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Parallel testing of vehicle intelligence  
via virtual-real interaction
Li Li1*, Xiao Wang2,3*, Kunfeng Wang2,3*, Yilun Lin2,3,4*, Jingmin Xin5*, Long Chen6,7, Linhai Xu5, 
Bin Tian2,7, Yunfeng Ai4,7, Jian Wang7,8, Dongpu Cao7,8,9, Yuehu Liu5, Chenghong Wang10,11, 
Nanning Zheng5†, Fei-Yue Wang2†

A self-driven closed-loop parallel testing system implements more challenging tests to accelerate evaluation and 
development of autonomous vehicles.

Although researchers and automobile man
ufacturers have built several proving grounds 
(1) and testing datasets (2) dedicated to auto
nomous driving, tests for intelligent vehicles 
remain timeconsuming, inefficient, and some
times dangerous for people who use the same 
roads.

According to Turing (3), a system could 
be said to be intelligent enough for special 
kind of tasks if and only if it could finish all 
the possible tasks of its kind. Therefore, we 
can begin to achieve safe and reliable artifi
cial intelligence (AI) systems if and only if 
the tests have clear definitions of tasks and 
efficient methods to generate abundant data for 
tests. As a result, appropriate AI testing meth
ods should be taskdriven and datacentric.

Many existing test systems for autonomous 
vehicles do not provide a systematic, standard, 
and practical way to describe the driving tasks 
so that we can equivalently translate, modify, 
and reuse the tasks of both field and simula
tion tests (4–6). We can neither sufficiently 
sample the driving scenarios that we may en
counter in practice nor learn to generate the 
challenging testing tasks to promote the ca
pability of autonomous vehicles.

Many autonomous vehicle companies re
sort to simulationbased tests to save time 
and money. The simulationbased testing 
system can handle thousands of quantitative 
judgments in a short time and be more ob
jective than a human expert. However, such 
a system relies heavily on human knowledge 
to properly design the scenarios. Some sce

narios tested by simulations should also be 
reevaluated and verified in field tests to val
idate the effectiveness of the simulation sys
tems and the reliability of the hardware of 
autonomous vehicles.

Therefore, a humaninloop simulation 
system is useful to evaluate the performance 
of vehicles (5–7) efficiently. A human expert 
can first vaguely define the tasks and per
form qualitative judgments, and then the 
simulationbased system can make more pre
cise task definitions, generating more tests, 
and receive feedback from humans to vali
date the test results.

We built a closedloop testing system 
that focuses on implementing more chal
lenging tests to accelerate the building and 
testing of autonomous vehicles. As shown 
in the system overview flowchart of Fig. 1, 
there are three parts in this system.

The first part establishes a set of seman
tic definitions to characterize the tasks that 
should be finished by autonomous vehicles 
(5, 6). Each semantic entity of the tested driv
ing scenario will be retrieved and reproduced 
in the semantic task space. The semantic task 
atoms for each entity will be labeled, with a 
special focus on the spatiotemporal range of 
each task atom. The merit of semantic anal
ysis lies in its ability to capture the abstract 
attributes of a special task and discard the 
unnecessary details. The complexity of the 
abstracted semantic tasks also provides har
monized classification levels that describe the 
capabilities of autonomous vehicles.

We can rearrange the spatiotemporal 
ranges of task rectangles to sample different 
driving scenarios that belong to the same 
category so as to ensure that autonomous 
vehicles could work for these driving sce
narios. Adding more semantic task atoms 
over time permits us to increase the com
plexity of tests and expand the range of sce
narios in which autonomous vehicles can be 
tested.

The second part implements the tests for 
the specified task instances. The field test 
and simulation test are tightly integrated to 
ensure test safety and accelerate testing speed. 
Given the tight integration, we call this a 
“parallel testing system.” Unlike many sys
tems in which the behaviors of all the agents 
are manually coded and rigid, the parallel test
ing system keeps collecting new field data to 
update the simulation system. Moreover, we 
can carry out field tests that exactly corre
spond to the simulation tests held in the sim
ulation system and compare their outputs to 
update the simulation system from time to time. 
To this end, we built an integration system 
to automatically and accurately collect various 
measurements of vehicles in a real time manner.

We had developed various methods to 
mix both real scenario data and virtual sce
nario data generated by simulation engines 
to provide diverse scenarios for testing auto
nomous vehicles. Especially, we used the 
parallel vision techniques to transfer the real 
world sensing data collected in the normal 
daytime to virtualworld sensing data in less 
frequently encountered situations (e.g., ad
verse weather and emergency events) (8).

The third part evaluates both vehicle per
formances and task difficulties to seek the 
most challenging new tasks. We set up sev
eral quantitative performance indices asso
ciated with each particular semantic task to 
fairly and quickly evaluate the performance of 
an autonomous vehicle (9, 10). We designed 
a statistical learning model to simultaneously 
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determine the relative difficulties of differ
ent tasks and the relative capabilities (ranks) of 
different autonomous driving systems under 
tests. Such ranking models help us not only 
find the challenging tasks, but also under
stand the real capability levels of the tested 
autonomous vehicles (10).

We also designed an adversarial learning 
model to automatically generate new task 
instances that may be harder than existing 
task instances based on the past testing re

sults, aiming to push the autonomous vehicles 
to improve its capability. From this view
point, the test in our systems is a self 
upgrading process occasionally guided by 
human experts. Such designs make the test 
of vehicle intelligence more quantifiable 
and automatic. We believe that this design 
philosophy may also be useful for building 
and testing other intelligent systems.

Our integrated parallel testing system 
successfully supported the Intelligent Vehicle 

Future Challenge of China (IVFC), which is 
the longestlasting autonomous driving com
petition (6). Along with IVFC held from 
2009 to 2018, our testing system was up
graded to implement systematic, quantitative, 
automatic, and safe tests for industrial vehicles. 
Results show that our testing system signifi
cantly reduced the burden of competition 
organizers and test engineers. For more de
tails of the applications, see the Supplementary 
Materials.
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Fig. 1. System overview flowchart. 
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SUPPLEMENTARY MATERIALS
robotics.sciencemag.org/cgi/content/full/4/28/eaaw4106/DC1
Text
Fig. S1. The locations and periods of the past 10 years IVFCs.
Fig. S2. Host of IVFC: The Intelligent Vehicles Proving 
Center.
Fig. S3. The demonstration of application of parallel testing 
system in the 10th Intelligent Vehicle Future Challenge  
(IVFC 2018).
Fig. S4. The integration of field and simulation tests adopts a 
better opportunity to take over.
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