis algorithm to repair defects without
considering the fault-tolerant capability of in-memory
ECC. After the redundancy repair, in-memory ECC
is invoked to tolerate the remaining defects. The
memory is repairable if there is no EUCW remain-
ing after repair analysis. Otherwise, the memory is
unrepairable.

� Repair all EUCDs (R_all_EUCDs): The algorithm first
identifies all EUCDs, then employs conventional
repair analysis algorithm to search for the repair
solution that covers all the EUCDs or as many
EUCDs as possible with the equipped redundancies.
Finally, the remaining EUCDs are further checked
within each ECC codeword. The memory is repair-
able if all EUCWs become correctable after repair
analysis. Otherwise, the memory is unrepairable.

We note that the conventional repair analysis algorithm
used in the above two algorithms can be either exhaustive
search or RM. Nevertheless, when redundancy repair can
not cover all the defects and in-memory ECC is invoked to
correct the remained defects, RM has better performance
than exhaustive search. This is because that RM is a greedy
algorithm, and tends to cover more defects than exhaustive
search algorithms, if the repair solution does not exist. There-
fore, we employ RM in the above two algorithms during the
evaluation.We also do not take BIRA algorithms into consid-
eration, as BIRA algorithms are usually designed for embed-
ded memory, and mainly aim to achieve low cost repair
analysis at the penalty of certain repair rate loss [36], [39],
[40]. While this paper aims to exploit the efficient repair anal-
ysis algorithm for high-density commodity DRAM, where

repair rate is the primary design consideration [11], [12],
[31], [32].

Then, we consider a straightforward algorithm to achieve
optimal repair rate for memory with redundancy and in-
memory ECC. Obviously, exhaustive search is a feasible solu-
tion. Fig. 2 illustrates the basic flow of the straightforward
exhaustive search algorithm for memory with redundancy
and in-memory ECC. First, all EUCWs and EUCDs are identi-
fied. If an EUCW contains N EUCDs, at least N � 1 EUCDs
should be repaired by a spare row orN � 1 spare columns to
make the remaining defect correctable by ECC. In this paper,
we define the selected EUCDs in each EUCW as preemptive
repair defects (PRDs), because they are preemptively repaired
to make the memory array repairable. Thus, the algorithm
exhaustively traverses all the possible combinations of PRDs
and uses BST-based exhaustive search for each combination.
If a repair solution is found before all the combinations have
been traversed, the memory is repairable. Otherwise, the
memory is unrepairable. To improve the analysis speed, we
further employ the preprocessing/filter algorithms men-
tioned in Section 2.2 before conducting exhaustive search for
each combination. The employed preprocessing/filter algo-
rithms include must-repair, single-faulty-cell filter and early-
abort algorithms. If bitmap of a PRDs combination meets the
early-abort condition, the time-consuming BST traversal of
the combination can be avoid. During the evaluation, we sim-
ulate the following two versions of this exhaustive-search-
based straightforward algorithm.

� Combination traversal with BST (Comb+BST): This
algorithm is the same as the operational flow pre-
sented in Fig. 2, where BST-based exhaustive search
is employed to search the repair solution for each
combination of selected PRDs.

� Combination traversal with RM (Comb+RM): This algo-
rithm utilizes RM instead of BST-based exhaustive
search to search for the repair solution in each com-
bination of selected PRDs. This process can reduce
the repair analysis time induced by BST traversal,
but potentially has negative impact on repair rate.

Fig. 2. Basic flow of straightforward exhaustive search repair analysis
algorithm for memory with redundancy and in-memory ECC.

778 IEEE TRANSACTIONS ON COMPUTERS, VOL. 70, NO. 5, MAY 2021

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on February 19,2022 at 02:57:51 UTC from IEEE Xplore. Restrictions apply.

We evaluate the repair rates of these four straightforward
repair analysis algorithms using the experimental setup pre-
sented in Section 6.1. Fig. 3 shows the simulated repair rate
results under different defect densities. The repair rate of
R_w/o_E drastically decreases with the increase in defect
density. This is because that R_w/o_E allocates redundant
rows or columns without considering in-memory ECC.
Many redundancies are allocated to repair ECC tolerable
defects, whereas some EUCDs are uncovered. Although
R_all_EUCDs can achieve much better repair rate than R_w/
o_E, its repair rate considerably drops under high defect den-
sity compared with exhaustive search algorithms. The repair
rate can be significantly improved by traversing all combina-
tions of selected PRDs. Moreover, Comb+BST outperforms
Comb+RM under high defect density, that the repair rate of
Comb+BST is higher than that of Comb+RM by at least
5.5 percentage when defect density increases to 220 defects
per subarray. The major drawback of Comb+BST and Comb
+RM is their excessively high computational complexitymak-
ing them infeasible for practical use. The experimental result
in Section 6.2 shows that the average repair analysis time for
one 512� 544memory subarray can be larger than 11swhen
the defect density increases to 180 defects per subarray. For
an 8 Gb DRAM chip consists of 32K 512� 544 subarrays, the
average repair analysis time per chip is longer than 100 hours,
which is unacceptable for practical memory repair analysis.
The evaluation results on straightforward algorithms clearly
demonstrate that it isworthwhile to explore an efficient repair
analysis algorithm with optimal repair rate for memory with
redundancy and in-memory ECC.

4 PROPOSED OPTIMAL REPAIR ANALYSIS

ALGORITHM

4.1 Motivation and Overall Flow

Although the straightforward exhaustive search algorithm
can achieve optimal repair rate formemorywith redundancy
and in-memory ECC, its computational complexity is
extremely high, especially for high defect density scenarios.
Hence, the analysis speed of this straightforward algorithm
is excessively slow for practical use. To explore an efficient
algorithm, we analyze that the high computational complex-
ity of the exhaustive search algorithm is mainly incurred by
the following three reasons.

� Excessive Combination traversal: The number of
combinations of selected PRDs is the Cartesian prod-
uct of the number of all possible selections of PRDs
for each EUCW, which exponentially grows with the
number of EUCWs in the worst case. Thus, travers-
ing all combinations is extremely time-consuming
for high-density memory with high defect density.

� Redundant BST traversal: For each combination, the
exhaustive search algorithm has to repetitively con-
struct the BST from a certain root node. This process
is highly redundant because different combinations
tend to have a large percentage of common PRDs.
This redundant operation consumes considerable
time when it is not considered.

� Inappropriate search strategy: Essentially, the con-
ventional BST-based repair analysis algorithm indis-
criminately traverses all the BST nodes using the BFS
strategy. This process makes the computational com-
plexity of traversing all nodes of BST exponentially
grow with the number of defects in the worst case.
The computational complexity can be significantly
reduced with better search strategies.

Therefore, this paper exploits an efficient repair analysis
algorithmwith optimal repair rate by optimizing the exhaus-
tive search algorithm according to the above three reasons.
The overall flow of the proposed optimal repair analysis
algorithm is shown in Fig. 4. The operational flow of the pro-
posed algorithm is similar to that of exhaustive search. Nev-
ertheless, several techniques are employed to reduce the
computational complexity and speed up the repair analysis.
In particular, isolated EUCWfilter, isolated EUCD filter, and
early-abort algorithm are designed to reduce the combina-
tion traversal, HST is proposed to reduce the redundant BST
traversal, and DFS strategy is used to accelerate the solution
search with prior knowledge. We explain each technique in
detail in the following subsections.

4.2 Preprocessing/Filter Algorithms

4.2.1 Must-Repair Algorithm

Similar to the conventional must-repair algorithm, the crite-
ria of the proposed must-repair process are based on the

Fig. 3. Repair rate comparison among different straightforward repair
analysis algorithms.

Fig. 4. Overall flow of the proposed optimal repair analysis algorithm.

LV ET AL.: EFFICIENT REPAIR ANALYSIS ALGORITHM EXPLORATION FOR MEMORY WITH REDUNDANCY AND IN-MEMORY ECC 779

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on February 19,2022 at 02:57:51 UTC from IEEE Xplore. Restrictions apply.

number of available spare rows and columns in the subar-
ray. Nevertheless, the proposed must-repair algorithm
focuses on EUCDs and EUCWs instead of defects. To per-
form must-repair analysis, a row EUCW counter and a row
EUCD counter are created for each defective row in the sub-
array. If the number of ðNEUCD �NEUCW Þ in a row is larger
than available spare columns, the defective row must be
repaired by a spare row. Although there are also some
must-repair columns, the proposed must-repair algorithm
does not analyze the defective columns, since the repair to
certain defective column is optional within each ECC code-
word. This is the major difference between the conventional
and the proposed must-repair algorithms.

As the example shown in Fig. 5, the defective memory
subarray contains 9 EUCWs. In row “2”, which is labeled
with “Must-repair row”, six EUCDs are distributed in three
EUCWs. At least NEUCD �NEUCW ¼ 3 spare columns are
needed to repair these EUCWs, while there are only two
available spare columns. Thus, these EUCWs must be
repaired with one spare row.

4.2.2 Isolated EUCW Filter

An EUCW with all its EUCDs share no address with any
other EUCD is defined as a isolated EUCW in this paper.
Similar to the single faulty cell in conventional repair analy-
sis, the repair solution to isolated EUCW is deterministic
that one isolated EUCW can be independently repaired
with a spare row or N � 1 spare columns, where N repre-
sents the number of EUCDs in that isolated EUCW. As
shown in Fig. 5, the EUCW in row “5”, which is labeled
with “Isolated EUCW”, is an isolated EUCW because no
other EUCW is found in row “5” and all EUCDs in it do not
share column with other EUCDs. The repair solution for
this EUCW is deterministic, either with one spare row, or
with two spare columns, and does not affect the repair
result of other EUCWs. Based on this observation, we pro-
pose an isolated EUCW filter that reduces the number of
EUCWs to be analyzed in the combination traversal by
recording and filtering out isolated EUCWs. Once the fol-
lowing repair analysis has found a potential solution for the
non-isolated EUCWs, the remaining spare lines can be eas-
ily calculated. In particular, if the recorded isolated EUCWs
can be repaired with the remaining spare rows and col-
umns, a repair solution can be found. Otherwise, the repair
analysis should continue to find other candidate repair solu-
tions. The use of isolated EUCW filter can effectively reduce

the number of combinations to be traversed during repair
analysis.

4.2.3 Isolated EUCD Filter

An EUCD that locates in a non-isolated EUCW and does not
share column address with any other EUCD is defined as an
isolated EUCD in this paper, as shown in Fig. 5. We propose
to filter out the isolated EUCDs to further reduce the num-
ber of combinations to be traversed during repair analysis.
We have the following theorem.

Theorem 1. To filter out isolated EUCDs in each EUCW from
being selected as PRDs does not have any negative impact on
the final repair rate.

Proof. Let d1; d2; . . . ; dn denote n EUCDs in a EUCW, d1
denote an isolated EUCD, and at least n� 1 defects need
to be repaired by redundancy in the EUCW. If the exhaus-
tive search finds a repair solution when n� 1 defects
including d1 are selected to be PRDs in the EUCW, it is
not difficult to find that the repair solution also exists
when d1 is replaced by the remaining defect with col-
umn-sharings. On the contrary, if the exhaustive search
finds a repair solution when selecting n� 1 defects except
for d1 as PRDs in the EUCW, the memory subarray may
become unrepairable when one of the defects is replaced
by d1. Thus, the theorem is proven. tu
The theorem can be further demonstrated with the exam-

ple shown in Fig. 5. Let us take the repair of the EUCW in
row “9” as an example. There are two EUCDs, i.e., d0 and
d1, in the EUCW, where d1 is an isolated EUCD after row
“2” has been repaired with spare row during must-repair
analysis. Thus, the EUCW can be repaired either with one
spare row or with one spare column. If a repair solution can
be found when the EUCW is repaired with one spare row,
the repair solution is constantly valid no matter which
EUCD in the EUCW is selected as PRD. If there is one repair
solution S1 in which d1 is selected to be PRD and is repaired
with one spare column, another repair solution S2 can cer-
tainly be found if d0 is selected to be PRD. In the worst case,
S2 can be formed by keeping the repair of other EUCWs
unchanged and allocating the spare column for d1 in S1 to
repair d0. In return, if there is no repair solution can be
found if d0 is selected as PRD, selecting d1 as PRD cannot
improve the condition. In one word,filtering out d1 from
being selected to be PRD does not impact the repair analysis
result of the memory subarray.

In addition, although EUCDs with column-sharings have
higher priority to be repaired than that of isolated EUCDs,
it should not be concluded that EUCDs with more column-
sharings also have higher priority than that with less col-
umn-sharings. This point can be easily proved through con-
tradiction, as shown in Fig. 6. In this example, if we give
higher repair priority to the PRDs with the most column-
sharings, the memory subarray is unrepairable. Neverthe-
less, the memory subarray is actually repairable when we
repair the PRDs with less column-sharings. With Theorem
1, we can safely employ the isolated EUCD filter before
combination traversal to further reduce the computational
complexity of the repair analysis for memory with both
redundancy and in-memory ECC.

Fig. 5. Example of the proposed must-repair, isolated EUCW filter, and
isolated EUCD filter algorithms.

780 IEEE TRANSACTIONS ON COMPUTERS, VOL. 70, NO. 5, MAY 2021

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on February 19,2022 at 02:57:51 UTC from IEEE Xplore. Restrictions apply.

4.2.4 Early-Abort Algorithm

The early-abort algorithm is employed to detect unrepair-
able memory subarray in advance during repair analysis.
The proposed early-abort algorithm focuses on the must-
repair columns untouched in the proposed must-repair
algorithm. A column is called a must-repair column when
the number of EUCDs in it is larger than the number of
available spare rows after must-repair. If a column of
EUCWs contains only one must-repair column, the EUCDs
on this column may become ECC correctable defects after
redundancy repair to other EUCDs. We develop an early-
abort algorithm by utilizing the columns of EUCWs that
contain more than one must-repair columns, which are
called must-repair EUCW columns in brief. For a must-
repair EUCW column that involves N must-repair columns,
at least N � 1 defective columns must be repaired with
spare columns. We denote the number of must-repair
EUCW columns in the subarray as Tw, the number of must-
repair columns in these must-repair EUCW columns as Tc,
and the number of available spare columns as SC. Then, at
least Tc � Tw spare column are needed to make the memory
subarray repairable. Thus, the memory subarray is unre-
pairable when Tc � Tw > SC.

Fig. 7 illustrates an example of memory subarray that
meets the condition of the proposed early-abort algorithm.
After must-repair analysis, there are two must-repair
EUCW columns, i.e., Tw ¼ 2, and the number of must-repair
columns involved in these must-repair EUCW columns is 5,
i.e., Tc ¼ 5. For the first must-repair EUCW column, column
“a” or “b” must be repaired with one spare column, and for
the second must-repair EUCW column, two of the three
must-repair columns (“c”, “d”, and “e”) must be repaired
with two spare columns. Thus, the minimum number of
required spare columns is three (Tc � Tw ¼ 3), which is
greater than the number of available spare columns. Hence,
the memory subarray is unrepairable.

4.3 Hybrid Search Tree

To reduce redundant BST traversals, we propose a HST to
complete the combination and BST traversals with one
data structure. As shown in Fig. 8, different from tradi-
tional BST, the proposed HST has two kinds of nodes, i,e.,
combination nodes and repair nodes. For each selected
EUCW, a group of combination nodes are created to tra-
verse all the possible combinations of selected PRDs. Then

the repair nodes are created from these combination
nodes. The number of combination nodes is N for an
EUCW containing N EUCDs. Originally, the number of
the corresponding repair nodes for each combination node
is two, one for spare row and the other for spare columns.
Nevertheless, as all the EUCDs in a EUCW can be repaired
with a same spare row, the total number of repair nodes
for the EUCW is N þ 1.

Fig. 8 also shows an example of the proposed HST. The
memory subarray is 8� 8 and is equipped with two spare
rows and two spare columns. To simplify the example, we
assume that each ECC codeword only consists of 4 bits while
still can correct one error bit. The defective memory subarray
contains 12 EUCDs that are randomly allocated in 5 EUCWs.
Fig. 8a depicts the defective memory subarray after identify-
ing EUCWs and EUCDs.We should note that, to simplify the
description of the proposedHST structure, the proposed iso-
lated EUCW filter and isolated EUCDs filter are not
employed in the example. As shown in Fig. 8b, after EUCW
in row “0” is selected to be repaired, the algorithm checks
whether the selected EUCW has become ECC correctable
under the spare allocation recorded in node “1”. Because the
selected EUCW has not been covered by spare allocation
recorded in node “1”, three combination nodes (i.e., nodes
“2”, “3”, “4”) are created from node “1”, since the selected
EUCW involves three EUCDs. For combination node “2”
that consists of two selected PRDs located at (0, 0) and (0,1),
nodes “5” and “6” are created to repair the selected PRDs
with one spare row or two spare columns. Similarly, nodes
“7” and “8” are created fromnodes “3” and “4”, respectively.
Since, all EUCDs in the selected EUCW can be repaired with
one spare row, node “5” is the common child node of nodes
“2”, “3” and “4”. Figs. 8c, 8d, 8e, and 8f repeat this hybrid
search for the remaining EUCWs. Finally, the HST finds five
repair solutions, as shown in Fig. 8f.

The computational complexity of repair analysis can be
significantly reduced by using the proposed HST instead of
Comb+BST. Let T andW denote the total number of EUCDs
and EUCWs in a subarray, respectively. The number of
EUCDs in the ith EUCW is denoted asDi, thus T ¼ PW

i¼1 Di.
If we do not take preprocessing and filter algorithms into
consideration, Comb+BST has to traverse

QW
i¼1 Di combina-

tions, and ð2ðTþ1Þ � 1Þ repair nodes have to be traversed for
each combination in the worst case. Thus, the total number

Fig. 7. Example of memory subarray that meets the condition of the
proposed early-abort algorithm.

Fig. 6. Example to demonstrate that the combination of less column-
sharings outperforms that of the most column-sharings.

LV ET AL.: EFFICIENT REPAIR ANALYSIS ALGORITHM EXPLORATION FOR MEMORY WITH REDUNDANCY AND IN-MEMORY ECC 781

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on February 19,2022 at 02:57:51 UTC from IEEE Xplore. Restrictions apply.

of nodes need to be traversed through Comb+BST can be
approximately calculated using Equation (1)

NCombþBST ¼ ð2ðTþ1Þ � 1Þ �
YW
i¼1

Di: (1)

The number of nodes that need to be traversed using
the proposed HST can be approximately calculated using
Equation (2), whereD0 is set to 0

NHST ¼ð2D1 þ 1Þ þ ð2D2 þ 1ÞðD1 þ 1Þ
þ ð2D3 þ 1ÞðD2 þ 1ÞðD1 þ 1Þ þ � � �

¼
XW
k¼1

½ð2Dk þ 1Þ �
Yk�1

i¼0

ðDi þ 1Þ�;
(2)

NHST is much smaller than NCombþBST , especially when the
total numbers of EUCDs and EUCWs are large. This com-
parison can be quantitatively demonstrated using the sim-
ple example shown in Fig. 8, where T ¼ 12;W ¼ 5; Di ¼
f3; 2; 2; 2; 3g. Thus, in the worst case, NcombþBST and NHST

can reach up to 589,752 and 1,123, respectively. Therefore,
the computational complexity in terms of search nodes can
be reduced by more than 500� on the use of the proposed
HST instead of Comb+BST. In the practical traversal, since

many branches terminate early due to the lack of spares and
the corresponding nodes are eliminated, the numbers of
nodes for both algorithms are much smaller than the calcu-
lated results. In the matter of fact, there are only 76 nodes
(38 combination nodes and 38 repair nodes) for the pro-
posed HST as shown in Fig. 8. For Comb+BST algorithm,
there would be 72 combinations to be traversed, and for
each combination, more than 100 BST nodes needed to be
traversed for 7 selected PRDs. Thus, there would be up to
7,200 BST nodes that have to be traversed. The practical
computational complexity reduction is still around 100�.

4.4 Depth-First Search Strategy

Conventional BST-based exhaustive search algorithms use
the BFS strategy, which is actually inappropriate for repair
analysis. In general, BFS strategy is preferred for BST when
the repair solution can be found close to the root node
where the search begins. This indicates the repair capability
of redundancies largely exceeds the number of defects.
However, redundancies are adequately equipped according
to defect density in practical applications. Therefore, most
of repair solutions should be found far from root node
when redundancies are nearly used up. In this case, the BFS
strategy is very inefficient in term of repair analysis time.
More importantly, we can determine the branch or node

Fig. 8. Example of the proposed hybrid search tree with depth-first search strategy.

782 IEEE TRANSACTIONS ON COMPUTERS, VOL. 70, NO. 5, MAY 2021

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on February 19,2022 at 02:57:51 UTC from IEEE Xplore. Restrictions apply.

that is likely to contain the repair solution in advance by
leveraging heuristic search algorithms (e.g., RM). Although
heuristic search algorithms are not optimal, they can reach
to repair solution in most cases. Therefore, we propose to
employ the DFS strategy for HST traversal to improve the
repair analysis speed.

As shown in Fig. 8, the dashed arrows illustrate the
branches and nodes selected by the DFS strategy when tra-
versing HST. In particular, we use a greedy algorithm for
the DFS strategy, where the EUCW with the most row-
sharings or column-sharings is selected to create combina-
tion and repair nodes, the branch with the most sharings is
selected for each combination node, and the branch cover-
ing the most PRDs is selected for each repair node. We
should note that, the number of PRDs on a column equals
the number of EUCDs on the column, whereas the number
of PRDs on a row equals the number of ðNEUCD �NEUCW Þ.
Therefore, in the example shown in Fig. 8, combination
node “4” is traversed with the highest priority because it
has more column-sharings than that of combination nodes
“2” and “3”. Repair node “8” is traversed with higher prior-
ity than node “5” because node “8” covers five PRDs,
whereas node “5” only covers two RPDs. Using this greedy
DFS strategy, a repair solution can be found through the
first DFS path (00100 !00 400 !00 800 !00 1800 !00 1900 !00 2000 !00

2100 !00 2200 !00 2300) . If the DFS path can not find a repair
solution before reaching to the ending node, it can track
back to other nodes or branches to find repair solution until
all the HST nodes are traversed. We can see that, in the best
case, the DFS strategy only need to traverse H nodes to
reach the available solution node, while the BFS strategy
has to traverse at least 2H nodes, where H is the depth of
the available solution node. In the worst case, both BFS and
DFS strategies need to traverse all nodes in the tree, thus
have the same computational complexity. By employing
DFS strategy in HST traversal, we can not only significantly
improve the repair analysis speed, but also reduce the mem-
ory footprint.

5 PROPOSED HEURISTIC REPAIR

ANALYSIS ALGORITHM

During the experiment of DFS strategy, we find that the
majority of repair solutions can be found using the greedy
algorithm, which prefers to choose the combination with
the most column-sharings and repair the defective rows or
columns with the most PRDs. This further motivates us to
develop a heuristic repair analysis algorithm for memory
with both redundancy and in-memory ECC. Memory fabri-
cation cost depends on both repair rate and repair analysis
speed, and repair analysis algorithm design usually has to
balance between them. Although heuristic repair analysis
algorithms usually can not provide optimal repair rate, they
can easily achieve high repair analysis speed with low
implementation cost and are useful in many cost-sensitive
scenarios.

The proposed heuristic repair analysis algorithm is essen-
tially very simple, and its flowchart is illustrated in Fig. 9.
After must-repair and early-abort algorithms, the proposed
heuristic algorithm recursively repairs the row or column
with the most PRDs and removes the emerging ECC correct-
able defects after repair, until a repair solution is found or all
the redundancies are used up. If there are remaining EUCDs
when the redundancies are used up, the memory subarray is
unrepairable with the heuristic repair analysis algorithm.
The proposed heuristic algorithm can further speed up
repair analysis, and its computational complexity is OðNÞ in
the worst case, where N is the number of EUCDs. We will
evaluate the repair rate and analysis speed of the proposed
heuristic repair analysis algorithm in the next section.

6 EXPERIMENTAL EVALUATION

6.1 Experimental Setup

Experiments are conducted based on the same memory sub-
array architecture illustrated in Fig. 1. The size of memory
subarray is set as 512� 544, indicating that it has 512 rows
and 544 columns. Hence, the total data bits in the memory
subarray are around 272 Kb. We assume that the memory
subarray is equipped with (136, 128) shortened Hamming
code as in-memory ECC. Each 136-bit codeword consists of
128 data bits and 8 check bits, and can only correct one error
bit. Each memory row contains four ECC codewords, and
the memory subarray contains a total of 2,048 ECC code-
words. In addition, we assume that the memory subarray is
equipped with 6 spare rows and 6 spare columns for mem-
ory repair. (i.e., SR = 6, SC = 6).

To evaluate the repair rate and computational complexity
of different repair analysis algorithms, we build a simulator
with the following characteristics. This simulator can sup-
port us to inject defects into random locations across the
memory subarray, and can report the repair rate and the
average repair analysis time per subarray of different repair
analysis algorithms. The negative binomial distribution
defect model [41] is used to generate the number of defects to
be injected into each subarray under a given defect density.
The percentage of SCDs, row cluster defects and column
cluster defects are set to 95, 2.5 and 2.5 percent, respectively.
Under each defect density scenario, 1,000 instances are simu-
lated for each repair analysis algorithm.

Fig. 9. Flowchart of the proposed heuristic repair analysis algorithm.

LV ET AL.: EFFICIENT REPAIR ANALYSIS ALGORITHM EXPLORATION FOR MEMORY WITH REDUNDANCY AND IN-MEMORY ECC 783

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on February 19,2022 at 02:57:51 UTC from IEEE Xplore. Restrictions apply.

To quantitatively compare the computational complexity
and analysis speed of different analysis algorithms, all algo-
rithms are implemented and run as software on the same
computer platform. The computer platform has 16 GB main
memory and 4 Intel(R) Xeon(R) CPU running at 2.4 GHz
frequency. The operating system is a Linux system with
kernel version 4.15.0. All repair analysis algorithm codes
are written in C++ programming language and compiled
on GNU g++ 7.3.0 with the configuration of the optimiza-
tion flag -O3. The repair analysis time of each algorithm is
calculated by taking the average repair analysis time of
1,000 instances.

6.2 Experimental Results

Fig. 10 illustrates the simulated repair rate comparison
between the proposed optimal and heuristic repair analysis
algorithms. We should note that, the proposed optimal
repair analysis algorithm has the same repair rate as that of
exhaustive search algorithm (Comb+BST). The repair rate of
the proposed heuristic repair analysis algorithm is slightly
lower than that of Comb+RM algorithm. This is mainly
because the proposed heuristic repair analysis algorithm
essentially employs a greedy strategy to replace both combi-
nation and BST traversals. As shown in Fig. 10, the proposed

optimal algorithm exhibits higher repair rates than that of
the proposed heuristic algorithm with the increase in defect
density. When the defect density increases to 230 defects per
subarray, the repair rate of the proposed optimal algorithm
outperforms that of the proposed heuristic algorithm by up
to 5.8 percent. The repair rate comparison results clearly
demonstrate the necessity of the optimal repair analysis
algorithm. The results also show that the proposed heuristic
algorithm can provide acceptable repair rate in spite of its
simplicity.

Fig. 11 illustrates the step-by-step computational effi-
ciency analysis of the proposed algorithms at defect densi-
ties of 130, 180, and 230. We can see that, each proposed
technique effectively improves the computational efficiency
and hence significantly reduces the repair analysis time.
More importantly, the proposed optimal repair analysis
algorithm can achieve low repair analysis time that is com-
parable to the proposed heuristic algorithm by using these
efficient techniques. Fig. 12 illustrates the analysis time com-
parison between the proposed optimal and heuristic algo-
rithms by varying defect density from 130 to 230. The
speedups of the two algorithms against Comb+BST are also
illustrated. The repair analysis time of the proposed optimal
algorithm remains comparable to that of the proposed heu-
ristic algorithm. When the defect density increases to 230
defects per subarray, the proposed optimal algorithm only
takes 0:757 ms on average for the repair analysis of each
subarray, while the proposed heuristic algorithm is approx-
imately 28 percent faster, at the expense of 5.8 percent repair
rate drop. Moreover, the two proposed algorithms can sig-
nificantly speed up the repair analysis against Comb+BST
that the speedups drastically increase with the increase in
defect density, and the speedups reach up to more than
105�when the defect density is larger than 200. This further
demonstrates the computational efficiency of the two pro-
posed algorithms.

The defect density seems high in the experimental setup.
However, redundancy repair is only necessary to EUCWs
because each ECC codeword can correct one bit error. There
are 2,048 ECC codewords in each memory subarray, and we
assume that all defects are randomly distributed throughout
each memory subarray with uniform probability under each
defect density. Thus, the number of EUCWs in each subar-
ray is excessively small even when the number of defects

Fig. 10. Repair rate comparison between the proposed optimal and heu-
ristic algorithms.

Fig. 12. Analysis time comparison between the proposed optimal and
heuristic algorithms.

Fig. 11. Step-by-step computational efficiency analysis of the proposed
algorithms at defect densities of 130, 180, and 230.

784 IEEE TRANSACTIONS ON COMPUTERS, VOL. 70, NO. 5, MAY 2021

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on February 19,2022 at 02:57:51 UTC from IEEE Xplore. Restrictions apply.

per subarray is more than 200. In practice, the BER largely
varies in terms of inter- and intra-subarrays. Therefore, the
number of EUCWs in each subarray can be much larger
even under lower average BER in practical scenarios.

Moreover, we should note that the choice of ECC code-
word length and the number of redundancies in each sub-
array is largely determined on the basis of defect density.
The proposed repair analysis algorithms are not limited to
certain configuration of ECC codeword and redundancy,
and can flexibly support repair analysis on different con-
figurations. To demonstrate this, we conduct experiments
to evaluate the repair rate and analysis speed of the
proposed repair analysis algorithms on four additional
cases with different ECC codeword length and redun-
dancy configurations.

� Case 1: ECC (136,128) with SC = 4 and SR = 4
� Case 2: ECC (136,128) with SC = 8 and SR = 8
� Case 3: ECC (72,64) with SC = 6 and SR = 6
� Case 4: ECC (272,256) with SC = 6 and SR= 6
Fig. 13 illustrates the experimental results of repair rate

and speedup against Comb+BST on the four aforemen-
tioned cases. The proposed repair analysis algorithms work
well on all the four cases in terms of repair rate and analysis
speed. The results demonstrate that the proposed repair
analysis algorithms are insensitive to ECC codeword and
redundancy configurations.

7 CONCLUSION

This paper aims to explore the efficient repair analysis algo-
rithm for memory equipped with redundancy and in-mem-
ory ECC. In particular, we propose two repair analysis
algorithms, namely, an optimal algorithm and a heuristic
algorithm. The optimal repair analysis algorithm can ach-
ieve the optimal repair rate while reducing repair analysis
time by up to 105� compared with the exhaustive search
algorithm. The heuristic algorithm is 28 percent faster than
the optimal algorithm, at the expense of 5.8 percent repair
rate drop. The experimental results demonstrate the effec-
tiveness and efficiency of the proposed repair analysis algo-
rithms. Nevertheless, the proposed algorithms can be only
applied to the memory architecture where the entire ECC
codeword, including all its data and check bits, is located in
one subarray. Our future work will focus on exploring the
efficient repair analysis algorithm for memory designed
with data bus division technique and protected by redun-
dancy and in-memory ECC.

APPENDIX A
ANALYSIS ON THE PROPOSED PREPROCESSING/
FILTER ALGORITHMS

The proposed preprocessing/filter algorithms reduce the
computational complexity by reducing the number of
EUCWs and EUCDs to be analyzed during the tree-based
exhaustive search. This appendix evaluates the effectiveness
of these algorithms approximately using probability analy-
sis. Table A shows the acronyms and definitions used in the
analysis.

We assume that the defects are randomly distributed
across the memory subarray with uniform probability. Then,
the number of defects (d) in each ECCword follows the bino-
mial distribution, i.e., d � BðL;rÞ. Thus, the probability that
an ECC word is an EUCW (PEUCW) can be calculated with
Equation (3). The probability that a cell is an EUCD (PEUCD)
can be calculatedwith Equation (4)

PEUCW ¼
XL
d¼2

L

d

� �
rdð1� rÞðL�dÞ

� �
(3)

PEUCD ¼ r � ½1� ð1� rÞðL�1Þ�: (4)

Similarly, the number of EUCWs in each row (NEUCW=r) fol-
lows the binomial distribution, i.e.,NEUCW=r � BðNw=r; PEUCW Þ.
A.1 Must Repair

A row is a must-repair row when NEUCD=r �NEUCW=r >
SC. Thus, its probability can be calculated as

P ðr 2 SMRÞ ¼
XNw=r

i¼1

fP ðNEUCW=r ¼ iÞ�

P ðr 2 SMRjNEUCW=r ¼ iÞg:
(5)

TABLE A
Acronyms and Definitions

Nr the number of rows in each subarray
Nw=r the number of ECC words in each row
L the ECC word length
r BER of defects
SC: the number of spare columns in each subarray
SR: the number of spare rows in each subarray
SEUCW set of EUCWs in subarray
SIEUCW set of isolated EUCWs in subarray
SEUCD set of EUCDs in subarray
SMR set of must-repair rows in subarray

Fig. 13. Repair rate and speedup against Comb+BST on different configurations of ECC codeword and redundancy.

LV ET AL.: EFFICIENT REPAIR ANALYSIS ALGORITHM EXPLORATION FOR MEMORY WITH REDUNDANCY AND IN-MEMORY ECC 785

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on February 19,2022 at 02:57:51 UTC from IEEE Xplore. Restrictions apply.

Where, P ðNEUCW=r ¼ iÞ is the probability that the number of
EUCWs in a row is i and can be calculated as

P ðNEUCW=r ¼ iÞ ¼ Nw=r

i

� �
Pi
EUCW �

ð1� PEUCW ÞðNw=r�iÞ:
(6)

P ðr 2 SMRjNEUCW=r ¼ iÞ is the probability that a row is a
must-repair row under the condition that the row contains i
EUCWs. The formulations for P ðr 2 SMRjNEUCW=r ¼ iÞ vary
with NEUCW=r. When NEUCW=r ¼ 1, P ðr 2 SMRjNEUCW=r ¼ 1Þ
can be calculated as

P ðr 2 SMRjNeucw=r ¼ 1Þ

¼ 1�
XSCþ1

d¼0

L

d

� �
rdð1� rÞðL�dÞ:

(7)

When i � 2, P ðr 2 SMRjNEUCW=r ¼ iÞ can be calculated in
the similar way.

A.2 Isolated EUCW Filter

An isolated EUCW is defined as an EUCW with all its
EUCDs share no address with any other EUCDs. According
to the Bayes’ Theorem, the probability that an EUCW is an
isolated EUCW can be calculated as a conditional probability

P ðw 2 SIEUCW jw 2 SEUCW Þ ¼ P ðw 2 SIEUCW Þ
P ðw 2 SEUCW Þ : (8)

Where P ðw 2 SIEUCW Þ and P ðw 2 SEUCW Þ are the probabil-
ity that an ECC word is an isolated EUCW and an EUCW,
respectively. P ðw 2 SIEUCW Þ can further be calculated with
Equation (9)

P ðw 2SIEUCW Þ ¼ ð1� PEUCW ÞNw=r�1 �
XL
d¼2

f L

d

� �

rd � ð1� rÞðL�dÞ � ð1� PEUCDÞdðNr�1Þg:
(9)

A.3 Isolated EUCD Filter

An isolated EUCD is defined as an EUCD that locate in the
non-isolated EUCW and does not share column address
with any other EUCD. Let SD IEUCW and SIEUCD denote the
set of EUCDs located in non-isolated EUCW and the set of
isolated EUCDs in a subarray. According to the Bayes’
Theorem, the probability that an EUCD located in non-
isolated EUCW is an isolated EUCD can be calculated
with Equation (10)

P ðx 2SIEUCDjx 2 SD IEUCW Þ

¼ P ðx 2 SIEUCDÞ
P ðx 2 SD IEUCW Þ :

(10)

P ðx 2 SIEUCDÞ and P ðx 2 SD IEUCW Þ can be calculated with
Equations (11) and (12), respectively

P ðx 2 SIEUCDÞ

¼
XL
d¼2

f L

d

� �
rdð1� rÞL�d � ð1� PEUCDÞðNr�1Þ�

d

L
� ½1� ð1� PEUCW ÞðNw=r�1Þ�

ð1� PEUCDÞðd�1Þ�ðNr�1Þ�g

(11)

P ðx 2 SD IEUCW Þ

¼
XL
d¼2

f L

d

� �
rdð1� rÞL�d � d

L
� ½1�

ð1� PEUCW ÞðNw=r�1Þ � ð1� PEUCDÞd�ðNr�1Þ�g:

(12)

A.4 Early-Abort algorithm

The proposed early-abort analysis is based on the must-
repair columns and must-repair EUCW columns. Thus,
Equations (13) and (14) calculate the probabilities that a col-
umn is a must-repair column (PMRC) and a column of ECC
words is amust-repair EUCWcolumn (PMRWC), respectively

PMRC ¼
XNr

d¼SRþ1

Nr

d

� �
� Pd

EUCD � ð1� PEUCDÞðNr�dÞ (13)

PMRWC ¼
XL
i¼2

L

i

� �
� Pi

MRC � ð1� PMRCÞðL�iÞ: (14)

Let SEA denote the set of all the subarrays meet early-abort
condition. According to the Bayes’ Theorem, the probability
that a subarray sa meets early-abort condition can be calcu-
lated with Equation (15)

P ðsa 2 SEAÞ ¼
XNw=r

k¼1

fP ðsa 2 SEAjNMRWC ¼ kÞ�

P ðNMRWC ¼ kÞg:
(15)

Where P ðNMRWC ¼ kÞ is the probability that a subarray con-
tains kmust-repair EUCW columns, which can be calculated
with Equation (16)

P ðNMRWC ¼ kÞ

¼ Nw=r

k

� �
� Pk

MRWC � ð1� PMRWCÞðNw=r�kÞ;
(16)

P ðsa 2 SEAjNMRWC ¼ kÞ is the probability that a subarray
meets the proposed early-abort condition when it contains k
must-repair EUCW columns. The formulations for P ðsa 2
SEAjNMRWC ¼ kÞ vary with k. When k ¼ 1

P ðsa 2 SEAjNMRWC ¼ 1Þ

¼ 1�
XSCþ1

j¼0

L

j

� �
� Pj

MRC � ð1� PMRCÞðL�jÞ:
(17)

When k � 2, P ðsa 2 SEAjNMRWC ¼ kÞ can be calculated in
the similar way.

786 IEEE TRANSACTIONS ON COMPUTERS, VOL. 70, NO. 5, MAY 2021

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on February 19,2022 at 02:57:51 UTC from IEEE Xplore. Restrictions apply.

A.5 Quantitative Analysis

Using the above equations, we evaluate the potential effective-
ness of the proposed preprocessing/filter algorithms with the
memory subarray configuration in Section 6.1.When the num-
ber of defects in each subarray is 130, the probability that a row
is a must-repair row is around 7:8� 10�9 , 97 percent of
EUCWs and 58.36 percent EUCDs in non-isolated EUCWs
could be filtered out from the tree-based exhaustive search,
the probability that a subarraymeets the proposed early-abort
condition is 7:3� 10�8. When the number of defects in each
subarray is 230, the probability that a row is amust-repair row
is around 9:2� 10�7, 90 percent of EUCWs and 57.83 percent
EUCDs in non-isolated EUCW could be filtered out from the
tree-based exhaustive search, the probability that a subarray
meets the proposed early-abort condition is 3:17� 10�6. We
note that, although the probability that a memory subarray
meets early-abort condition is low, it can cancel those cases
incurring very heavy tree-based exhaustive search and its
effectiveness is obvious. The results are roughly consistent
with the simulation results in Section 6.2.

ACKNOWLEDGMENTS

This research was supported by National Natural Science
Foundation of China under Grant 61722406 and Grant
61751401.

REFERENCES

[1] S. Hong, “Memory technology trend and future challenges,” in
Proc. Int. Electron Devices Meet., 2010, pp. 12.4.1–12.4.4.

[2] S. Cha et al., “Defect analysis and cost-effective resilience architecture
for future DRAM devices,” in Proc. IEEE Int. Symp. High-Perform.
Comput. Archit., 2017, pp. 61–72.

[3] A. A. Hwang, I. A. Stefanovici, and B. Schroeder, “Cosmic rays
don’t strike twice: Understanding the nature of DRAM errors and
the implications for system design,” in Proc. Int. Symp. Archit. Sup-
port Program. Lang. Operating Syst., 2012, pp. 111–122.

[4] K. K. Hung, P. K. Ko, C. Hu, and Y. C. Cheng, “Random telegraph
noise of deep-submicrometer MOSFETs,” IEEE Electron Device
Lett., vol. 11, no. 2, pp. 90–92, Feb. 1990.

[5] M. Horiguchi and K. Itoh, “Redundancy,” in Nanoscale Memory
Repair. Berlin, Germany: Springer, 2011, pp. 19–67.

[6] C. H. Stapper and R. J. Rosner, “Integrated circuit yield manage-
ment and yield analysis: Development and implementation,”
IEEE Trans. Semicond. Manuf., vol. 8, no. 2, pp. 95–102, May 1995.

[7] H. Liu et al., “A built-off self-repair scheme for channel-based 3D
memories,” IEEE Trans. Comput., vol. 66, no. 8, pp. 1293–1301,
Aug. 2017.

[8] M. D. Smith and P. Mazumder, “Generation of minimal vertex
covers for row/column allocation in self-repairable arrays,” IEEE
Trans. Comput., vol. 45, no. 1, pp. 109–115, Jan. 1996.

[9] M. Chang, W. K. Fuchs, and J. H. Patel, “Diagnosis and repair of
memory with coupling faults,” IEEE Trans. Comput., vol. 38, no. 4,
pp. 493–500, Apr. 1989.

[10] M. Tarr, D. Boudreau, and R. Murphy, “Defect analysis system
speeds test and repair of redundant memories,” Electronics, vol. 57,
no. 1, pp. 175–179, Jan. 1984.

[11] J. R. Day, “A fault-driven, comprehensive redundancy algorithm,”
IEEEDes. Test Comput., vol. 2, no. 3, pp. 35–44, Jun. 1985.

[12] S. Kuo and W. K. Fuchs, “Efficient spare allocation for reconfigur-
able arrays,” IEEE Des. Test Comput., vol. 4, no. 1, pp. 24–31, Feb.
1987.

[13] H. Cho, W. Kang, and S. Kang, “A fast redundancy analysis algo-
rithm in ATE for repairing faulty memories,” ETRI J., vol. 34, no. 3,
pp. 478–481, Jun. 2012.

[14] P. J. Nair, V. Sridharan, andM. K. Qureshi, “XED: Exposing on-die
error detection information for strong memory reliability,” in Proc.
ACM/IEEEAnnu. Int. Symp. Comput. Archit., 2016, pp. 341–353.

[15] Y. H. Son, S. Lee, O. Seongil, S. Kwon, N. S. Kim, and J. H. Ahn,
“CiDRA: A cache-inspired DRAM resilience architecture,” in Proc.
IEEE Int. Symp. High Perform. Comput. Archit., 2015, pp. 502–513.

[16] U. Kang et al., “Co-architecting controllers and DRAM to enhance
DRAM process scaling,” in Proc. Memory Forum, Jun. 2014.

[17] “LowPowerDoubleDateRate 4 (LPDDR4),” JEDEC, vol. JESD209-4c,
Jan. 2020. [Online]. Available: https://www.jedec.org/standards-
documents/docs/jesd209-4b

[18] S. Kwon, Y. H. Son, and J. H. Ahn, “Understanding DDR4 in
pursuit of in-DRAM ECC,” in Proc. Int. SoC Des. Conf., 2014,
pp. 276–277.

[19] T.-Y. Oh et al., “A 3.2 Gbps/pin 8 Gbit 1.0 V LPDDR4 SDRAM
with integrated ECC engine for sub-1 V DRAM core operation,”
IEEE J. Solid-State Circuits, vol. 50, no. 1, pp. 178–190, Jan. 2015.

[20] M. Patel, J. S. Kim, H. Hassan, and O. Mutlu, “Understanding and
modeling on-die error correction in modern DRAM: An experi-
mental study using real devices,” in Proc. Annu. IEEE/IFIP Int.
Conf. Dependable Syst. Netw., 2019, pp. 13–25.

[21] H. Kwon et al., “An extremely low-standby-power 3.733Gb/s/pin
2Gb LPDDR4 SDRAM for wearable devices,” in Proc. IEEE Int.
Solid-State Circuits Conf., 2017, pp. 394–395.

[22] K. C.Chun et al., “A 16GbLPDDR4X SDRAMwith anNBTI-tolerant
circuit solution, an SWDPMOSGIDL reduction technique, an adap-
tive gear-down scheme and ametastable-free DQS aligner in a 10nm
class DRAM process,” in Proc. IEEE Int. Solid-State Circuits Conf.,
2018, pp. 206–208.

[23] N. Kwak et al., “A 4.8 Gb/s/pin 2Gb LPDDR4 SDRAM with sub-
100mA self-refresh current for IoT applications,” in Proc. IEEE Int.
Solid-State Circuits Conf., 2017, pp. 392–393.

[24] H. Sun, J. Zhao, F. Wang, N. Zheng, and T. Zhang, “Cost-efficient
built-in repair analysis for embedded memories with on-chip
ECC,” in Proc. Int. Symp. Access Spaces, 2011, pp. 95–100.

[25] S.-H. Kim et al., “A low power and highly reliable 400 Mbps
mobile DDR SDRAM with on-chip distributed ECC,” in Proc.
IEEE Asian Solid-State Circuits Conf., 2007, pp. 34–37.

[26] C.-L. Su, Y.-T. Yeh, and C.-W. Wu, “An integrated ECC and redun-
dancy repair scheme for memory reliability enhancement,” in Proc.
IEEE Int. Symp. Defect Fault Tolerance VLSI Syst., 2005, pp. 81–89.

[27] K. Itoh, “High-performance subsystemmemories,” in VLSI Memory
ChipDes., vol. 5. Berlin, Germany: Springer, 2001, pp. 339–387.

[28] H. L. Kalter et al., “A 50-ns 16-Mb DRAM with a 10-ns data rate
and on-chip ECC,” IEEE J. Solid-State Circuits, vol. 25, no. 5,
pp. 1118–1128, Oct. 1990.

[29] S.-L. Gong, J. Kim, S. Lym, M. B. Sullivan, H. David, and M. Erez,
“DUO: Exposing on-chip redundancy to rank-level ECC for high
reliability,” in Proc. IEEE Int. Symp. High Perform. Comput. Archit.,
2018, pp. 683–695.

[30] P. J. Nair, D.-H. Kim, and M. K. Qureshi, “ArchShield: Architec-
tural framework for assisting DRAM scaling by tolerating high
error rates,” in Proc. ACM SIGARCH Comput. Archit. News, 2013,
pp. 72–83.

[31] H. Cho, W. Kang, and S. Kang, “A very efficient redundancy analy-
sis method using fault grouping,” ETRI J., vol. 35, no. 3, pp. 439–447,
Jun. 2013.

[32] H. Lee, K. Cho, D. Kim, and S. Kang, “Fault group pattern match-
ing with efficient early termination for high-speed redundancy
analysis,” IEEE Trans. Comput.-Aided De. Integr. Circuits Syst., vol.
37, no. 7, pp. 1473–1482, Jul. 2018.

[33] K. Cho, W. Kang, H. Cho, C. Lee, and S. Kang, “A survey of repair
analysis algorithms for memories,” ACM Comput. Surv., vol. 49,
no. 3, pp. 1–41, Dec. 2016.

[34] H.-Y. Lin, F.-M. Yeh, and S.-Y. Kuo, “An efficient algorithm for spare
allocation problems,” IEEE Trans. Rel., vol. 55, no. 2, pp. 369–378,
Jun. 2006.

[35] R. W. Haddad, A. T. Dahbura, and A. B. Sharma, “Increased
throughput for the testing and repair of RAMs with redundancy,”
IEEE Trans. Comput., vol. 40, no. 2, pp. 154–166, Feb. 1991.

[36] C.-T. Huang, C.-F. Wu, J.-F. Li, and C.-W. Wu, “Built-in redun-
dancy analysis for memory yield improvement,” IEEE Trans. Rel.,
vol. 52, no. 4, pp. 386–399, Dec. 2003.

[37] T. Kawagoe, J. Ohtani, M. Niiro, T. Ooishi, M. Hamada, and
H. Hidaka, “A built-in self-repair analyzer (CRESTA) for embed-
ded DRAMs,” in Proc. IEEE Int. Test Conf., 2000, pp. 567–574.

[38] P. Ohler, S. Hellebrand, and H. Wunderlich, “An integrated built-
in test and repair approach for memories with 2D redundancy,”
in Proc. IEEE Eur. Test Symp., 2007, pp. 91–96.

LV ET AL.: EFFICIENT REPAIR ANALYSIS ALGORITHM EXPLORATION FOR MEMORY WITH REDUNDANCY AND IN-MEMORY ECC 787

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on February 19,2022 at 02:57:51 UTC from IEEE Xplore. Restrictions apply.

https://www.jedec.org/standards-documents/docs/jesd209-4b
https://www.jedec.org/standards-documents/docs/jesd209-4b

[39] M. Lee, L.-M. Denq, and C.-W.Wu, “Amemory built-in self-repair
scheme based on configurable spares,” IEEE Trans. Comput.-Aided
Des. Integr. Circuits Syst., vol. 30, no. 6, pp. 919–929, Jun. 2011.

[40] M.-H. Yang, H. Cho, W. Kang, and S. Kang, “EOF: Efficient built-
in redundancy analysis methodology with optimal repair rate,”
IEEE Trans. Comput.-AidedDes. Integr. Circuits Syst., vol. 29, no. 7, pp.
1130–1135, Jul. 2010.

[41] C. H. Stapper, “Yield model for fault clusters within integrated
circuits,” IBM J. Res. Develop., vol. 28, no. 5, pp. 636–640, Sep. 1984.

Minjie Lv received the BS and PhD degrees from
the Department of Electrical Engineering, Xi’an
Jiaotong University, Xi’an, China, in 2010 and
2019, respectively. He was a visiting PhD student
with Electrical, Computer and Systems Engineer-
ing Department, Rensselaer Polytechnic Institute,
Troy, New York from 2015 to 2016. Currently, he is
an associate professor with the School of Cyber
Engineering, Xidian University, Xi’an, Shaanxi,
China. His current research interests include high-
performance computer architecture and high-
reliability and low-powermemory systemdesign.

HongbinSun (SeniorMember, IEEE) received the
BS and PhD degrees in electrical engineering from
Xi’an JiaotongUniversity, Xi’an, China, in 2003 and
2009, respectively. He was a visiting PhD student
with Electrical, Computer and Systems Engineer-
ing Department, Rensselaer Polytechnic Institute,
Troy, New York from 2007 to 2008. He was a post-
doc with Computer Science Department, Xi’an
Jiaotong University from 2009 to 2011. Currently,
he is a professor with the School of Electronic and
Information Engineering, Xi’an Jiaotong University.

His current research interests include memory hierarchy in computer sys-
tem, VLSI architecture for video processing and computer vision, and sig-
nal processing system for newmemory technology.

Jingmin Xin (Senior Member, IEEE) received the
BE degree in information and control engineering
from Xi’an Jiaotong University, Xi’an, China, in
1988, and the MS and PhD degrees in electrical
engineering from Keio University, Yokohama,
Japan, in 1993 and 1996, respectively. Since
2007, he has been a professor at Xi’an Jiaotong
University. His research interests include the
areas of adaptive filtering, statistical and array sig-
nal processing, system identification, and pattern
recognition.

Nanning Zheng (Fellow, IEEE) received the
graduate degree from the Department of Electri-
cal Engineering, Xi’an Jiaotong University, Xi’an,
China, in 1975, the MS degree in information
and control engineering from Xi’an Jiaotong
University, Xi’an, China, in 1981, and the PhD
degree in electrical engineering from Keio Uni-
versity, Yokohama, Japan, in 1985. He jointed
Xi’an Jiaotong University, in 1975, and is cur-
rently a professor and the director of the Institute
of Artificial Intelligence and Robotics, Xi’an Jiao-

tong University. His research interests include computer vision, pattern
recognition and image processing, and hardware implementation of
intelligent systems.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

788 IEEE TRANSACTIONS ON COMPUTERS, VOL. 70, NO. 5, MAY 2021

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on February 19,2022 at 02:57:51 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

