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Abstract—Localization is a fundamental and crucial mod-
ule for autonomous vehicles. Most of the existing localization
methodologies, such as signal-dependent methods (RTK-GPS and
Bluetooth), simultaneous localization and mapping (SLAM), and
map-based methods, have been utilized in outdoor autonomous
driving vehicles and indoor robot positioning. However, they
suffer from severe limitations, such as signal-blocked scenes of
GPS, computing resource occupation explosion in large-scale sce-
narios, intolerable time delay, and registration divergence of
SLAM/map-based methods. In this article, a self-localization
framework, without relying on GPS or any other wireless
signals, is proposed. We demonstrate that the proposed homo-
geneous normal distribution transform algorithm and two-way
information interaction mechanism could achieve centimeter-
level localization accuracy, which reaches the requirement of
autonomous vehicle localization for instantaneity and robustness.
In addition, benefitting from hardware and software co-design,
the proposed localization approach is extremely light-weighted
enough to be operated on an embedded computing system, which
is different from other LiDAR localization methods relying on
high-performance CPU/GPU. Experiments on a public dataset
(Baidu Apollo SouthBay dataset) and real-world verified the
effectiveness and advantages of our approach compared with
other similar algorithms.

Index Terms—Autonomous vehicle localization, homogeneous
registration method, normal distribution transform (NDT)-EKF
tightly coupled algorithm, software–hardware co-design.

I. INTRODUCTION

AUTONOMOUS driving technology, as one of the best
verification solutions for artificial intelligence [1]–[3] and

cognitive science [4], [5], has made great progress in recent
decades, where localization is a prerequisite for safe driving
in large-scale urban scenes. As is well known, autonomous
driving technology consists of four main parts, including con-
troller, path planning, localization, and perception [6]. The
controller corrects the error between the vehicle position and
the intended trajectory [7]–[12], where real-time localiza-
tion result serves as the controller’s feedback. Algorithms are
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designed to overcome the delay and error of pose estimation,
such as fuzzy logic and fuzzy controller [13]–[15] because
localization delay and error are inevitable.

For a long time, the real-time kinematic (RTK) technique
has provided localization services by centimeter accuracy for
autonomous driving vehicles. However, there are too many
GPS-denied environments, for instance, skyscrapers, tree-
lined roads, and underground garages, which significantly
affect the accuracy and robustness of autonomous vehicle
localization. The same problem also arises in other signal-
dependent methods, such as Bluetooth, ZigBee, WLAN, and
UWB. And these infrastructure-dependent methods are dis-
advantageous in large-scale outdoor scenes for autonomous
vehicles.

Simultaneous localization and mapping (SLAM) [16]–[20]
is another type of method, which realizes map construc-
tion and interframe pose estimation through camera/LiDAR
scan-matching. But due to the low frequency, SLAM is
typically used for map building rather than localization, partic-
ularly for outdoor scenes. Compared with SLAM, map-based
methods estimate vehicle pose by matching the real-time
scan and prebuilt high-definition (HD) map; and these meth-
ods are also called self-localization. However, both SLAM
and map-based methods will inevitably result in an explo-
sion of computing and storage resources as the stage scale
increases. In particular, some problems such as storing and
loading large-scale HD maps, real-time and robust scan–
map registration in sparse or monotonic scenes, hinder the
promotion of self-localization methods in real urban traffic
environments.

Generally speaking, the localization output frequency
should reach 100 Hz or higher, along with centimeter-level
accuracy. Otherwise, the controller cannot be able to drive
smoothly and safely, especially at high speeds. Considering the
problems of existing localization methods and the performance
metrics requirements of autonomous vehicle localization, a
self-localization framework based on software and hardware
co-design is proposed in this study. A comparison between our
self-localization framework and other widely used localization
methods is shown in Table I. Through the improvement of
map construction, scan–map registration, and tightly coupled
HNDT-EKF algorithm, the proposed localization framework
can solve the divergence problem of the registration algorithm
efficiently, especially in dynamic and sparse scenes, namely,
the corner case. To improve the energy efficiency ratio of the
algorithm, we have followed the idea of software and hardware

2168-2267 c© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on December 31,2022 at 16:49:55 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0003-4185-7054
https://orcid.org/0000-0002-5978-5899
https://orcid.org/0000-0002-9422-3058
https://orcid.org/0000-0003-1906-2327
https://orcid.org/0000-0003-1608-8257


This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON CYBERNETICS

TABLE I
OVERVIEW OF CURRENT AUTONOMOUS VEHICLE LOCALIZATION METHODS AND THEIR PROBLEMS.

OUR PROPOSALS AND THEIR ADVANTAGES ARE LISTED IN THE REAR

co-design [21] in our previous work, where the proposed
self-localization framework is deployed on an advanced RISC
machine (ARM) with a field-programmable gate array (FPGA)
computing platform.

The contributions of this article are summarized as follows.
1) Hierarchical Map Building: The GeoHash-based map

partition and encoding method is utilized to achieve
large-scale map division, compression, and fast submap
indexing. Experiments have shown that our method
reduces the storage space occupation by 99.96% and
computing time consumption by 99.70% compared with
the KD-TREE-based nearest neighbor search (NNS) on
point cloud.

2) Homogeneous Method: To improve the accuracy and
robustness of the registration algorithm, a homogeneous
method is applied on both normal distribution transform
(NDT) and iterative closest point (ICP). In addition,
through highly parallel and pipeline design on FPGA,
the latency can be reduced to extremely low.

3) Multisensor Fusion: An NDT-EKF tightly coupled algo-
rithm is proposed to improve the robustness of the
localization framework. In the two-way information
interaction between NDT and EKF, the corresponding
covariance is transmitted along with pose. The uncer-
tainty of the LiDAR localization result is taken into
consideration in EKF, while covariance of state estima-
tion in EKF is added to the loss function of the LiDAR
localization algorithm.

II. RELATED WORK

RTK, a carrier-phase-based differential global naviga-
tion satellite system (GNSS) technique [22], can provide
centimeter-level localization accuracy in outdoor scenes. By
fusing RTK-GPS with an inertial measurement unit (IMU), an
integrated navigation system (INS) can promote the frequency
and smoothness of localization results, which is one of the
most widely used localization methods [23], [24]. Besides
GPS, lots of wireless technologies, including Bluetooth,
ZigBee, WLAN, and UWB [25]–[28], are employed to pose

estimation. To solve the problem that statistical parameters
of noise are not available, Yang et al. [29] proposed dis-
tributed set-membership filtering and verified the effectiveness
in indoor environments.

In recent years, map-based LiDAR localization [30]–[33]
has been developed, which is called upon to solve the problem
of localization drafting caused by signal occlusion. Point cloud
registration is the key LiDAR localization, including point-to-
point (P2P) [34]–[37], point-to-distribution (P2D) [38], [39],
model-based [40], [41], and learning-based methods [42], [43].
However, most of them suffer from high delay for large-scale
scan–map matching. The more serious problem is that the
registration divergence cannot be effectively solved, which
is dangerous for LiDAR localization. Researchers have been
attempting to improve the accuracy, robustness [44]–[46], and
speed up registration methods by CPU or GPU [47], [48].
However, their requirements on the computing power are
too high, and it is difficult for the onboard computing
platform to satisfy. In addition, LOAM [16], proposed by
Zhang and Singh, achieves point cloud registration by extract-
ing features, such as points, lines, and surfaces, which has
been successfully applied to LiDAR SLAM, but it can be
only used for scan–scan matching but not scan–map matching.
Wolcott and Eustice [49], [50] proposed a fast multiresolu-
tion scan matcher using Gaussian mixture maps for vehicle
localization. Lu et al. proposed a learning-based LiDAR
localization system that achieves centimeter-level localization
accuracy by using various deep neural network structures,
which is dependent on high-performance GPU.

Obviously, it seems that high precision and low power
cannot be satisfied simultaneously for a LiDAR localization
method. Therefore, improving the accuracy and robustness
of localization result, and reducing the computing power
simultaneously is the main problem to be solved in this
study. Considering the power limitation of onboard computing
platform, the proposed localization framework can be imple-
mented on an embedded system (ARM + FPGA), whose
power is only 10 W. In addition, limited by the frequency of
the LiDAR itself (5–20 Hz), to achieve high-frequency local-
ization result, the LiDAR localization output shall be passed to
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the sensor fusion algorithm [28], [51]–[55] as an observation.
In fact, this one-way information transmission is postprocess-
ing for LiDAR localization [56], [57], but the performance of
LiDAR localization itself will not be improved. According to
our previous work [58], this article puts forth the NDT-EKF
tightly coupled algorithm dependent on two-way information
interaction, which improves the accuracy and robustness of
both LiDAR localization and multisensor fusion results.

III. PROBLEM STATEMENT

The self-localization refers to a localization system that
uses onboard sensors, such as LiDAR, camera, IMU, wheel-
speed-odometer, etc., to obtain accurate vehicle poses through
real-time environment perception and navigation map match-
ing. The key to the self-localization system is how to achieve
robust and accurate scan–map matching. However, it suffers
from data-intensive and divergence problems. On the one
hand, data-intensive computing prompts the registration algo-
rithm acceleration by high-performance CPU or GPU, whose
power is already too high for a robot or vehicle. On the other
hand, registration divergence directly leads to localization drift,
which is dangerous for autonomous driving vehicles.

Owing to the dynamics and sparseness of the real traf-
fic scenes, registration divergence seems inevitable for all
geometric registration methods. To address these contradic-
tions, a more robust registration method combined with
acceleration on FPGA will be discussed in this article. In
general, a self-localization algorithm flow is illustrated in
Algorithm 1. Our improvements will be concentrated on func-
tion “REG” and “MSF,” which will be discussed detailedly
in Sections IV-B and IV-C. In addition, software and hard-
ware co-design is another essential part, which ensures that the
proposed self-localization framework can run on a low-power
hardware platform.

IV. SELF-LOCALIZATION FRAMEWORK

Three submodules constitute the self-localization frame-
work, including submap update, LiDAR localization, and
sensor fusion. Thanks to the software and hardware co-
design, the LiDAR localization submodule can run at the same
frequency as the LiDAR raw data update (e.g., 10 Hz). It could
reduce latency in the LiDAR localization submodule through
parallel computing. Then, the LiDAR localization result and
raw data from the IMU and wheel speed are used for updating
and propagation respectively in the multisensor fusion sub-
module. The estimated pose by multisensor fusion is the final
localization consequence, which is then delivered to subse-
quent modules, such as path planning and vehicle controller.
In the meanwhile, it serves as the initial pose for the scan–map
registration at the next frame. The flow diagram is shown in
Fig. 1.

A. Hierarchical Map Building and Local Map Update

Saving a large-scale global map and finding a corresponding
submap according to the vehicle current position dynamically
and efficiently is a crucial ability. In general, a global map
can be divided into voxels, and the normal distribution (ND)

Algorithm 1 Self-Localization Algorithm
Input: D: Raw data from sensors; M: Pre-built hierarchical

map; Xinit: Initial pose;
Output: X: Real-time pose estimation
1: while Sensors are all available do
2: X = SLA(D,M, Xinit)
3: end while
4: function SLA(D,M, Xinit)
5: if M and Xinit then
6: Search sub-map Msub from M according to Xinit

7: end if
8: Raw data pre-processing: Dp ← D
9: if Msub and Dp then

10: Llidar = REG(Dp,Msub)
11: Lmsf = MSF(Dp,Llidar)
12: X← Lmsf

13: end if
14: return X
15: end function
16: function REG(Dp,Msub)
17: Real-time LiDAR scan and sub-map matching;
18: return Llidar

19: end function
20: function MSF(Dp,Llidar)
21: Predict current states based on the vehicle kinematics

model and last states;
22: Correct the predicted states by Llidar;
23: return Lmsf

24: end function

parameter can be calculated for valid voxels (point size in
a voxel larger than a threshold). Compared with saving point
cloud directly, the memory occupation of this method is signif-
icantly reduced. Analogously, submap quickly indexing from
numerous unordered voxels is another problem. According
to our previous work [59], to realize fast submap index-
ing, GeoHash, a public domain geocode system, has been
used to encode all valid voxels geographic location into a
binary string. In this study, two different resolution domains
(block and voxel) have been defined; the block is the larger
domain, and a valid block must contain enough valid vox-
els. The multiresolution map is also called a hierarchical
navigation map.

In contrast to the original GeoHash, the encoding method
used in this study is a binary space partitioning method, which
divides the global map into 2-D blocks (X− Y, 24 m× 24 m)
and each of them has a short code as its index that represents
its geographic location. After that, every block is subdivided
into 3-D voxels (X−Y−Z, 1.5 m×1.5 m×1.5 m) and each of
them has a long code that also represents geographic location
of a voxel. Blocks contain all the voxels within its “x − y”
area, regardless of the height, or they can be regarded as cubes
with an infinite height. The global map division, encoding, and
data structure are shown in Fig. 2. The three figures on the left
[Fig. 2(a)–(c)] show partial zooming and division of the global
map from top to bottom. Blocks with the blue mask are invalid,
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Fig. 1. Flow diagram of our self-localization framework. It contains three main submodules, submap update (yellow), LiDAR localization (purple), and
multisensor fusion (green), which are running at different frequencies.

and the remaining blocks are valid. The right middle [Fig. 2(e)]
and right bottom [Fig. 2(f)] figures are valid blocks and voxels
data structures, respectively. The right top [Fig. 2(d)] is an
example of a 4×4 block encoding method and the symbol “∗”
in the front of each binary string represents an identical prefix.
In fact, the hierarchical map, blocks, and voxels are all 3-D
structures, and they are all displayed in 2-D for visualization
purpose.

In the proposed self-localization framework, the submap (as
a target point cloud in the registration) needs to be updated
along with the autonomous vehicle driving (e.g., update every
10 m) to ensure that the scan and map represent the same
area. When the submap update condition is triggered, the
vehicle current position will be encoded into a short code,
which is the same as the block encoding method. From the
discussion above, this code contains location information of
the vehicle, then the nearest M blocks can be found quickly.
In addition, these blocks contain the indices of those valid
voxels (long code), which are delivered to the FPGA module
through direct memory access (DMA). Finally, on FPGA, a
double hash function is utilized to realize a mapping between
the memory address and voxel index, which makes it possible
for the corresponding voxel address to be found quickly and
accurately. As a result of these processes, the statistics and
position information of corresponding voxels contained in a
submap can be found for the subsequent registration algorithm.

Here, the GeoHash-based map division and location encod-
ing method can not only achieve map data compression but
also build a one-to-one correspondence between location and
memory address. Therefore, the double-hash function can be
used for fast submap searching, which makes it possible to
store a city-scale global navigation map and dynamically load
a suitable submap with minimal consumption of time and
computing resources.

B. LiDAR Localization

It is difficult for existing registration algorithms to meet the
requirements of real-time localization in terms of robustness

Fig. 2. Hierarchical map construction diagram. Two different resolutions of
map division exist in it, including blocks and voxels. (a) Global map. (b) Valid
and invalid (with blue mask) blocks. (c) Valid block zooming up. (d) Example
of encoding. (e) Block data structure. (f) Voxel data structure.

and accuracy. The most important reason for the failure of
the registration algorithm is the inhomogeneous data distri-
bution of the scene described by the point cloud. Algorithms
such as generalized ICP (GICP) [44] and NDT [38] take into
account the distribution information of local adjacent points
for registration. But to the best of our knowledge, no geo-
metric algorithm has considered the impact of global point
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cloud distribution in a scene, which is a decisive factor for the
performance of registration algorithms. Therefore, a homo-
geneous method that modifies the gradient and adjusts the
convergence direction in each iteration according to global
point cloud distribution information has been proposed, which
can be applied to both the original ICP and NDT.

1) Homogeneous ICP: Assuming the transformation matrix

X =
[

Rot t
0T 1

]
∈ SE(3)|Rot ∈ SO(3), t ∈ R

3×1 to be esti-

mated aligns source P = {pj|j = 1, 2, . . . , Np} and target
Q = {qj|j = 1, 2, . . . , Nq} point cloud. And the corre-
spondences between P and Q given by NNS are defined
as Q′ = T(X,P ′), where P ′ = {pi|i = 1, 2, . . . , Nk} and
Q′ = {qi|i = 1, 2, . . . , Nk} are subsets of P and Q, respec-
tively. T(X,A) indicate a coordinate transformation processing
on a point cloud A by a transformation matrix X. The objective
function can be written as

X̂k = arg min
Rotk,tk

1

n

n∑
i=1

∥∥pi −
(
Rotk · qi + tk

)∥∥2
. (1)

This optimization problem shown in (1) has a closed-form
solution, which can be solved by a two-step method to obtain
the rotation matrix and the translation vector separately. In
the first step, the rotation matrix R̂ot can be solved by SVD
decomposition. Then in second step, the translation vector t̂
can be easily solved: t̂ = p − R̂ot · q, where p and q are the
centroids of P ′ and Q′, respectively. Apparently, the transla-
tion vector is determined by the centroids of correspondence
given by NNS. However, the problem is that there are too
many mismatching point pairs between real-time LiDAR scan
and submap, which is therefore difficult to converge to the
global optimal solution, especially in sparse scenes. Hence, a
homogeneous method is proposed to eliminate the impact of
the mismatching point pairs by considering the global point
cloud distribution in a scene.

First, each point pj in source and its K nearest neighbors
(KNNs) Qj = {qk|qk ∈ Q, k = 1, 2, . . . , K} in target can be
defined as a new set Gj = {pj,Qj}; then, the mean μj ∈ R

3×1

and covariance matrix Cj ∈ R
3×3 of Qj can be calculated as

μj = 1

K

K∑
k=1

qk (2)

Cj = 1

K

K∑
k=1

(
qk − μj

)(
qk − μj

)T
. (3)

Then, translation gradient �tj generated by each Gj can be
calculated as

�tj = C−0.5
j �pj (4)

where �pj = T(X, pj)−μj. Equation (4) can be illustrated as a
gradient vector generated by a point-to-distribution projection,
and the matrix C−0.5

j is used for gradient vector normalization.
Finally, to ensure the homogeneity of the final translation

gradient vector in all directions after normalization, the total
gradient of translation �tsum in the kth iteration is modified

Algorithm 2 HICP Algorithm
Input: A = {aj|j = 1, 2, · · · , N}: Source point cloud;

B = {bj|j = 1, 2, · · · , N}: Target point cloud; Xinit: Initial
transformation matrix between source and target;

Output: X|(Rot, t): Transformation matrix
1: X← Xinit

2: T(A, X)

3: while not converged do
4: for i = 1 : 1 : N do
5: mi ← NNS(B)

6: end for
7: First step: R̂ot← arg min

∑
i ||T(X, ai)−mi||2

8: for i = 1 : 1 : N do
9: Find nearest K points: Ci ← KNNS(ai,B)

10: μi ← MEAN(Ci), Ci ← COV(Ci)

11: �pi = ai − μi
12: end for
13: Homogeneous matrix: W =∑N

j=1 C−0.5
j

14: Total gradient offset: �t =W−1∑N
j=1 C−0.5

j �pj

15: Second step: t̂ = p− R̂ot · q+�t
16: X← (Rot, t)
17: then T(A, X)

18: end while

by the sum of �tj

�t =W−1
Np∑
j=1

�tj (5)

where W = ∑Np
j=1 C−0.5

j . W−1∑Np
j=1 C−0.5

j �pj in (5) is the
homogeneous matrix, which can effectively reduce oscilla-
tions in the iteration process. The optimal translation in the
kth iteration is

t̂ = p− R̂ot · q+�t. (6)

The complete solving process of homogeneous ICP (HICP)
algorithm is listed as Algorithm 2. Through the above
improvement, the translation gradient produced by each set of
points to the centroid of distribution �pj is corrected by the
local point cloud distribution information C−0.5

j , and to guar-
antee the homogeneity of the summary of all local gradients,
the final translation gradient should be corrected by W−1.

2) Homogeneous NDT: HICP has been proposed above,
but the problems are also obvious. For example, HICP is
still a two-step solution, and only translation gradient has
been changed in the HICP solution process while rotation
is still consistent with the original ICP. Moreover, it needs
to perform numerous times in KNNS and SVD decomposi-
tion for every covariance matrix in each iteration, which can
achieve quick solutions on high-performance CPU, but can-
not be operated on a low-power computing platform such as
FPGA. However, it is enlightening that through the joint action
of local and global point cloud distribution information, the
homogeneous method can speed up the registration algorithm
convergence and obtain more accurate results. It is well known
that NDT [38] is another P2D registration method. In contrast
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to P2P NNS, NDT only needs to find the corresponding voxel
(the number of voxels is much smaller than the point) Vj|(μj,
Cj)) ∈ V = {Vk|(μk, Ck), k = 1, 2, . . . , Nv} for each point
in the source pj according to the initial pose estimation. The
original NDT loss function is

s(X) = −
n∑

j=1

p̃
(
T
(
X, pj

))
(7)

p̃
(
pj

) = −d1 exp

(
−d2

2
�pT

j C−1
j �pj

)
(8)

where d1 and d2 are constants, which can be estimated by
parameter fitting easily. The exponent part of the loss function
is the Mahalanobis distance between point pj and its corre-
sponding ND Vj. It simply sums the “distance” generated by
each P2D projection, but does not take the global data distribu-
tion information into account. As previously shown, local P2D
without a global weighted average cannot solve the divergence
problem owing to the inhomogeneous data distribution of the
global scene. Therefore, the homogeneous NDT (HNDT) loss
function can be reconstructed as follows:

J
(

X̂
)
=

Np∑
j=1

d1 exp

{
−d2

2

(
W−1C−0.5

j �pj

))T(
W−1C−0.5

j �pj

)⎫⎬
⎭

=
Np∑
j=1

d1 exp

{
−d2

2

(
�pj

)T(C0.5
j W2C0.5

j

)−1(
�pj

)}
(9)

where W = ∑Np
j=1 C−0.5

j . According to Newton–Raphson
(NR), at the kth step of NR, the current estimate of the
transformation parameter Xk is updated as

Xk+1 = Xk + [−H]−1g. (10)

Substitute (10) into HNDT loss function (9)∑
j

Hk
j �Xk = −

∑
j

gk
j (11)

where Hk
j and gk

j are the Hessian matrix and Jacobian matrix
generated by point pj and its corresponding voxel Vj in (9) for
the kth iteration, respectively.

From (8) and (9), we can see that the loss functions of
HNDT and original NDT are consistent in mathematical form.
The only difference is that the covariance matrix is weighted
using distribution information in a submap instead of a single
voxel; thus, the solution process and the execution efficiency of
the algorithm will not be affected. In fact, HNDT and HICP are
consistent in terms of their algebraic forms in homogeneous
processing as well. Considering all the covariance matrices in a
submap, W−1 could impact the Hessian and Jacobian matrix
calculation in each iteration, which means that the gradient∑

�pk
J generated by sets of points and distributions will be

more homogeneous in all directions.
Fig. 3 shows the convergence process comparison between

the original ICP, NDT, and our HICP, HNDT with the same
parameters (convergence condition, maximum number of iter-
ations, and initial pose) and scene [real-time LiDAR scan
(source) and submap (target)]. The initial position (x–y–z, xyz)
and orientation (yaw–pitch–roll, ypr) are zero, and the ground

(a)

(b)

Fig. 3. Convergence process comparison of ICP, NDT, and our HICP and
HNDT. (a) Position. (b) Direction.

truth is xyz = [0.5, 0.5, 0] (m) and ypr = [0.1, 0, 0] (rad).
As we can see, compared with the original ICP and NDT,
the gradient direction generated by the homogeneous method
was rectified in each iteration, and the final registration result
was more accurate. In addition, the accuracy of the final reg-
istration result (position and orientation) from HNDT and
HICP is higher than the original methods, which proves the
effectiveness of the homogeneous method. The iteration tra-
jectory of HNDT is smoother than that of NDT owing to the
homogeneous matrix added to the loss function.

C. HNDT-EKF Tightly Coupled Algorithm

Through the improvements of the above two sections
(Sections IV-A and IV-B), a more accurate and robust LiDAR
localization result can be obtained. However, owing to the low
frequency and the measurement error of the LiDAR itself, it is
not sufficient to satisfy the requirement of autonomous vehicle
pose estimation using LiDAR localization alone. Therefore,
multisensor fusion was conducted to provide smoother and
higher-frequency localization results. In this study, the EKF
is used to fuse the LiDAR localization result with the wheel
speed and IMU, in which the IMU and wheel speed are used
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for state prediction, and the LiDAR localization result is used
for state update.

1) Pose and Its Confidence Estimation From Scan–Map
Registration: In the processing observations part, R, the
covariance matrix of observations in EKF, is used to repre-
sent the uncertainty of observation, and accordingly influences
the subsequent weighted calculation. It can be assumed that
when there is a mismatch observation with its uncertainty
substituted into the weighted calculation, the accuracy of the
fusion results will decrease, especially when the inaccurate
observation information is given a low uncertainty. In practi-
cal applications, R is generally set to a constant matrix. In
view of corner cases in real-world driving scenarios, such
as highways, there may be a deviation between the ground
truth and the LiDAR localization, resulting in fluctuations in
the credibility of the result. Therefore, the covariance matrix
of the registration result should also be input into the EKF
synchronously to dynamically affect the weight of the obser-
vations in the fusion calculation. According to the NR method,
when the convergence condition of optimization iteration is
reached, namely, �Xk+1 ≈ �Xk, the inverse of the Hessian
provides an estimated covariance matrix [57]

R = λ

(
∂2 J(X)

∂X2

∣∣∣∣
x=x̂k

)−1

= λ
∑

j

(
HL

j

)−1
(12)

where λ is a proportional parameter and HL
j is the Hessian

matrix generated by a set of points pj and its corresponding
voxel Vj in the last iteration.

2) Initial Pose With Covariance From EKF Prediction:
Equation (12) provides a way to transfer the confidence of pose
estimation by scan–map registration, namely, uncertainty, from
HNDT to EKF. Meanwhile, the predicted pose of the EKF is
required by the LiDAR localization submodule as the initial
pose estimation, namely, X in (7), which is generally obtained
from the latest state prediction of EKF. In this study, both pose
prediction X and its confidence matrix P are passed into the
HNDT, and thus, the loss function J(X) in (9) is changed as
follows:

J(X) =
Np∑
j=1

d1 exp

{
−d2

2

(
�pj

)T(
�
′
j

)−1(
�pj

)}

+ α
(
(X− X0)

TP−1(X− X0)
)

(13)

where �
′
j = C0.5

j W2C0.5
j . The solution of the HNDT-EKF

tightly coupled algorithm is slightly different from HNDT in
terms of the Hessian and Jacobian in (11), which are expressed
as follows:⎛
⎝∑

j

Hk
j + αP−1

⎞
⎠�Xk = −

⎛
⎝∑

j

gk
j + αP−1(X− X0)

⎞
⎠.

(14)

With the proposed two-way communication mechanism,
HNDT and EKF are tightly connected, and they interact
with each other using a covariance matrix. The interaction
between the R matrix and P is shown in Fig. 4. During the

Fig. 4. Schematic of position covariance changes in the matrix P and R.

Fig. 5. Ablation experiment of HNDT-EKF tightly coupled and uncoupled
algorithms.

prediction process, the covariance, namely, uncertainty, grad-
ually increases. When the observation corrects the state, the
uncertainty decreases. The value of matrix R is determined by
the LiDAR localization results, and it reflects the uncertainty
of the LiDAR pose.

To visualize the effect of our proposed HNDT-EKF tightly
coupled algorithm, we added a one-meter error to the “X”
direction of the LiDAR localization result at a certain moment
and observed the localization results of HNDT and EKF in
uncoupled and tightly coupled states, respectively, which are
shown in Fig. 5. It is obvious that due to the effect of (12)
and (13), HNDT and EKF algorithms are more robust to
a sudden disturbance. The amplitude of the tightly coupled
HNDT-EKF is smaller while its convergence speed is faster,
which shows that the proposed algorithm is more robust to
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TABLE II
NDT EXECUTION TIME COMPARISON BETWEEN FPGA

AND CPU WITH PCL LIBRARY

external and internal noise interference. Through experiment,
when α = 10 and λ = 1, the algorithm could achieve the best
result.

V. HARDWARE AND SOFTWARE CO-DESIGN

How can the localization framework be operated on a low-
power hardware? Here, we evaluate the run time of each
component of the NDT (using the PCL library) on the CPU, as
shown in Table II. In a scan–map registration, computing time
is mainly consumed by submap indexing, rigid transformation
calculation, and other processes such as data preprocessing.
All the major components of the NDT-based algorithm are
time consuming, but the reasons are different. For map index-
ing, to effectively store a sparse map, different data structures,
such as KD-Tree and hash map, are used, and redundant index-
ing overhead of these data structures will be added inevitably.
For NDT computation, parallelism is restricted by both the
CPU and memory bandwidth.

The problems are resolved by a software–hardware co-
optimization approach on our computing platform. First, the
map indexing algorithm from KD-TREE is changed to a
hardware-friendly double-hash table. Similarly, the NDT com-
putation module on the FPGA is developed to exploit par-
allelism. In general, map indexing can be accelerated from
98.73 to 1.61 ms with the map indexing algorithm proposed
in Section IV-A, and the NDT computation algorithm is
accelerated from 38.56 to 2.52 ms with CPU-FPGA hetero-
geneous architecture. The proposed localization framework
has been deployed on an ARM-FPGA platform, where the
FPGA performs as a registration algorithm accelerator. The
process of algorithm execution on the FPGA is shown in
Fig. 6. To maximize the efficiency of both the CPU and
FPGA, operations are classified into “point-wise operations”
and “once-for-iteration (OFI) operations.” Point-wise opera-
tions are implemented on an FPGA with high parallelism, and
OFI operations are executed on the CPU due to high clock
frequency and flexibility.

Denoting the point cloud from the LiDAR real-time scan
with C = {cj|j = 1, 2, . . . , N} and the estimated vehicle pose at
the ith iteration with Xi, the NDT registration can be expressed
using the following function:

Xi+1 = NDT(Xi, c1, c2, . . . , cN). (15)

Using the MapReduce methodology, function NDT(·) can
be separated into three subfunctions

NDT(Xi, c1, c2, . . . , cN) = f

⎛
⎝∑

j

g
(
h(Xi), cj

)
⎞
⎠ (16)

where h(·) performs pose-relevant but point-irrelevant oper-
ations, including Euler angle/rotation matrix conversion and
partial derivatives to the vehicle pose; g(·) performs point-
relevant calculation, including voxels’ ND access and deriva-
tive computation for each point; and finally, the f (·) function
synthesizes all derivatives from the whole points and generates
the aligned pose.

Functions h(·) and f (·) are executed only once for every
iteration, and hence, they are OFI operations. Because these
OFI operations are applied to a few small-scale data, such as
a 6-D vector for h(·), but have complex procedures such as
QR decomposition, we deploy OFI operations on the CPU.
In contrast, the function g(·) is a point-wise operation that is
executed for every point in one iteration. Considering that the
point-wise operation g(·) has no cross-dependencies between
the execution on different points, we deploy it on an FPGA
with a complex pipeline exploiting high parallelism.

VI. EXPERIMENTS

In order to verify the effectiveness of the proposed
self-localization framework, experiments are executed on
“Pioneer” autonomous vehicle equipped with a “XAZU3EG”
chip on a hardware computing platform, and three LiDAR
(VLP-32C×1 and VLP-16×2), which is shown in Fig. 1. And
a public dataset (SouthBay dataset1 [60]) is also utilized here,
which could be divided into two main scenarios: 1) down-
town and 2) highway. Owing to the lack of notable objects,
the highway scene is the typical corner case for all LiDAR
localization systems, and it will be ideal to validate the effec-
tiveness of our improvements in Section IV. Therefore, two
subsets (SanJoseDownTown and HighWay237) of the Apollo
SouthBay dataset were used in this study.

To quantitatively analyze the performance of the self-
localization algorithm, we define four metrics, including rota-
tion error, translation error, latency, and localization loss rate.
The rotation and translation error are assessed by the root-
mean-square error (RMSE), where the rotation error compares
the angular difference between the ground-truth rotation, and
the translation error compares the position difference between
the ground-truth position. The latency indicates the calcula-
tion time consumption. The location loss rate refers to the
difference between the pose estimation and ground-truth pose
exceeding a certain threshold, namely, mismatching between
real-time scan and submap. The reason for this metric being
specifically defined is that different from other kinds of local-
ization methods, for all the self-localization system, once it
happens to location loss, it is practically impossible to find the
correct pose again, namely, kidnapped robot problem. Thus, a
qualified self-localization system needs to maintain stably all
the time in a large-scale urban environment test.

1https://apollo.auto/southbay.html
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Fig. 6. CPU-FPGA heterogeneous computing system and data flow. It is adopted to accelerate the registration submodule, which contains the HNDT
registration (red and green), auxiliary modules (blue), and data pack module (yellow).

Metrics are defined as follows.
1) Rotation Error (rad): ER =

arccos ((trace(RotGRotT)−1)/2).
2) Translation Error (m): ET = ||t− tG ||.
3) Latency (ms): Lt = tout − tin.
4) Location loss rate (%): λ = Nmis/Nsum

where RotG and tG are ground-truth rotation and transla-
tion, respectively. tin refers to the timestamp of real-time scan
received and tout is the timestamp of the calculation result
published. Nmis indicates the number of mismatching frames
while Nsum is the total number of tested frames. The “mis-
matching” means the registration failure where ET > 3.0 or
ER > 0.7.

A. Global Map Encoding and Local Map Update

In general, the global navigation map required by the
autonomous vehicle localization framework should cover
the entire drivable area of a city, even a country. Assuming
that the data volume of the map is proportional to its area, a
city (e.g., 10 km × 10 km) needs about 1.18 TB to store the
point cloud navigation map, whereas only 0.496-GB storage
is required by our hierarchical map.

As mentioned above, directly using the global map as the
target point cloud will waste lots of computing resources
and lead to registration divergence for the large difference
between scan and map. Therefore, a suitable submap needs
to be updated along with vehicle motion, and thus, quickly
indexing to the corresponding submap according to the cur-
rent vehicle location in a large-scale global map is the basis
of real-time scan–map registration.

Through GeoHash encoding and double-hash mapping, effi-
cient submap updating can be realized with rare latency and
performance comparison with other methods, as shown in
Table III, where different “element” means different minimum
data units, “point cloud” means storing points directly, and
“voxel” means storing statistics information of a voxel, whose
resolution is 1.5 m×1.5 m×1.5 m. Finally, “ours” is a hierar-
chical map, in which valid blocks and voxels are included. In
addition, the global map is a 1.3 km×1.1 km domain, shown
on the top left in Fig. 2(a). “Method” in Table III means the

TABLE III
COMPARISON OF DIFFERENT GLOBAL MAP STORING AND

LOCAL MAP INDEXING METHOD

submap searching method. Different map elements determine
their most efficient searching methods. It can be seen from
the table that the time complexity of our hierarchical map is
constant, which means that the submap searching time will
not increase along with the scale of the global map increas-
ing, and only the memory occupation for map storage will
increase slightly.

B. LiDAR Localization

For the LiDAR localization submodule, experiments are
implemented on SanJoseDownTown and HighWay237 of the
Apollo SouthBay dataset, in which the mapping data is used
for hierarchical map construction and the test data is used
for localization performance evaluation. We projected all the
frames into the world coordinate system according to their
ground truth pose to generate a global navigation map. The
submap is KNN (here K = 50 000) of the global map accord-
ing to each frame’s initial position. In order to expedite the
execution and improve the accuracy of all the algorithms, we
filtered the ground points for both the source and target point
clouds.

To verify the performance of the HNDT algorithm based
on FPGA acceleration in Sections IV-B and V, it is com-
pared with several other LiDAR localization methods, such as
NDT-OMP [47], GICP-OMP [47], and VGICP-CUDA [48].
These methods are designed for accelerating LiDAR local-
ization, and they are widely used for LiDAR localization on
autonomous driving vehicles. The experimental results are
shown in Table IV, where “DOW” and “HIG” represent the
result in downtown and highway, respectively. Both NDT and
HNDT algorithms based on FPGA acceleration, as shown in
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TABLE IV
COMPARISON OF DIFFERENT REGISTRATION ACCELERATION METHODS

TABLE V
COMPLETE COMPARISON ON THE APOLLO SOUTHBAY DATASET

the table, reach the maximum frame rate (20 Hz), which is the
same performance as VGICP accelerated by GPU, whereas
the power of our computing platform is only one-twentieth
of a GPU. In addition, the performance of the HNDT in
terms of accuracy and robustness is the best one. Compared
with downtown, the scenes of highways are sparser, and thus,
the performance of all algorithms will decrease. However,
HNDT exhibits the least performance degradation among all
the algorithms, and there is no mismatch (divergence) in all
the experiments, which shows that our homogeneous method
can effectively improve the robustness and accuracy of the
registration algorithm in sparse scenes. The complete experi-
mental results on the Apollo SouthBay dataset are shown in
Table V, in which the evaluation metrics are consistent with
the original paper [42].

In the Apollo SouthBay dataset, the translation error
between the initial pose and ground truth is large enough, but
the rotation error is too small, which makes the rotation error
in the estimated pose of the registration algorithm is almost
negligible. In other words, even if only the translation part is
calculated in the LiDAR localization submodule and the rota-
tion part remains the initial value, quite good pose estimation
results can be obtained. Therefore, in order to better demon-
strate the improvement of the proposed algorithms, we use

different initial poses for LiDAR localization estimation. Here,
several classic and efficient registration algorithms, including
ICP [34], AA-ICP [46], and CPD [40], are introduced for com-
parison. Note that there is no available acceleration method
for the three algorithms mentioned above, so experiments are
implemented with C++ and tested offline on a PC with an
Intel Core i7 2.9-GHz CPU.

The experimental results are presented in Fig. 7. We can
note that the accuracy of the proposed HICP and HNDT
is higher than those of other algorithms, such as GICP and
AAICP, under different translation and rotation noise. Fig. 7(c)
shows that there are no outliers (registration failure or diver-
gence) in HNDT and HICP, which demonstrates that our
proposed homogeneous method in (5) and (9) can improve
the robustness of the registration algorithm, especially with
inaccurate initial pose estimation. It is not difficult to interpret
that local point cloud distribution information could supply a
more accurate gradient compared with the P2P method, and
the entirety of the distribution information [proposed in (5)]
makes the iteration step more homogeneous in all directions.
Moreover, the accuracy of HICP is slightly higher than that
of HNDT, as shown in Fig. 7(a) and (b). Because the local
distribution is generated by KNNS in HICP, but for HNDT, it
is generated by voxel division, which can be considered as an
approximation of KNN. Finally, from the perspective of time
consumption, HNDT consumes lesser time compared with all
other algorithms, whereas HICP takes longer than the origi-
nal ICP and AAICP but shorter than the GICP. To sum up,
HICP could also obtain the best result in terms of accuracy
and robustness on the two datasets, but the time consumption
is intolerable, whereas HNDT has comparable accuracy and
robustness with the shortest time consumption.

C. HNDT-EKF Tightly Coupled Localization

The Apollo SouthBay dataset does not provide the vehi-
cle kinematics model and other necessary data such as wheel
speed and IMU data, so it is impossible to implement the
HNDT-EKF tightly coupled algorithm on it; thus, the com-
plete localization framework test is performed on our Pioneer
autonomous driving vehicle in real world scene. The ground
truth of the vehicle pose was generated by a high-precision
INS (Novatel Pwrpak7, IMU-ISA-100C).

We conducted tests on the Pioneer autonomous vehicle in
urban and highway scenes to verify the improvement of our
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(a)

(b)

(c)

Fig. 7. Rotation and translation error under different noise. Each two-tuple
of the X-label in figures represent translation (unit: m) and rotation (unit: rad)
noise, respectively. (a) Translation error. (b) Rotation error. (c) Location loss
rate.

self-localization framework using the HNDT-EKF tightly cou-
pled algorithm. The latitudinal and longitudinal errors of the
different methods resulting from localization are shown in
Fig. 8, in which the latitude and longitude errors are between
vehicle position estimated by the proposed self-localization
framework and INS. During the experiment, the vehicle speed

(a)

(b)

Fig. 8. (a) Latitudinal and (b) longitudinal errors during localization.

is about 40 km/h. The first 2000 frames of the route con-
sist of an urban road with buildings and trees on both sides.
Proceeding from the 2000th frame, the vehicle enters a high-
way, where only light poles and low fences can provide
structure information for registration. Thus, there is some jitter
in the localization result. But the accuracy of the HNDT-EKF
remains within 0.1 m.

Another set of ablation experiments is conducted to com-
pare HNDT-EKF tightly coupled and uncoupled algorithms.
There are two important metrics, including maximum error
and jump, used to describe smoothness. Assuming the trans-
lation error of the previous frame is −5 cm and the next frame
is 5 cm, then the jump step is 10 cm. The results are shown
in Fig. 9. The proposed tightly coupled HNDT-EKF algorithm
effectively reduces the maximum error and the maximum jump
compared with uncoupled algorithms. Benefitting from (12)
and (13), the proposed HNDT-EKF tight-coupled algorithm is
more robust with higher precision.

VII. CONCLUSION

This article proposes a self-localization framework to solve
the localization drift problem caused by poor GPS signal for
autonomous vehicles in urban environments. It can achieve
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(a)

(b)

Fig. 9. Statistics information of experiment results on highway and urban
scenes. (a) Translation. (b) Rotation.

high-precision and robust positioning results based on onboard
sensors and a hierarchical map, which makes underground
parking lots, urban highway, and other GPS-denied areas into
drivable areas. Different from other map-based localization
methods that relying on a high-performance computing plat-
form to accelerate the scan–map registration, the proposed
self-localization framework is implemented on a low-power
ARM+FPGA platform.

We have improved the performance of the framework
from three aspects: 1) global map multiresolution encod-
ing; 2) LiDAR localization; and 3) multisensor fusion, and
experiments on different datasets proved the effectiveness of
our proposed algorithm. Through software and hardware co-
design, the parallelism of the framework is greatly improved,
so that the latency of the framework is significantly reduced,
and the power consumption is only one-tenth that of other
acceleration algorithms, which makes it more friendly to
autonomous driving vehicles in large-scale urban scenes.

REFERENCES

[1] N.-N. Zheng et al., “Hybrid-augmented intelligence: Collaboration
and cognition,” Front. Inf. Technol. Electron. Eng., vol. 18, no. 2,
pp. 153–179, 2017.

[2] F.-Y. Wang et al., “China’s 12-year quest of autonomous vehicular intel-
ligence: The intelligent vehicles future challenge program,” IEEE Intell.
Transp. Syst. Mag., vol. 13, no. 2, pp. 6–19, Mar. 2021.

[3] L. Li, N.-N. Zheng, and F.-Y. Wang, “On the crossroad of artificial
intelligence: A revisit to Alan Turing and Norbert Wiener,” IEEE Trans.
Cybern., vol. 49, no. 10, pp. 3618–3626, Oct. 2019.

[4] S. Chen, Z. Jian, Y. Huang, Y. Chen, Z. Zhou, and N. Zheng,
“Autonomous driving: Cognitive construction and situation understand-
ing,” Sci. China Inf. Sci., vol. 62, no. 8, pp. 1–27, 2019.

[5] S. Chen, S. Zhang, J. Shang, B. Chen, and N. Zheng, “Brain-inspired
cognitive model with attention for self-driving cars,” IEEE Trans. Cogn.
Develop. Syst., vol. 11, no. 1, pp. 13–25, Mar. 2019.

[6] J. Roche, V. De-Silva, and A. Kondoz, “A multimodal perception-driven
self evolving autonomous ground vehicle,” IEEE Trans. Cybern., early
access, Oct. 8, 2021, doi: 10.1109/TCYB.2021.3113804.

[7] M. Deng, Z. Li, Y. Kang, C. L. P. Chen, and X. Chu, “A learning-
based hierarchical control scheme for an exoskeleton robot in human–
robot cooperative manipulation,” IEEE Trans. Cybern., vol. 50, no. 1,
pp. 112–125, Jan. 2020.

[8] R.-E. Precup, T.-A. Teban, A. Albu, A.-B. Borlea, I. A. Zamfirache,
and E. M. Petriu, “Evolving fuzzy models for prosthetic hand
myoelectric-based control,” IEEE Trans. Instrum. Meas., vol. 69, no. 7,
pp. 4625–4636, Jul. 2020.

[9] S. Feng and C. L. P. Chen, “Fuzzy broad learning system: A novel neuro-
fuzzy model for regression and classification,” IEEE Trans. Cybern.,
vol. 50, no. 2, pp. 414–424, Feb. 2020.

[10] A. Turnip and J. H. Panggabean, “Hybrid controller design based
magneto-rheological damper lookup table for quarter car suspension,”
Int. J. Artif. Intell., vol. 18, no. 1, pp. 193–206, 2020.

[11] T. Haidegger, L. Kovács, R.-E. Precup, S. Preitl, B. Benyó, and
Z. Benyó, “Cascade control for telerobotic systems serving space
medicine,” IFAC Proc. Vol., vol. 44, no. 1, pp. 3759–3764, 2011.

[12] C. Pozna, F. Troester, R.-E. Precup, J. K. Tar, and S. Preitl, “On the
design of an obstacle avoiding trajectory: Method and simulation,” Math.
Comput. Simul., vol. 79, no. 7, pp. 2211–2226, 2009.

[13] U. Yuhana, N. Z. Fanani, E. M. Yuniarno, S. Rochimah, L. T. Koczy, and
M. H. Purnomo, “Combining fuzzy signature and rough sets approach
for predicting the minimum passing level of competency achievement,”
Int. J. Artif. Intell., vol. 18, no. 1, pp. 237–249, 2020.

[14] Z. Preitl, R.-E. Precup, J. K. Tar, and M. Takács, “Use of multi-
parametric quadratic programming in fuzzy control systems,” Acta
Polytechnica Hungarica, vol. 3, no. 3, pp. 29–43, 2006.

[15] H. Huang, C. Yang, and C. L. P. Chen, “Optimal robot–environment
interaction under broad fuzzy neural adaptive control,” IEEE Trans.
Cybern., vol. 51, no. 7, pp. 3824–3835, Jul. 2021.

[16] J. Zhang and S. Singh, “LOAM: Lidar odometry and mapping in real-
time,” in Proc. Robot. Sci. Syst., vol. 2, 2014, pp. 1–9.

[17] T. Botterill, S. Mills, and R. Green, “Correcting scale drift by object
recognition in single-camera SLAM,” IEEE Trans. Cybern., vol. 43,
no. 6, pp. 1767–1780, Dec. 2013.

[18] M. U. M. Bhutta, M. Kuse, R. Fan, Y. Liu, and M. Liu, “Loop-box:
Multiagent direct SLAM triggered by single loop closure for large-
scale mapping,” IEEE Trans. Cybern., early access, Nov. 6, 2020,
doi: 10.1109/TCYB.2020.3027307.

[19] W. Hess, D. Kohler, H. Rapp, and D. Andor, “Real-time loop closure in
2D LIDAR SLAM,” in Proc. IEEE Int. Conf. Robot. Autom., Stockholm,
Sweden, 2016, pp. 1271–1278.

[20] B. Guan, J. Zhao, Z. Li, F. Sun, and F. Fraundorfer, “Relative pose
estimation with a single affine correspondence,” IEEE Trans. Cybern.,
early access, Apr. 28, 2021, doi: 10.1109/TCYB.2021.3069806.

[21] S. Chen, Y. Chen, S. Zhang, and N. Zheng, “A novel integrated sim-
ulation and testing platform for self-driving cars with hardware in the
loop,” IEEE Trans. Intell. Veh., vol. 4, no. 3, pp. 425–436, Sep. 2019.

[22] P. D. Groves, “Principles of GNSS, inertial, and multisensor integrated
navigation systems, 2nd edition [Book review],” IEEE Aerosp. Electron.
Syst. Mag., vol. 30, no. 2, pp. 26–27, Feb. 2015.

[23] W. Wen, G. Zhang, and L.-T. Hsu, “Correcting NLOS by 3D LiDAR and
building height to improve GNSS single point positioning,” Navigation,
vol. 66, no. 4, pp. 705–718, 2019.

[24] K.-H. Lam, C.-C. Cheung, and W.-C. Lee, “RSSI-based LoRa localiza-
tion systems for large-scale indoor and outdoor environments,” IEEE
Trans. Veh. Technol., vol. 68, no. 12, pp. 11778–11791, Dec. 2019.

[25] K. Guo, X. Li, and L. Xie, “Ultra-wideband and odometry-based coop-
erative relative localization with application to multi-UAV formation
control,” IEEE Trans. Cybern., vol. 50, no. 6, pp. 2590–2603, Jun. 2019.

[26] J. Wang, N. Tan, J. Luo, and S. J. Pan, “WOLoc: WiFi-only out-
door localization using crowdsensed hotspot labels,” in Proc. IEEE
INFOCOM Conf. Comput. Commun., Atlanta, GA, USA, 2017, pp. 1–9.

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on December 31,2022 at 16:49:55 UTC from IEEE Xplore.  Restrictions apply. 

http://dx.doi.org/10.1109/TCYB.2021.3113804
http://dx.doi.org/10.1109/TCYB.2020.3027307
http://dx.doi.org/10.1109/TCYB.2021.3069806


This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

XIA et al.: ONBOARD SENSORS-BASED SELF-LOCALIZATION 13

[27] W. Kim, J. Park, J. Yoo, H. J. Kim, and C. G. Park, “Target localization
using ensemble support vector regression in wireless sensor networks,”
IEEE Trans. Cybern., vol. 43, no. 4, pp. 1189–1198, Aug. 2013.

[28] L. Yin, Q. Ni, and Z. Deng, “Intelligent multisensor cooperative local-
ization under cooperative redundancy validation,” IEEE Trans. Cybern.,
vol. 51, no. 4, pp. 2188–2200, Apr. 2021.

[29] B. Yang, Q. Qiu, Q.-L. Han, and F. Yang, “Received signal strength
indicator-based indoor localization using distributed set-membership
filtering,” IEEE Trans. Cybern., vol. 52, no. 2, pp. 727–737, Feb. 2022.

[30] I. A. Barsan, S. Wang, A. Pokrovsky, and R. Urtasun, “Learning to
localize using a LiDAR intensity map,” 2020, arXiv:2012.10902.

[31] K. Yoneda, H. Tehrani, T. Ogawa, N. Hukuyama, and S. Mita, “Lidar
scan feature for localization with highly precise 3-D map,” in Proc.
IEEE Intell. Veh. Symp., Dearborn, MI, USA, 2014, pp. 1345–1350.

[32] L. Wang, Y. Zhang, and J. Wang, “Map-based localization method for
autonomous vehicles using 3D-LiDAR,” IFAC-PapersOnLine, vol. 50,
no. 1, pp. 276–281, 2017.

[33] P. Egger, P. V. K. Borges, G. Catt, A. Pfrunder, R. Siegwart, and
R. Dubé, “PoseMap: Lifelong, multi-environment 3D LiDAR localiza-
tion,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., Madrid, Spain,
2018, pp. 3430–3437.

[34] P. J. Besl and N. D. McKay, “Method for registration of 3-D
shapes,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 14, no. 2, 1992,
pp. 239–256, doi: 10.1109/34.121791.

[35] C. Dorai, G. Wang, A. K. Jain, and C. Mercer, “Registration and integra-
tion of multiple object views for 3D model construction,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 20, no. 1, pp. 83–89, Jan. 1998.

[36] R. Benjemaa and F. Schmitt, “Fast global registration of 3D sampled
surfaces using a multi-z-buffer technique,” Image Vis. Comput., vol. 17,
no. 2, pp. 113–123, 1999.

[37] Y. Yang, D. Fan, S. Du, M. Wang, B. Chen, and Y. Gao, “Point set
registration with similarity and affine transformations based on bidirec-
tional KMPE loss,” IEEE Trans. Cybern., vol. 51, no. 3, pp. 1678–1689,
Mar. 2021.

[38] M. Magnusson, “The three-dimensional normal-distributions
transform—An efficient representation for registration, surface
analysis, and loop detection,” Ph.D. dissertation, Dept. Rebot. Autom.
Process Control, Örebro universitet, Örebro, Sweden, 2009.

[39] L. Jun, L. Wei, D. Donglai, and S. Qiang, “Point cloud registration
algorithm based on NDT with variable size voxel,” in Proc. 34th Chin.
Control Conf., Hangzhou, China, 2015, pp. 3707–3712.

[40] A. Myronenko and X. Song, “Point set registration: Coherent point drift,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 32, no. 12, pp. 2262–2275,
Dec. 2010.

[41] L. Li, M. Yang, C. Wang, and B. Wang, “Robust point set registration
using signature quadratic form distance,” IEEE Trans. Cybern., vol. 50,
no. 5, pp. 2097–2109, May 2020.

[42] W. Lu, G. Wan, Y. Zhou, X. Fu, P. Yuan, and S. Song, “DeepVCP: An
end-to-end deep neural network for point cloud registration,” in Proc.
IEEE Int. Conf. Comput. Vis., Seoul, South Korea, 2019, pp. 12–21.

[43] Y. Wang and J. M. Solomon, “Deep closest point: Learning represen-
tations for point cloud registration,” in Proc. IEEE Int. Conf. Comput.
Vis., Seoul, South Korea, 2019, pp. 3523–3532.

[44] A. Segal, D. Haehnel, and S. Thrun, “Generalized-ICP,” in Proc. Robot.
Sci. Syst., vol. 2. Seattle, WA, USA, 2009, p. 435.

[45] T. Stoyanov, M. Magnusson, H. Andreasson, and A. J. Lilienthal, “Fast
and accurate scan registration through minimization of the distance
between compact 3D NDT representations,” Int. J. Robot. Res., vol. 31,
no. 12, pp. 1377–1393, 2012.

[46] A. L. Pavlov, G. W. Ovchinnikov, D. Y. Derbyshev, D. Tsetserukou,
and I. V. Oseledets, “AA-ICP: Iterative closest point with Anderson
acceleration,” in Proc. IEEE Int. Conf. Robot. Autom., Brisbane, QLD,
Australia, 2018, pp. 1–6.

[47] K. Koide, J. Miura, and E. Menegatti, “A portable three-dimensional
LiDAR-based system for long-term and wide-area people behav-
ior measurement,” Int. J. Adv. Robot. Syst., vol. 16, no. 2, 2019,
Art. no. 1729881419841532.

[48] K. Koide, M. Yokozuka, S. Oishi, and A. Banno, “Voxelized
GICP for fast and accurate 3D point cloud registration,” in Proc.
IEEE Intern. Conf. Robot. Autom. (ICRA) 2021, pp. 11054–11059,
doi: 10.1109/ICRA48506.2021.9560835

[49] R. W. Wolcott and R. M. Eustice, “Robust LIDAR localization using
multiresolution Gaussian mixture maps for autonomous driving,” Int. J.
Robot. Res., vol. 36, no. 3, pp. 292–319, 2017.

[50] R. W. Wolcott and R. M. Eustice, “Fast LIDAR localization using mul-
tiresolution Gaussian mixture maps,” in Proc. IEEE Int. Conf. Robot.
Autom., Seattle, WA, USA, 2015, pp. 2814–2821.

[51] N. Pous, D. Gingras, and D. Gruyer, “Intelligent vehicle embedded
sensors fault detection and isolation using analytical redundancy and
nonlinear transformations,” J. Control Sci. Eng., vol. 2017, Jan. 2017,
Art. no. 1763934.

[52] F. Gustafsson et al., “Particle filters for positioning, navigation, and
tracking,” IEEE Trans. Signal Process., vol. 50, no. 2, pp. 425–437,
Feb. 2002.

[53] V. Indelman, S. Williams, M. Kaess, and F. Dellaert, “Information fusion
in navigation systems via factor graph based incremental smoothing,”
Robot. Atuon. Syst., vol. 61, no. 8, pp. 721–738, 2013.

[54] W. Wen, T. Pfeifer, X. Bai, and L.-T. Hsu, “It is time for factor graph
optimization for GNSS/INS integration: Comparison between FGO and
EKF,” 2020, arXiv:2004.10572.

[55] A. Assa and F. Janabi-Sharifi, “A robust vision-based sensor fusion
approach for real-time pose estimation,” IEEE Trans. Cybern., vol. 44,
no. 2, pp. 217–227, Feb. 2014.

[56] J. Li, J. Bao, and Y. Yu, “Study on localization for rescue robots based
on NDT scan matching,” in Proc. IEEE Int. Inf. Autom., Harbin, China,
2010, pp. 1908–1912.

[57] N. Akai et al., “Autonomous driving based on accurate localization using
multilayer LiDAR and dead reckoning,” in Proc. IEEE Intell. Transp.
Syst., Yokohama, Japan, 2017, pp. 1–6.

[58] Y. Shen, C. Xia, Z. Jian, S. Chen, and N. Zheng, “An integrated localiza-
tion system with fault detection, isolation and recovery for autonomous
vehicles,” in Proc. IEEE Intell. Transp. Syst. Conf., Indianapolis, IN,
USA, 2021, pp. 84–91.

[59] Y. Yang, C. Xia, X. Deng, Y. Shen, S. Chen, and N. Zheng, “HeLPS:
Heterogeneous LiDAR-based positioning system for autonomous vehi-
cle,” in Proc. IEEE 46th Annu. Conf. Ind. Electron. Soc., Singapore,
2020, pp. 618–625.

[60] W. Lu, Y. Zhou, G. Wan, S. Hou, and S. Song, “L3-net: Towards learning
based LiDAR localization for autonomous driving,” in Proc. IEEE Int.
Conf. Comput. Vis. Pattern Recognit., Long Beach, CA, USA, 2019,
pp. 6389–6398.

[61] W. Ding, S. Hou, H. Gao, G. Wan, and S. Song, “LiDAR inertial
odometry aided robust LiDAR localization system in changing city
scenes,” in Proc. IEEE Int. Conf. Robot. Autom., Paris, France, 2020,
pp. 4322–4328.

Chao Xia received the B.E. degree in electronic
and information engineering from Xi’an Jiaotong
University, Xi’an, China, in 2017, where he is cur-
rently pursuing the Ph.D. degree with the Institute
of Artificial Intelligence and Robotics.

His research interests mainly include autonomous
vehicle localization, point cloud registration and
semantic segmentation, and deep learning.

Yanqing Shen received the B.E. degree in electronic
and information engineering from Xi’an Jiaotong
University, Xi’an, China, in 2019, where she is cur-
rently pursuing the Ph.D. degree with the Institute
of Artificial Intelligence and Robotics.

Her research interests mainly include autonomous
vehicle localization, semantic visual SLAM, and
cognitive understanding.

Yuedong Yang received the B.E. degree in elec-
tronic and information engineering from Xi’an
Jiaotong University, Xi’an, China, in 2017, where
he is currently pursuing the Ph.D. degree with the
Institute of Artificial Intelligence and Robotics.

His research interests mainly include edge com-
putation and hardware–software co-design.

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on December 31,2022 at 16:49:55 UTC from IEEE Xplore.  Restrictions apply. 

https://doi.org/10.1109/34.121791
https://doi.org/10.1109/ICRA48506.2021.9560835


This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE TRANSACTIONS ON CYBERNETICS

Xiaodong Deng is currently pursuing the B.E.
degree in electronic and information engineering
with Xi’an Jiaotong University, Xi’an, China.

His research interests mainly include autonomous
driving, computer vision, and deep learning.

Shitao Chen (Member, IEEE) received the B.E.
and Ph.D. degrees in electronic and information
engineering from Xi’an Jiaotong University, Xi’an,
China, in 2015 and 2021, respectively.

He is currently an Assistant Professor with
Xi’an Jiaotong University. He is the Executive
Vice President of Shunan Academy of Artificial
Intelligence, Ningbo, China. He has published over
30 papers in various journals and conference pro-
ceedings, while many of them won the best paper
awards in summits. His current research interests

include computer vision, artificial intelligence, robotics, and autonomous
vehicle.

Dr. Chen serves as the Editor or a Reviewer for IEEE TRANSACTIONS

ON INTELLIGENT TRANSPORTATION SYSTEMS, IEEE TRANSACTIONS ON

INTELLIGENT VEHICLES, IEEE TRANSACTIONS ON COGNITIVE AND

DEVELOPMENTAL SYSTEMS, ICRA, and other well-known international
academic journals and conferences.

Jingmin Xin (Senior Member, IEEE) received the
B.E. degree in information and control engineering
from Xi’an Jiaotong University, Xi’an, China, in
1988, and the M.S. and Ph.D. degrees in electrical
engineering from Keio University, Yokohama,
Japan, in 1993 and 1996, respectively.

From 1988 to 1990, he was with the
Tenth Institute of Ministry of Posts and
Telecommunications of China, Xi’an. He was
with Communications Research Laboratory, Tokyo,
Japan, as an Invited Research Fellow of the

Telecommunications Advancement Organization of Japan from 1996 to
1997 and as a Postdoctoral Fellow with the Japan Science and Technology
Corporation, Saitama, Japan, from 1997 to 1999. He was also a Guest
(Senior) Researcher with YRP Mobile Telecommunications Key Technology
Research Laboratories Company Ltd., Yokosuka, Japan, from 1999 to 2001.
From 2002 to 2007, he was with Fujitsu Laboratories Ltd., Yokosuka. Since
2007, he has been a Professor with Xi’an Jiaotong University. His research
interests are in the areas of adaptive filtering, statistical and array signal
processing, system identification, and pattern recognition.

Nanning Zheng (Fellow, IEEE) received the
Graduate degree in electrical engineering and the
M.S. degree in information and control engineer-
ing from Xi’an Jiaotong University, Xi’an, China, in
1975 and 1981, respectively, and the Ph.D. degree
in electrical engineering from Keio University,
Yokohama, Japan, in 1985.

He is a Distinguished Professor with the Institute
of Artificial Intelligence and Robotics, Xi’an
Jiaotong University, where he is the Founder of the
Institute of Artificial Intelligence and Robotics and is

currently a Professor and the Director of the Institute of Artificial Intelligence
and Robotics. His research interests include computer vision, pattern recog-
nition, autonomous vehicle, and brain-inspired computing.

Prof. Zheng became a member of the Chinese Academy of Engineering in
1999. He is a Council Member of the International Association for Pattern
Recognition.

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on December 31,2022 at 16:49:55 UTC from IEEE Xplore.  Restrictions apply. 


