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I. INTRODUCTION

The problem of tracking the two-dimensional (2-D)
direction-of-arrivals (DOAs) (i.e., azimuth and elevation
angles) of multiple moving targets is important in many
practical applications of sensor array processing involved
in radar, sonar, communications, and so on (cf. [1]).
Because of the increase in the dimensionality, the 2-D
DOA estimation and tracking are considerably more
difficult than the 1-D problems [2], where the estimated
azimuth angles should be associated with the
corresponding elevation angles of the same incident
signals. Compared with the optimal but computationally
complicated maximum likelihood (ML) method (e.g.,
[3, 4]), various subspace-based suboptimal methods have
been developed to solve such 2-D DOA estimation
problems from their 1-D versions by using planar arrays
such as the uniform circular or rectangular arrays (e.g.,
[5–15]). Although numerous algorithms for the 1-D DOA
(i.e., azimuth angle) tracking have been devised in the
literature (e.g., [16–19] and references therein), the
problem of 2-D DOA tracking of multiple moving signals
has not been extensively studied except for [20–22], where
the difficulties are the pair-matching of the estimated
azimuth and elevation angles and the association of these
estimates at two successive time instants. By extending the
1-D recursive algorithm [23] or the gradient-based
iterative searching algorithm [24] to 2-D scenarios, two
different 2-D DOA tracking algorithms were proposed by
using rectangular planar array [20, 21]. Even though the
association of azimuth and elevation estimates is
embedded in the estimation itself, these algorithms [21]
require the multiple signal classification (MUSIC) method
[26] with eigendecomposition to determine the noise
variance, the signal covariance matrix, and the initial
estimates of azimuth and elevation angles. Thus their
tracking performances are affected by the accuracy of
these parameters [23, 24], and they become poor at low
signal-to-noise ratio (SNR). Additionally the joint 2-D
DOA tracking algorithm [22, 25] still invokes the
computationally expensive eigendecomposition procedure
in DOA estimation and the minimization of a function for
associating the azimuth/elevation estimates at each time
instant, though the subspace updating is accomplished by
employing the low-rank adaptive filters [27].

On the other hand, the computational complexity of
2-D DOA estimation and tracking is usually affected by
the array geometric configurations, and these special
configurations can be exploited to develop
computationally efficient DOA estimation methods [28].
Especially an L-shaped array composed of two uniform
linear arrays (ULAs) connected orthogonally at one end of
each ULA (i.e., shifted cross array) has attained
considerable attention, because it has some advantages in
geometric configuration and implementation compared
with the conventional planar array and higher estimation
accuracy than other simple structured planar arrays
consisting of two or more ULAs [29]. Many 2-D DOA
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estimation methods with eigendecomposition were
proposed for the L-shaped array placed in the x–y or x–z
plane by exploiting the array configuration to decouple the
conventional 2-D estimation problem into two
independent 1-D estimation problems (e.g., [29–37]).
Unfortunately, the existing pair-matching techniques are a
computationally costly operation [5, 6, 10, 29, 36, 37], and
they do not always provide the correct pairing results.
Consequently, without considering the permissible region
of the parameters in the estimation process, the pairing
failure and erroneous estimate can cause the estimation
failure (cf. [10] for details), where the estimated
azimuth/elevation angle pair does not exist in the real
world, or the angles cannot be calculated from the
estimated auxiliary variables, which do not lie in their
permissible region. Nevertheless the measure to combat
the estimation failure described above has not been well
studied in the existing 2-D DOA estimation methods for
the L-shaped array (e.g., [29–35, 37]), while these methods
involve the computationally intensive and time-consuming
eigendecomposition process (cf. [38, 39]), and hence they
may still be unapplicable for real-time implementation. In
addition, we proposed a computationally efficient
cross-correlation based 2-D DOA estimation (CODE)
method without eigendecomposition for 2-D DOA
estimation of noncoherent narrowband signals impinging
on the L-shaped sensor array structured by two ULAs
[40]. Although the effect of additive noises is mitigated,
this batch CODE method needs a pair-matching
procedure, which requires a tremendous computational
burden when the number of incident signals is large. As a
result, the CODE is still inapplicable for tracking the 2-D
time-varying DOAs in real-time.

Therefore in this paper, we investigate the problem of
tracking the 2-D DOAs of multiple moving targets with
crossover points on their trajectories and propose a new
computationally efficient subspace-based 2-D DOA
tracking algorithm with the L-shaped sensor array, where
the crux is to associate the estimated azimuth and
elevation angles of different targets at two successive time
instants (i.e., the so-called “data association” [1]). Based
on the previous works [19] and [40], first a new
computationally efficient cross-correlation based 2-D
DOA estimation with automatic pair-matching (CODEC)
batch method is developed for noncoherent narrowband
signals, where the computationally expensive procedures
of eigendecomposition in subspace estimation and
pair-matching of the estimated azimuth and elevation
angles are avoided. Another notable difference between
the CODE and CODEC methods is that the azimuth
angles are estimated with different cross-correlations and
working array aperture. Then the on-line implementation
of the proposed CODEC method is presented for tracking
the 2-D DOAs of multiple moving targets with crossover
points on their trajectories, where the association of the
estimated azimuth and elevation angles at two successive
time instants is accomplished by employing a dynamic
model and the Luenberger state observer [41]. As a result,

Fig. 1. Geometrical configuration of L-shaped array for 2-D direction
estimation [37].

the CODEC method has two notable advantages over the
previously proposed CODE method [40]: an automatic
pairing procedure is introduced to reduce the overall
computational complexity of the estimation and a 1-D
tracking algorithm is extended to the 2-D tracking of
multiple targets with crossover points on their trajectories.
Moreover, the asymptotic mean-square-error (MSE)
expressions of the azimuth and elevation estimates are
derived explicitly. The effectiveness of the batch CODEC
method and its theoretical analysis are verified through
numerical examples, and the simulation results also show
that the proposed tracking algorithm has good adaptability
and tracking capability.

II. PROBLEM FORMULATION

A. Basic Notation

The following notational conventions are used
throughout this paper: the italic letters, lower-case
boldface letters, and capital boldface letters indicate the
scalars, column vectors, and matrices, and Om×n, Im, Jm,
0m×1, and δn,t denote the m × n null matrix, m × m identity
matrix, m × m counter-identity matrix, m × 1 null vector,
and Kronecker delta, while E{·}, (·)∗, (·)T, and (·)H

represent the statistical expectation, complex conjugation,
transposition, and Hermitian transposition, respectively.
Additionally x̂ means the estimate of the variable x, while
diag{·}, det{·}, and Re{·} denotes the diagonal operation,
determinant of a matrix, and real part of the quantity.

B. Data Model

The L-shaped sensor array is placed in the x–z plane
and consists of two ULAs as depicted in Fig. 1, where
each ULA has M omnidirectional sensors with spacing d,
the sensor at the origin of coordinates z0 is the reference
one for each ULA, and the interelement spacing between
the sensors z0 and x1 of these ULAs is also d. Here we
suppose that p noncoherent narrowband signals {sk(n)}
from multiple targets with the wavelength l are in the
far-field and impinge on the array from distinct directions
with the elevation and azimuth angles (θ k(n), φk(n)) [29,
37], where θ k(n) �= θ i(n) and φk(n) �= φi(n) for k �= i. As
illustrated in Fig. 1, the elevation angle θ k(n) and the
azimuth angle φk(n) are measured clockwise relative to the
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z or x axis, while the projected azimuth angle φ̄k(n) is
measured counterclockwise relative to the x axis in the x–y
plane, where 0◦ ≤ θ k(n) ≤ 180◦, 0◦ ≤ φk(n) ≤ 180◦, and
0◦ ≤ φ̄k(n) ≤ 180◦. Then the received signals at two
ULAs are given by

z(n) = A(θ)s(n) + wz(n) (1)

x(n) = A(φ)s(n) + wx(n) (2)

where z(n)
�= [z0(n), z1(n), · · · , zM−1(n)]T , x(n)

�=
[x1(n), x2(n), · · · , xM (n)]T , wz(n)

�= [wz0 (n), wz1 (n), · · · ,
wzM−1 (n)]T , wx(n)

�= [wx1 (n), wx2 (n), · · · , wxM
(n)]T ,

s(n)
�= [s1(n), s2(n), · · · , sp(n)]T , A(θ)

�= [a(θ1(n)),

a(θ2(n)), · · · , a(θp(n))], a(θk(n))
�= [1, ejαk(n), · · · ,

ej (M−1)αk(n)]T , A(φ)
�= [a(φ1(n)), a(φ2(n)), · · · ,

a(φp(n))], a(φk(n))
�= [ejβk(n), ej2βk(n), · · · , ejMβk(n)]T ,

αk(n)
�= 2πd cos(θk(n))/l, and βk(n)

�= 2πd cos(φk(n))/
l.

In this paper, the following basic assumptions are
made on the data model.

A1) The mathematical model of array response
matrices (i.e., A(θ) and A(φ)) is known, and the sensor
spacing d satisfies 0 < d ≤ l/2 to avoid angle ambiguity.

A2) For facilitating the theoretical performance
analysis, the incident signals {sk(n)} are temporally
complex white Gaussian random processes with
zero-mean and the variance are given by
E{sk(n)s∗

k (t)} = rsk
δn,t and E{sk(n)sk(t)} = 0∀n, t for

1 ≤ k ≤ p.

A3) The additive noises {wzi
(n)} and {wxi

(n)} are
temporally and spatially complex white Gaussian random
processes with zero-mean and the covariance matrices are
given by E{wz(n)wH

z (t)} = E{wx(n)wH
x (t)} = σ 2 IMδn,t ,

and E{wz(n)wT
z (t)} = E{wx(n)wT

x (t)} = OM×M∀n, t,

and they are statistically independent with each other, i.e.,
E{wz(n)wH

x (t)} = OM×M.

A4) The additive noises {wzi
(n)} and {wxi

(n)} at two
ULAs are statistically independent with the incident
signals {sk(n)}.

A5) The number of incident signals p is known or
estimated by number detection techniques in advance (cf.
[42, 43], and it satisfies the inequality that p < M.

From the relationship cos(φk(n)) = cos(φ̄k(n))
× sin(θk(n)) [10, 37], we easily find the permissible region
for θ k(n) and φk(n) and for θ k(n) and φ̄k(n) as shown in
Figs. 2(a) and 2(b), respectively, while the geometry
restrictions require that the parameters θ k(n) and φk(n) lie
in the square region defined by

−θk(n) + 90◦ ≤ φk(n) ≤ θk(n) + 90◦,

for 0◦ ≤ θk(n) ≤ 90◦

θk(n) − 90◦ ≤ φk(n) ≤ −θk(n) + 270◦,

for 90◦ ≤ θk(n) ≤ 180◦.

(3)

The classical 1-D subspace-based direction estimation
methods with eigendecomposition (e.g., MUSIC [26],

Fig. 2. Permissible regions for (a) elevation angle θk(n) and azimuth
angle φk(n) and (b) elevation angle θk(n) and projected azimuth

angle φ̄k .

estimation of signal parameters via rational invariance
techniques (ESPRIT) [44]) and the computationally
simple 1-D subspace-based direction estimators without
eigendecomposition (e.g., propagator method (PM) [45],
subspace-based method without eigendecomposition
(SUMWE) [39]) can be applied to each ULA to obtain the
reliable estimates of azimuth and elevation angles
separately. However, in general, there are p! possible
combinations between the estimates {φ̂k(n)} and {θ̂i(n)}.
Consequently the crux of 2-D direction estimation is the
pair-matching of the azimuth and elevation angles
estimated independently, which can require a tremendous
computational burden when the number of incident signals
is large. Except for the CODE [40], most of the existing
techniques for pair-matching or automatic pairing involve
the computationally extensive eigendecomposition
process [5–8, 10, 29, 30, 32–34, 36, 37]. Even though the
pair-matching is accomplished correctly, the separate
estimation of the azimuth and elevation angles may cause
the estimated angles θ̂k(n) and φ̂k(n) to lie outside the
permissible region shown in Fig. 2(a), or equivalently we
may have | cos(φ̂k(n))/sin(θ̂k(n))| > 1 for sin θ̂k �= 0,

and obviously the estimate of the conventional azimuth
angle φ̄k(n) is unavailable with the relation φ̄k(n) =
arccos(cos(φk(n))/sin(θk(n))). Thus the estimation failure
occurs in this situation [10]. Unfortunately, the estimation
failure has not been resolved yet for the L-shaped array.
Therefore in order to overcome the aforementioned
pairing and estimation failures, we focus our attention on
the joint azimuth-elevation DOA estimation without
eigendecomposition process and pair-matching procedure.

REMARK 1 For decoupling the 2-D DOA estimation
problem into 1-D estimation problems and fully exploiting
the well-known property of the ULA in a more
straightforward way, we parameterize the 2-D direction of
the incident signals by (θ k(n),φk(n)) instead of
(θk(n), φ̄k(n)). In fact, by redefining the parameter θ k(n) as
the angle of the signal sk(n) with respect to the y axis, the
proposed CODEC method is also applicable to the
L-shaped array placed in the x–y plane. However in order
to compare the performance of the CODEC method with
the existing methods, we still concentrate on the problem
of 2-D DOA estimation with L-shaped array placed in the
x–z plane in this paper.
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III. BATCH METHOD FOR 2-D DOA ESTIMATION

A. Estimation of Elevation Angles

Firstly by assuming the elevation and azimuth angles
to be time invariant, i.e., θ k(n) = θ k and φk(n) = φk, we
can propose a new computationally efficient batch 2-D
DOA estimation method without eigendecomposition and
pair-matching, which is suitable for DOA tracking. Under
assumption A5, we can divide the ULA along the z axis
into two nonoverlapping forward subarrays with p or M –
p sensors, and the received signal vector z(n) in (1) can be
rewritten as

z(n) = [ z̄T
1 (n), z̄T

2 (n)]T

= [AT
1 (θ), AT

2 (θ)]T s(n) + [wT
z̄1

(n), wT
z̄2

(n)]T (4)

where z̄1(n)
�= [z0(n), z1(n), · · · , zp−1(n)]T , z̄2(n)

�=
[zp(n), zp+1(n), · · · , zM−1(n)], wz̄1 (n)

�= [wz0 (n), wz1 (n),

· · · , wzp−1 (n)]T , and wz̄2 (n)
�= [wzp

(n), wzp+1 (n), · · · ,
wzM−1 (n)]T , while A(θ) in (1) is divided into two
submatrices A1 (θ) and A2 (θ) with the columns given by

a1(θk)
�= [1, ejαk , · · · , ej (p−1)αk ]T and a2(θk)

�= [ejpαk ,

ej (p+1)αk , · · · , ej (M−1)αk ]T . Then under the assumptions of
data model, from (1), (2), and (4), we easily obtain the
cross-correlation matrix Rzx between the received signals
of two ULAs along the x and z axes as

Rzx
�= E{z(n)xH (n)} = [RT

z̄1x
, RT

z̄2x
]T

= A(θ)E{s(n)sH (n)}AT (φ) + E{wz(n)wH
x (n)}

= A(θ)Rs AH (φ) (5)

where Rs is the source signal covariance matrix defined by

Rs
�= E{s(n)sH (n)}, Rz̄1x

�= E{ z̄1(n)xH (n)} =
A1(θ)Rs AH (φ), and Rz̄2x

�= E{ z̄2(n)xH (n)} =
A2(θ)Rs AH (φ). Similarly by partitioning the same ULA
into two nonoverlapping backward subarrays composed of
p and M – p sensors, we can express the conjugate noisy
signal vector z̃(n) of this ULA as

z̄(n)
�= [ z̃T

1 (n), z̃T
2 (n)]T = JM z∗(n)

= A(θ)D−(M−1)(θ)s∗(n) + w̃z(n) (6)

where z̃1(n)
�= [zM−1(n), zM−2, · · · , zM−p(n)]H , z̃2(n)

�=
[zM−p−1(n), · · · , z1(n), z0(n)]H , w̃z(n)

�= [wzM−1 (n), · · · ,
wz1 (n), wz0 (n)]H , and D(θ)

�= diag(ejα1, ejα2, · · · , ejαp ).
Then from (6) and (2), we can obtain another
cross-correlation matrix R̃zx as

R̃zx
�= E{ z̃(n)xT (n)} = [R̃

T

z̃1x
, R̃

T

z̃2x
]T

= JM (E{z(n)xH (n)})∗ = JM R∗
zx

= A(θ)D−(M−1)(θ)(E{s(n)sH (n)})∗ AT (φ)

+ E{w̃z(n)wT
x (n)}

= A(θ)D−(M−1)(θ)R∗
s AT (φ) (7)

where R̃z̃1x
�= E { z̃1(n)xT (n)} =

A1(θ)D−(M−1)(θ)R∗
s AT (φ), R̃z̃2x

�= E { z̃2(n)xT (n)} =
A2(θ)D−(M−1)(θ)R∗

s AT (φ). Obviously these matrices Rzx

and R̃zx are not affected by the additive noises at two
ULAs.

From (4), (5), and (7), we can form an M × 2M
extended cross-correlation matrix Rz as

Rz
�= [Rzx, R̃zx] = [Rzx, JM R∗

zx]

= [AT
1 (θ), AT

2 (θ)]T [Rs AH (φ), D−(M−1)(θ)R∗
s AT (φ)]

�= [RT
z1, RT

z2]T (8)

where Rz1 and Rz2 are the submatrices consisting of the
first p and the last M – p rows of Rz. Because the incident
signals {sk(n)} come from distinct directions with the
elevation and azimuth angles (θ k, φk), by considering
assumptions A1 and A5, we can obtain that the M × p
array response matrix A(θ) in (1) and its p × p submatrix
A1 (θ) have full rank. Hence A1(θ) is invertible, and the
rows of A2 (θ) can be expressed as a linear combination of
linearly independent rows of A1 (θ); equivalently there is a
p × (M – p) linear operator Pz between A1 (θ) and A2 (θ)
[39, 45], i.e., A2 (θ) = PH

z A1(θ). Then Pz can be obtained
from Rz1 and Rz2 in (8) as [39]

Pz = (AH
1 (θ))−1 AH

2 (θ) = (Rz1 RH
z1)−1 Rz1 RH

z2. (9)

Further by defining the matrix Qz

�= [PT
z , −IM−p]T , in

view of A(θ) = [AT
1 (θ), AT

2 (θ)]T , we can get

QH
z A(θ) = O (M−p)×p. (10)

Since the M × (M – p) matrix Qz has full column rank
equal to M – p, the columns of Qz in fact form the basis for
the null space N (A(θ)) of A(θ), and clearly the orthogonal
projector onto the subspace spanned by the columns of Qz

is given by �z
�= Qz( QH

z Qz)
−1 QH

z , which implies that
[39, 46]

�za(θ) = 0M×1, for θ = θk (11)

where a(θ)
�= [1, ejα, · · · , ej (M−1)α]T. Evidently the

orthogonal property (11) can be used to estimate the
elevation angles {θk}pk=1 in the SUMWE-like manner
without any eigendecomposition.

Thus by using the orthogonal property in (11), when
the number of snapshots is finite, the elevation angles
{θk}pk=1 can be estimated by minimizing the following cost
function f (θ), i.e.,

θ̂k = arg min
θ

f (θ)
�= arg min

θ

aH (θ)�̂za(θ) (12)
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where

�̂z
�= Q̂z( Q̂

H

z Q̂z)
−1 Q̂

H

z

= Q̂z(IM−p − P̂
H

z ( P̂z P̂
H

z + Ip)−1 P̂z) Q̂
H

z (13)

P̂z = (R̂z1 R̂
H

z1)−1 R̂z1 R̂
H

z2 (14)

and Q̂z = [ P̂
T

z , −IM−p]T , in which �̂z is calculated
using the matrix inversion lemma implicitly [39], and the
orthonormalization of the matrix Q̂z is used in �̂z to
improve the estimation performance [45].

REMARK 2 By considering the singular value
decomposition (SVD) of matrix A(θ), we readily verify
that the orthogonal projector �z in (11) can be written as
�z = IM − A(θ)(AH (θ)A(θ))−1 AH (θ) [39].

B. Estimation of Azimuth Angles with Automatic Pairing

Under the assumptions of the data model, from (2) and
(4), we can form a new (2M – p) × 1 combined signal
vector received by the ULA along the x axis and the
subarray z̄2(n) along the z axis as

ȳ(n)
�= [ z̄T

2 (n), xT (n)]T = A(θ, φ)s(n) + w̄y(n) (15)

where A(θ, φ)
�= [AT

2 (θ), AT (φ)]T with columns

ā(θk, φk)
�= [aT

2 (θk), aT (φk)]T , and w̄y(n)
�= [w̄T

z̄2
(n),

wT
x (n)]T . Then from (4) and (15), we easily obtain a (2M –

p) × p cross-correlation matrix R̄ between the array data
ȳ(n) and that received by the subarray z̄1(n) along the z
axis as

R̄
�= E{ ȳ(n) z̄H

1 (n)} = [RT
z̄2 z̄1

, R∗
z̄1x

]T

= A(θ, φ)E{s(n)sH (n)}AH
1 (θ) + E{w̄y(n)wT

z̄1
(n)}

= A(θ, φ)Rs AH
1 (θ) (16)

where Rz̄2 z̄1

�= E{ z̄2(n) z̄H
1 (n)} = A2(θ)Rs AH

1 (θ). Clearly
R is not affected by the additive noises at these two ULAs.
Under the basic assumptions, we easily find that the
matrices Rs and A1(θ) are nonsingular and the matrix
A(θ, φ) has full column rank equal to p, and it follows
from (16) that R and A(θ, φ) have the same range space,
i.e., R(R) = R(A(θ, φ)), or equivalently,

�ā(θ, φ) = 0(2M−p)×1, for θ = θk and φ = φk (17)

where k = 1, 2, . . ., p, and the projector � onto the null
space N (R)(or N (A(θ, φ)) of R(or A(θ, φ)) is given by
(e.g., [47])

�
�= I2M−p − R(R

H
R)−1 R

H
. (18)

Thus when the finite array data are available, from (17),
we can estimate the pairs of the elevation and azimuth
angles {θ k, φk} as

{θ̂k, φ̂k} = arg min
θ,φ

f (θ, φ)

�= arg min
θ,φ

āH (θ, φ) ˆ̄�ā(θ, φ). (19)

Then by substituting the estimated elevation angles θ̂k

obtained with (12) into ā(θ, φ) in (19), the azimuth angle
φk can be estimated as

φ̂k = arg min
φ

fk(φ)
�= arg min

φ

āH (φ)�(θ̂k)ā(φ) (20)

where ā(φ)
�= [1, aT (φ)]T , and

�(θ̂k)
�= BH (θ̂k)�̂B(θ̂k)

=
⎡⎣ aH

2 (θ̂k)�̂11a2(θ̂k), aH
2 (θ̂k)�̂12

�̂21a2(θ̂k), �̂22

⎤⎦ (21)

while B(θ)
�= diag(a2(θ), IM ), �̂ik is the ikth block

element of �̂ with compatible dimensions, and
ā(θ, φ) = B(θ)ā(φ) is used implicitly. Obviously the
estimated elevation angle θ̂k is paired with the estimated
azimuth angle φ̂k automatically.

REMARK 3 By substituting (16) into (18), the
orthogonal projection matrix � can be rewritten as

� = I2M−p − A(θ, φ)(A
H

(θ, φ)A(θ, φ))−1 A
H

(θ, φ),
where the ikth block element is given by

�11
�= IM−p − A2(θ)(A

H
(θ, φ)A(θ, φ))−1 AH

2 (θ) (22)

�12
�= −A2(θ)(A

H
(θ, φ)A(θ, φ))−1 AH (φ) (23)

�21
�= −A(φ)(A

H
(θ, φ)A(θ, φ))−1 AH

2 (θ) (24)

�22
�= IM − A(φ)(A

H
(θ, φ)A(θ, φ))−1 AH (φ). (25)

C. Modified Estimation of Azimuth Angles

Although the estimated azimuth angle φ̂k can be paired
correctly with the elevation angle θ̂k by using (20), the
finite number of snapshots and/or low SNR may cause
these estimates θ̂k and φ̂k outside the permissible region
shown in Fig. 2(a), i.e., the estimation failure occurs in
this situation. Hence a measure should be taken to
alleviate the problem of estimation failure.

By considering the geometry restrictions in (3) for the
parameters θ k and φk, from (20), we can estimate the
azimuth angle φk for the estimated elevation angle θ̂k as

φ̂k = arg min
φ

āH (φ)�(θ̂k)ā(φ) subject to (26)

{
−θ̂k + 90◦ ≤ φk ≤ θ̂k + 90◦, for 0◦ ≤ θ̂k ≤ 90◦

θ̂k − 90◦ ≤ φk ≤ −θ̂k + 270◦, for 90◦ ≤ θ̂k ≤ 180◦

where the estimated elevation angles {θ̂k}pk=1 are obtained
with (12). Evidently the estimates θ̂k and φ̂k have a
one-to-one relationship without the need of the
pair-matching procedure, and they are ensured to lie in the
permissible region to overcome the estimation failure.
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D. Implementation of Batch Method for 2-D DOA
Estimation

When N snapshots of array data {x(n), z(n)}Nn=1 are
available, from (12) and (26), the implementation of the
proposed CODEC method can be summarized as follows.

1) Calculate the estimates of the cross-correlation
matrices Rzx in (5) and Rz̄2 z̄1 in (16) as

R̂zx = 1

N

N∑
n=1

z(n)xH (n) (27)

R̂z̄2 z̄1 = 1

N

N∑
n=1

z̄2(n) z̄H
1 (n). (28)

8M2 N + 8(M – p)pN flops.
2) Form the estimates of the cross-correlation

matrices Rz in (8) and R in (16) from R̂zx and R̂z̄2 z̄1 as

R̂z = [R̂zx, JM R̂
∗
zx] and R̂ = [R̂

T

z̄2 z̄1
, R̂

∗
z̄1x

]T , where R̂z̄1x

is the submatrix consisting of the first p rows of R̂zx in
(27).

3) Calculate the estimated orthogonal projectors �̂z

by using (13) and (14) and �̂ by using (18).

16Mp2 + 16Mp(M – p) + 24 p2(M – p) + 8(M + p)
× (M – p)2 + 8 M2 (M – p) + 2p2 + 2(M – p)2

+ 16p2(2M – p) + 8(2M – p)2p + O(p3) flops

4) Estimate the elevation angles {θ k} by finding the
phases of the p zeros of the polynomial pθ (z) closest to the

unit circle in the z–plane with (12), where pθ (z)
�= zM−1

pH
θ (z)�̂z pθ (z), pθ (z)

�= [1, z, · · · , zM−1]T , and z
�=

ej2πd cos θ/l.

(M – 1)2 + Cθ flops

5) Calculate the matrix �(θ̂k) in (21) with (18), and
estimate the azimuth angle φk by finding the phase of the
zero of the polynomial pφk

(z) satisfying the constraint
given in (26) and closest to the unit circle in the z–plane

for k = 1, 2, . . . , p, where pφk
(z)

�= zM pH
φ (z)�(θ̂k) pφ(z),

pφ(z)
�= [1, z, · · · , zM ]T , and z

�= ej2πd cos φ/l.

p(8(M – p) + 8(M – p)2 + 16M (M – p)
+ M2 + Cφ) flops

In the above implementation, the computational
complexity of each step is roughly indicated in terms of
the number of MATLAB flops. Consequently we can find
that the computational complexity of the CODEC method
is nearly 8M2 N + 16M3 flops, which is less than that of
the CODE method [40] (i.e., 32M2 N + 160M3 + 4M2

p2 flops), when M � p, which occurs often in application
of DOA estimation.

REMARK 4 Certainly we have the spectral approach
version of the CODEC method to estimate the elevation

and azimuth angles by searching the p highest peaks of
spatial spectrum P (θ) = 1/aH (θ)�̂za(θ) and the highest
peak of spectrum P (φk) = 1/āH (φ)�(θ̂k)ā(φ) for k = 1,
2, . . ., p. However, the 1-D spectral searching is rather a
computationally brute-force procedure, where a high
density search grid is required, and it is affected by the
radial estimation errors [2, 48]. Hence in the above
implementation, the needs for the exhaustive spectral
search are eliminated by using the search-free 1-D
polynomial rooting. Note that various computationally
efficient algorithms have been explored for polynomial
root finding with different computational complexity in
the literature (cf., e.g. [49–51]). Consequently for
example, when the Lindsey-Fox algorithm for root
finding [51] is employed, the complexities of polynomial
rooting in steps 4 and 5 can be approximated as
Cθ = O((2M − 1)2) and Cφ = O((2M + 1)2) flops, and
they are less than that the ordinary MATLAB function
roots, which requires the calculation of the eigenvalues of
an associated coefficient companion matrix (e.g., [52]).

IV. ON-LINE ALGORITHM FOR 2-D DOA TRACKING

Now we consider the on-line implementation of the
batch CODEC method described above for estimating the
time-varying elevation and azimuth angles of multiple
moving targets with crossover points on their trajectories.
Here we assume that (θk(n), φk(n)) are slowly time varying
so that θk(n̄Ns + 1) ≈ θk(n̄Ns + 2) ≈ · · · ≈ θk((n̄ + 1)Ns)
and φk(n̄Ns + 1) ≈ φk(n̄Ns + 2) ≈ · · · ≈ φk((n̄ + 1)Ns)
for n ∈ (n̄Ns, (n̄ + 1)Ns] and n̄ = 0, 1, · · · , where there
are Ns snapshots of array data available for DOA updating
(cf. [16, 19] and references therein). Then by denoting
θk(n̄Ns) and φk(n̄Ns)) as θk(n̄) and φk(n̄), the 2-D DOA
tracking can be formulated as the estimation of the
elevation-azimuth pairs {(θk(n̄), φk(n̄))} from
Ns snapshots of {z(n), x(n)} measured at
n = n̄Ns + 1, n̄Ns + 2, · · · , (n̄ + 1)Ns while maintaining
the correct association between the current estimates
(θ̂k(n̄), φ̂k(n̄)) and the previous estimates
(θ̂k(n̄ − 1), φ̂k(n̄ − 1)) for the same incident signal.

A. Luenberger Observer Based State Estimation

Similar to the previously proposed 1-D DOA tracking
[19], where the Luenberger observer [41] with a
deterministic dynamic state model of the direction
trajectory was employed to solve the association problem
of the estimated directions at two successive time instants
and to eliminate the estimation of the unknown variances
of additive process and measurement noises required by
the Kalman filtering, here we consider the problem of 2-D
DOA tracking by using the Luenberger observer. By
letting the bearing velocities and accelerations of
θk(n̄)(or φk(n̄)) at the instant n̄ be θ̇k(n̄)(or φ̇k(n)) and
θ̈k(n̄)(or φ̈k(n̄)) and denoting the state vectors of the
dynamic models for the elevation and azimuth

angles as ζ θk
(n̄)

�= [θk(n̄), θ̇k(n̄), θ̈k(n̄)]T and ζ φk
(n̄)

�= [φk(n̄), φ̇k(n̄), φ̈k(n̄)]T , the slowly time-varying
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trajectories of angles θk(n̄) and φk(n̄) can be
approximately expressed by a deterministic state model
with constant acceleration in the absence of process and
measurement noises and the 2-D DOAs can be measured
from the corresponding state vectors

ζ θk
(n̄) = Fζ θk

(n̄ − 1), θk(n̄) = cT ζ θk
(n̄) (29)

ζ φk
(n̄) = Fζ φk

(n̄ − 1), φk(n̄) = cT ζ φk
(n̄) (30)

where F and c are the transition matrix and measurement
vector given by F

�= [1, Ns, 0.5N2
s ; 0, 1, Ns ; 0, 0, 1] and

c
�= [1, 0, 0]T (see, e.g., [1, 16, 19]).

Then by using the measurements θk(n̄) and φk(n̄), the
Luenberger current observers for estimation of the
azimuth and elevation angles at the instant n̄ are given by
(cf. [53] and references therein)

ζ̂ θk
(n̄) = ζ θk

(n̄) + gθk
(θk(n̄) − cT ζ θk

(n̄)) (31)

ζ θk
(n̄) = Fζ̂ θk

(n̄ − 1) (32)

θ̂k(n̄) = cT ζ̂ θk
(n̄) (33)

ζ̂ φk
(n̄) = ζ φk

(n̄) + gφk
(φk(n̄) − cT ζ φk

(n̄)) (34)

ζ φk
(n̄) = Fζ̂ φk

(n̄ − 1) (35)

φ̂k(n̄) = cT ζ̂ φk
(n̄) (36)

where ζ̂ θk
(n̄)(or ζ̂ φk

(n̄)) is the current estimate based on
the measurement θk(n̄)(or φk(n̄)) at the current instant n̄,

while ζ θk
(n̄)(or ζ φk

(n̄)) is the predicted estimate based on
a model prediction from the estimate obtained at the
previous instant n̄ − 1, and gθk

and gφk
are the observer

gains, which should be chosen appropriately to ensure the
magnitudes of all eigenvalues of the matrices F − gθk

cT F
and F − gφk

cT F be strictly less than one so that the
observers in (31)–(36) are asymptotically stable for any
initial values of ζ̂ θk

(0) and ζ̂ φk
(0).

REMARK 5 Different from the Luenberger prediction
estimator used in [19], in order to improve the response of
the estimator, which is about a cycle faster, herein an
alternative Luenberger state observer (i.e., current
estimator) is employed by using the information of the
current measurement. Additionally the desired poles of
these observer gains can be designed as one pair of
conjugate complex poles and one real pole within the unit
circle in the z-plane (see Appendix A for details).

B. Tracking of Crossing Angles

In fact, the measurements θk(n̄) and φk(n̄) and the state
vectors ζ̂ θk

(n̄) and ζ̂ φk
(n̄) in (31) and (34) are unknown

and should be estimated from the available array data by
exploiting the batch CODEC method and Luenberger
observer described above. During the interval of direction
updating (n̄T , (n̄ + 1)T ] (i.e, n = n̄Ns + 1, n̄Ns + 2,

· · · , (n̄ + 1)Ns), the instantaneous estimates of the
cross-correlation matrices Rzx in (5) and Rz̄2 z̄1 in (16) (i.e.,
(27) and (28)) can be recursively computed by rank-1

updating as

R̂zx(n) = γ̄ R̂zx(n − 1) + z(n)xH (n) (37)

R̂z̄2 z̄1 (n) = γ̄ R̂z̄2 z̄1 (n − 1) + z̄2(n) z̄H
1 (n) (38)

where γ̄ is the forgetting factor given by 0 < γ̄ < 1,

which should be selected appropriately to accommodate
for the time-variations of azimuth and elevation angles and
usually chosen close to one for achieving good tracking
performance and reducing the sensitivity to additive noise.
When n = (n̄ + 1)Ns, by forming the instantaneous

estimates R̂z(n) and R̂(n) of the cross-correlation matrices
Rz in (8) and R in (16) from (37) and (38), we can obtain
the instantaneous orthogonal projectors �̂z(n) with (13)

and (14) and �̂(n) with (18), which are denoted as �̂z(n̄)

and �̂(n̄). Then by considering the Taylor series
expansion of f(θ) in (12) and using the instantaneous
orthogonal projector �̂z(n̄) and a predicated state vectors
ζ̂ θk

(n̄|n̄ − 1) (i.e., θ̂k(n̄|n̄ − 1)), the “measurement” θ̃k(n̄)
of elevation angle θk(n̄) in (31) can be estimated with the
approximate Newton iteration as

θ̃k(n̄) = θ̂k(n̄|n̄ − 1) − Re{dH (θ)�̂z(n̄)a(θ)}
dH (θ)�̂z(n̄)d(θ)

∣∣∣∣
θ=θ̂k(n̄|n̄−1)

(39)

where d(θ)
�= d(a(θ))/dθ = j (2πd sin θ/l)[0, ejα, · · · ,

(M − 1)ej (M−1)α]T , while the state vector ζ̂ θk
(n̄) in (31)

can be estimated by refining the predicated state vector
ζ̂ θk

(n̄|n̄ − 1) as

ζ̂ θk
(n̄|n̄) = ζ̂ θk

(n̄|n̄ − 1) + gθk
(θ̃k(n̄) − θ̂k(n̄|n̄ − 1)) (40)

and hence the elevation angle θk(n̄) can be estimated as

θ̂k(n̄) = cT ζ̂ θk
(n̄|n̄). (41)

In a similar way, by using the instantaneous orthogonal

projector �̂(n̄) and a predicated state vector ζ̂ φk
(n̄|n̄ − 1)

(i.e., φ̂k(n̄|n̄ − 1)) and substituting the estimate θ̂k(n̄) in
(41) into (21), from (20), we can obtain the measurement
φ̃k(n̄) of azimuth angle φk(n̄) in (34) by the following
approximate Newton iteration

φ̃k(n̄) = φ̂k(n̄|n̄ − 1)

− Re{d
H

(φ)�(θ̂k(n̄))ā(φ)}
d

H
(φ)�(θ̂k(n̄))d̄(φ)

∣∣∣∣
φ=φ̂k(n̄|n̄−1)

(42)

where d(φ)
�= d(ā(φ))/dφ = j (2πd sin φ/l)[0, ejβ, · · · ,

MejMβ]T . Then by using this measurement in (42), we
can get the state vector ζ̂ φk

(n̄) in (34) by refining the
predicated state vector ζ̂ φk

(n̄|n̄ − 1) as

ζ̂ φk
(n̄|n̄) = ζ̂ φk

(n̄|n̄ − 1) + gφk
(φ̃k(n̄) − φ̂k(n̄|n̄ − 1))

(43)
and thus the azimuth angle φk(n̄) can be estimated as

φ̂k(n̄) = cT ζ̂ φk
(n̄|n̄). (44)

1392 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 51, NO. 2 APRIL 2015



C. On-line Algorithm for 2-D DOA Tracking

Therefore based on the batch CODEC method and
Luenberger observer described above, we have the
following on-line algorithm for tracking 2-D DOAs of
multiple moving targets.

1) Estimate the initial values of θk(n̄) and φk(n̄) from
the Ns snapshots of {z(n), x(n)}Ns

n=1 with the batch
CODEC method described in Section III-D, and denote
them as θ̂k(0|0) and φ̂k(0|0).

2) Initialize the Luenberger observers by
ζ̂ θk

(0|0)=[θ̂k(0|0), 0, 0]T and ζ̂ φk
(0|0)=[φ̂k(0|0), 0, 0]T ,

and set the instantaneous cross-correlation matrices
R̂zx(Ns) = OM×M and R̂z̄2 z̄1 (Ns) = O (M−p)×p, while
updating the instant index to n̄ = 1 and n = n̄Ns + 1.

3) Calculate the predicated state vectors ζ̂ θk
(n̄|n̄ − 1)

and ζ̂ φk
(n̄|n̄ − 1) and predicated angles θ̂k(n̄|n̄ − 1) and

φ̂k(n̄|n̄ − 1) from the existing estimated state vectors
ζ̂ θk

(n̄ − 1|n̄ − 1) and ζ̂ φk
(n̄ − 1|n̄ − 1) with Luenberger

observers with (32), (33), (35), and (36) as

ζ̂ θk
(n̄|n̄ − 1) = Fζ̂ θk

(n̄ − 1|n̄ − 1) (45)

ζ̂ φk
(n̄|n̄ − 1) = Fζ̂ φk

(n̄ − 1|n̄ − 1) (46)

θ̂k(n̄|n̄ − 1) = cT ζ̂ θk
(n̄|n̄ − 1) (47)

φ̂k(n̄|n̄ − 1) = cT ζ̂ φk
(n̄|n̄ − 1). (48)

4) Estimate the instantaneous cross-correlation
matrices R̂zx(n) and R̂z̄2 z̄1 (n) with (37) and (38).

5) If n = (n̄ + 1)Ns, go to the next step; otherwise
update the instant index as n = n + 1, and return to step 4.

6) Calculate the estimated orthogonal projectors

�̂z(n̄) with (13) and (14) and �̂(n̄) with (18).
7) Calculate the measurement θ̃k(n̄) by using the

projector �̂z(n̄) and the predicted angle θ̂k(n̄|n̄ − 1) with
(39), and estimate the elevation angles θ̂k(n̄) with (40) and
(41) for k = 1, 2, . . ., p.

8) Calculate the matrix �(θ̂k(n̄)) in (42) with (21) by

using θ̂k(n̄) and �̂(n̄), and estimate the measurement
φ̃k(n̄) by using the predicted angle φ̂k(n̄|n̄ − 1) with (42).

9) Calculate the refined state vector ζ̂ φk
(n̄|n̄) and

estimate the azimuth angle φ̂k(n̄) with (43) and (44).
10) Update the instant index of angle updating as

n̄ = n̄ + 1 and n = n̄Ns + 1, and go to step 3.

REMARK 6 The Luenberger observer plays important
roles of refining (or smoothing) the measured elevation
and azimuth angles θ̃k(n̄) and φ̃k(n̄) obtained from the
array data and maintaining the association between the
estimates {(θ̂k(n̄), φ̂k(n̄))} at different time instants of
angle updating.

V. PERFORMANCE ANALYSIS OF CODEC METHOD

Here we analyze the statistical properties of the
proposed batch CODEC method with (12) and (20) for a
large number of snapshots. When the number of snapshots

N is sufficiently large, we can find that the estimated
elevation angle θ̂k obtained by minimizing the cost
function (12) and the estimated azimuth angle φ̂k by
minimizing the cost function (20) approach the true
parameters θ k and φk with probability one (cf. [39,
Appendix A]).

By defining the following notations for convenience of

formulation as Hzkk
�= dH (θk)�zd(θk), h(θk)

�=
RH

z̄1x
(Rz1 RH

z1
)−1a1(θk), h(θk)

�= R̃
H

z̃1x
(Rz1 RH

z1)−1a1(θk),

H̄kk
�= Re{dH (φk)A(φ)(A

H
(θ, φ) · A(θ, φ))−1 AH

2 (θ)

d2(θk)}, H̃kk
�= dH (φk)�22d(φk), g(θk)

�= �zd(θk),

ḡ(θk, φk)
�= [�

T

12, �
T

22]T d(φk), b(θk, φk)
�=

(Rs AH
1 (θ))−1ek, �

�= [OM×(M−p), IM ]T , �
�=

[Ip, Op×(M−p)]T , �̃
�= [O(2M−p)×M, [IM−p,

O(M−p)×M ]T ], where d(θk)
�= d(a(θ))/(dθ)|θ=θk

, d(φk)
�=

d(a(φ))/(dφ)|φ=φk
, d2(θk)

�= d(a2(θ))/(dθ)|θ=θk
, ek is a

p × 1 unit vector with a unity element at the kth location
and zeros elsewhere, we obtain the asymptotic
(large-sample) MSE expressions of θ̂k and φ̂k as follows.

THEOREM 1 For the estimates θ̂k and φ̂k obtained by
minimizing the cost functions f(θ) in (12) and fk(φ) in (20),
the large-sample MSEs of these estimates are given by

MSE(θ̂k)
�= E{(θ̂k − θk)2}
= σ 2

2NH 2
zkk

Re{HzkkhH (θk)Rxx h(θk)

+ 2gH (θk) JM g∗(θk)h
T

(θk)Rxx h(θk)

+ Hzkkh
T

(θk)Rxx h
∗
(θk)} (49)

MSE(φ̂k)
�= E{(φ̂k − φk)2}
= H̄ 2

kk

H̃ 2
kk

MSE(θ̂k)

+ σ 2

2NH̃kk

Re{bH (θk, φk)Rz̄1 z̄1 b(θk, φk)}

+ σ 2H̄kk

NH̃ 2
kkHzkk

Re{σ 2 gH (θk, φk)

× �h(θk)gH (θk)�b(θk, φk)

+ ḡH (θk, φk)�̃ JM g∗(θk)h
T

(θk)RH
z̄1x

b(θk, φk)

+ ḡH (θk, φk)�̃g(θk)hH (θk)RH
z̄1x

b(θk, φk)

+ σ 2 ḡH (θk, φk)�h
∗
(θk)gT (θk) JM�b(θk, φk)}

(50)

where Rxx
�= E{x(n)xH (n)} = A(φ)Rs AH (φ) + σ 2 IM

and Rz̄1 z̄1

�= E{ z̄1(n) z̄H
1 (n)} = A1(θ)Rs AH

1 (θ) + σ 2 Ip.

PROOF See Appendix B.

Obviously the expression of MSE(φ̂k) in (50) is more
complicated than that of MSE(θ̂k) in (49) due to the fact
that the estimated elevation angle θ̂k is used to estimate the
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azimuth angle φk and accomplish the pair-matching. As
clarified in Appendix B, the first and third terms of
MSE(φ̂k) are affected by not only the noise variance σ 2

and the number of snapshots N, but also the estimation
error of θ̂k.

VI. NUMERICAL EXAMPLES

Each ULA of the L-shaped array has M = 7 sensors
with half-wavelength spacing (i.e., d = l/2), and the SNR
is defined as the ratio of the signal power to the noise
variance at each sensor. For comparing the estimation
performance of the CODEC method implemented in the
batch manner, some subspace-based 2-D DOA estimation
methods developed for the L-shaped array such as the
joint SVD-based method (JSVD) [32], the generalized
ESPRIT-based joint direction finding (GESPRIT-JDF)
[34] and the parallel factor (PARAFAC) analysis model
based method (PARAFACM) [35] with automatic pairing,
the modified propagation method (MPM) [31] with correct
paring, and the cross-correlation matrix based ESPRIT
(CCM-ESPRIT) method [37] and the CODE method [40]
with pairing-matching are carried out as well, where the
PARAFAC decomposition is implemented with the
COMFAC Matlab function (cf. [35] and the reference [9]
therein). Additionally the 2-D rank reduction estimator
(2DRARE) for uniform rectangular array [15] is also
applied to the L-shaped array for performance
comparison. Note that the computationally intensive
eigendecomposition is required in these methods except
for the CODE method. All the results shown below are
obtained from 20,000 independent trials.

EXAMPLE 1 Performance versus SNR: Firstly the
constant elevation and azimuth angles of two uncorrelated
signals are (θ1, φ1) = (50◦, 43◦) and (θ2, φ2) = (75◦, 53◦),
and the SNRs are varied from –10 dB to 25 dB, while the
number of snapshots is fixed at N = 100.

The scatter plots of 2-D DOA estimation results for
200 estimates of the 20,000 independent trials at SNR =
–2.5 dB are shown in Fig. 3. We can see that the estimate
(θ̂k, φ̂k) deviates from its true location due to the influence
of additive noises and the finite number of snapshots, and
hence the pair (θ̂k, φ̂k) lying outside the boundaries of the
permissible region depicted in Fig. 2(a) will result in the
estimation failure [10]. Obviously the estimation failure is
encountered for the MPM [31], JSVD [32],
GESPRIT-JDF [34], CCM-ESPRIT [37], 2DRARE [15],
PARAFACM [35], and CODE [40], while the estimates of
the proposed CODEC method are all inside the
permissible region, since the constraint is imposed to
alleviate the estimation failure. Additionally we can find
that the estimated angles of the CODEC method are much
less perturbed from their true locations than that of other
methods except for the 2DRARE method, because the
eigendecomposition is used in the latter, and the estimates
of the MPM and GESPRIT-JDF methods fluctuate wildly.

Fig. 3. Scatter plot of two hundred independent estimates for 2-D DOA
estimation of two uncorrelated signals (red dot: correct pairing (θ̂1, φ̂1);
blue dot: correct pairing (θ̂2, φ̂2); black dot: wrong pairing (θ̂1, φ̂2) or
(θ̂2, φ̂1)) in example 1 (SNR = –2.5 dB, N = 100, M = 7, (θ1, φ1) =

(50◦, 43◦), and (θ2, φ2) = (75◦, 53◦)).

Now the empirical root-MSE (RMSE) of the estimated
elevation and azimuth angles of the kth signal sk(n) is
employed as the metric of overall performance, which is
defined by

RMSE
�=

√√√√ 1

N̄

N̄∑
i=1

((
θk − θ̂

(i)
k

)2
+

(
φk − φ̂

(i)
k

)2
)

(51)

where N̄ is the number of independent trials (i.e., N̄ =
20,000 herein). The empirical RMSEs of s2(n) are shown
in Fig. 4(b), where the theoretical RMSEs of the CODEC
method given in (49) and (50) and that of the CODE
method [40] and the stochastic Cramer-Rao bound (CRB)
[54] are also plotted for comparison, while the detection
probabilities of successful pair-matching of the CODE
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Fig. 4. (a) Detection probability and (b) RMSE of s2(n) versus SNR for
two uncorrelated signals (“♦”: JSVD; “�”: GESPRIT-JDF; “�”:

PARAFACM; “∇”: 2DRARE; dashed line: MPM with correct pairing;
dashed line with “x”: CCM-ESPRIT; solid line: CODE; solid line with

“◦”: proposed CODEC method; dotted line: theoretical RMSE of CODE;
dotted line with “ + ”: theoretical RMSE of CODEC; and dash-dotted
line: CRB) in example 1 (N = 100, M = 7, (θ1, φ1) = (50◦, 43◦), and

(θ2, φ2) = (75◦, 53◦)).

method and the CCM-ESPRIT [37] are shown in Fig. 4(a).
As clarified in [40], the estimate of the linear propagator in
[31, Eq. (17) or (18)] is an approximate solution even
when N → ∞, and hence the MPM [31] with correct
pairing has larger RMSE regardless of SNR. Although the
JSVD [32] performs better at low SNR because of the use
of the eigendecomposition process, it has a larger RMSE
at moderate to high SNRs due to the inaccurate estimate
φ̂k caused by the finite number of snapshots (cf. [40]). By
introducing two electric angles as the functions of θ k and
φk, the GESPRIT-JDF [34] employs the generalized
ESPRIT method [56] to estimate a “novel electric angle”
as a function of these electric angles based on the
assumption rank (CHD) = rank(D). Unfortunately, this
relation does not hold true for arbitrary matrices C and D
due to the fact that rank(CH D) ≤ min{rank(C), rank(D)}.
Consequently the GESPRIT-JDF has large RMSEs
regardless of the SNR and the number of snapshots, even
though it invokes two computationally intensive and
time-consuming eigendecomposition processes. The
PARAFACM [35] is a combination of the PARAFAC [57]
with the L-shaped array and developed under the basic
assumption that the signal covariance matrix Rs is a
diagonal matrix. Clearly the estimated matrix Rs becomes
a nondiagonal matrix when the number of snapshots is
finite, and hence the PARAFACM provides inaccurate
direction estimates even at high SNR and for uncorrelated
signals. Further since it involves a multiparameter
nonlinear optimization problem, the PARAFACM is rather
computationally complicated and requires good initial
estimates. We note that the 2DRARE [15] provides more
accurate estimates than the other methods because the
2M × 2M covariance matrix of two ULAs (i.e., all

correlations) and its eigendecomposition are invoked,
while its computational complexity is roughly 32M2 N +
O(8M3) + p2 (2(M – 1)2 + 6M2) + 32p2(M – 1)2 +
2p(M – 1)O(p3) + O(4p2(M – 1)2) + p(8M + 25M2 +
O((2M + 1)2)) flops, which is much larger than that of the
proposed CODEC method. Additionally when the SNR is
low, some pair-matchings of estimated elevation and
azimuth angles fail as shown in Fig. 4(a), and these
unsuccessful pair-matchings cause the CCM-ESPRIT [37]
and the CODE [40] to degrade at low SNR, while the
latter has smaller empirical RMSE than the former at
moderate to high SNRs.

However, the proposed CODEC method estimates the
elevation angles {θ k} by using the cross-correlations
between two ULAs with the working array aperture M.
Then these estimates {θ̂k} are employed to estimate the
corresponding azimuth angles {φk} by using some
cross-correlations between two ULAs and that between
two subarrays with the working array aperture 2M – p and
by taking the permissible region of parameters θ k and φk

given in (3). As a result, the CODEC method without
eigendecomposition can pair the estimated elevation and
azimuth angles automatically, and its estimation
performance is better than that of the CODE [40] and the
other aforementioned methods [31, 32, 34, 35, 37] except
for the 2DRARE with eigendecomposition [15] as
displayed in Fig. 4. The relative efficiency ratios between
the computational complexity of the CODE/2DRARE and
that of the CODEC in MATLAB flops are about
fCODE/fCODEC ≈ 4.754 and f2DRARE/fCODEC ≈ 7.609 in this
empirical scenario. Further the empirical RMSE of s2(n) is
very close to the theoretical one given in (49) and (50),
which is smaller to that of the CODE method, and the
difference between the theoretical RMSE and the CRB is
small. (The results for s1(n) are similar and omitted
herein).

EXAMPLE 2 Performance versus Number of Snapshots:
The simulation conditions are similar to those in example
1, except that the number of snapshots N is varied from 10
to 1,000, and the SNR is fixed at SNR = 5 dB. As shown
in Fig. 5, it is clear that the proposed CODEC method
generally outperforms the MPM [31] with correct pairing,
the JSVD [32], GESPRIT-JDF [34], and PARAFACM
[35] with automatic pairing, and the CCM-ESPRIT [37]
and the CODE method [40] with pair-matching even when
the number of snapshots is rather small, while the
2DRARE [15] has relatively better performance than the
other methods at low SNR due to the use of
eigendecomposition. Furthermore the empirical RMSE
agrees very well with the theoretical one derived in
Section V (except for a small number of snapshots).

EXAMPLE 3 Tracking Performance of On-Line
Algorithm: Now there are four uncorrelated signals with
the nonlinearly or linearly time-varying elevation and
azimuth angles (θ1(n),φ1(n)), (θ2(n),φ2(n)), (θ3(n),φ3(n)),
and (θ4(n),φ4(n)) with SNR = 5 dB, where (θ1(0),φ1(0))
= (72◦, 120◦), (θ2(0),φ2(0)) = (135◦, 60◦), (θ3(0),φ3(0))
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Fig. 5. (a) Detection probability and (b) RMSE of s2(n) versus number
of snapshots for two uncorrelated signals (“♦”: JSVD; “�”:

GESPRIT-JDF; “�”: PARAFACM; “∇”: 2DRARE; dashed line: MPM
with correct pairing; dashed line with “x”: CCM-ESPRIT; solid line:
CODE; solid line with “◦”: proposed CODEC method; dotted line:

theoretical RMSE of CODE; dotted line with “ + ”: theoretical RMSE of
CODEC; and dash-dotted line: CRB) in example 2 (SNR = 5 dB, M = 7,

(θ1, φ1) = (50◦, 43◦), and (θ2, φ2) = (75◦, 53◦)).

Fig. 6. Averaged estimates of (a) θk(n̄) and (b) φk(n̄) of four
uncorrelated signals with crossings and RMSD learning curves of (c)

RMSD(θ̂k(n̄)) and RMSD(φ̂k(n̄)) in example 3 (dotted line: actual
values; red solid lines: θ̂1(n̄) or φ̂1(n̄); back solid lines: θ̂2(n̄) or φ̂2(n̄);
blue solid lines: θ̂3(n̄) or φ̂3(n̄); and green solid lines: θ̂4(n̄) or φ̂4(n̄);

SNR = 5 dB, M = 7, Ns = 200, and γ̄ = 0.99).

= (100◦, 80◦), and (θ4(0),φ4(0)) = (95◦, 100◦) as shown
in Figs. 6(a) and 6(b), and Ns = 200. The forgetting factor
γ̄ in (37) and (38) is set as γ̄ = 0.99, and the Luenberger
observer gains {gθk

} and {gφk
} in (31) and (34) are chosen

as gθ1
= gφ1

= [0.5070, 0.1493/Ns,

0.0165/N2
s ]T , gθ2

= gφ2
= [0.5070, 0.1399/Ns,

0.0143/N2
s ]T , gθ3

= gφ3
= [0.4880, 0.1421/Ns,

0.0156/N2
s ]T , and gθ4

= gφ4
= [0.4975, 0.1443/Ns,

0.0157/N2
s ]T .

Here we define the empirical root-mean-square
derivation (RMSD) learning curve of the estimated
azimuth and elevation angles θ̂k(n̄) and φ̂k(n̄) as

RMSD(φ̂k(n̄))
�=

√√√√ 1

N̄

N̄∑
i=1

(
φk(n̄) − φ̂

(i)
k (n̄)

)2
(52)

RMSD(θ̂k(n̄))
�=

√√√√ 1

N̄

N̄∑
i=1

(
θk(n̄) − θ̂

(i)
k (n̄)

)2
(53)

where θ̂
(i)
k (n̄) and φ̂

(i)
k (n̄) are the estimates obtained in the

ith trial at the instant n̄. The trajectories of the actual
elevation angles and their averaged estimates {θ̂k(n̄)}, and
their empirical RMSD learning curves are plotted in Figs.
6(a) and 6(c), while the corresponding results for the
azimuth angles {φk(n̄)} are shown in Figs. 6(b) and 6(d),
respectively. As described above, because the
computationally expensive eigendecomposition process
and pair-matching procedure are avoided, the proposed
CODEC method is feasible for the on-line
implementation. Moreover due to the utilization of the
Luenberger state observer, the presented on-line algorithm
can achieve correct association of estimates θ̂k(n̄) and
φ̂k(n̄) at two successive instants of direction updating.
From the empirical mean and mean-square behaviors
shown in Fig. 6, we can see that the proposed on-line
algorithm has a remarkable capability for tracking the
time-varying 2-D DOAs of multiple targets with crossings
on their trajectories, and the estimated elevation and
azimuth angles are always very close to the actual
values.

VII. CONCLUSIONS

In this paper, a new computationally efficient
subspace-based batch method called CODEC and its
on-line algorithm with Luenberger observer were proposed
for 2-D DOA estimation and tracking of noncoherent
narrowband signals of multiple targets impinging on the
L-shaped sensor array, where the computationally
expensive eigendecomposition process and pair-matching
procedure are avoided, and the estimation failure is
overcome. The statistical properties of the CODEC
method were studied, and the expressions of asymptotic
MSEs of the estimated elevation and azimuth angles were
clarified explicitly. Furthermore the effectiveness of the
CODEC method and the tracking algorithm and the
theoretical analysis were verified through numerical
examples. The simulation results showed that the CODEC
method implemented in the batch manner outperforms the
previously proposed CODE method with pair-matching
with a small number of snapshots and at low SNR, and the
theoretical analysis agrees well with empirical results,
while the on-line algorithm can provide remarkable
performance for tracking the 2-D DOAs of multiple
moving targets with crossover points on their
trajectories.
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APPENDIX A. COMPUTATION OF OBSERVER GAIN

Here by defining the gain of Luenberger observer as

g
�= [g1, g2, g3]T and letting z1, z2, and z3 denote the

desired pole locations of the matrix F – gcT F, we can
derive its characteristic equation

det{zI3 − (F − gcT F)}
= z3 + (g1 + g2Ns + 0.5g3N

2
s − 3)z2 + (−2g1

−g2Ns + 0.5g3N
2
s + 3)z + g1 + 1 = 0 (54)

while the desired observer characteristic equation is given
by

(z − z1)(z − z2)(z − z3) = z3 + c1z
2 + c2z + c3 = 0

(55)

where c1
�= −(z1 + z2 + z3), c2

�= z1z2 + z1z3 + z2z3,

and c3
�= z1z2z3. Then by comparing the coefficients of

equal powers of z in (54) and (55) and after some simple
manipulations, we can obtain the elements of gain g as

g1 = c3 + 1 (56)

g2 = 1

2Ns

(c1 − c2 − 3c3 + 3) (57)

g3 = 1

N2
s

(c1 + c2 + c3 + 1) . (58)

APPENDIX B. PROOF OF THEOREM 1

Firstly we consider the derivation of MSE(θ̂k) in (49).
We easily obtain the first-order expression for the
estimation error �θ k of the estimate θ̂k as [40]

�θk
�= θ̂k − θk ≈ −Re{dH (θk)�̂za(θk)}

dH (θk)�zd(θk)

≈ −Re{dH (θk) Qz( QH
z Qz)

−1 Q̂
H

z a(θk)}
Hzkk

= −Re{νk}
Hzkk

(59)

where d̃(θ)
�= dd(θ)/dθ, the estimated orthogonal

projector �̂z in the denominator of (59) can be replaced
with the true �z without affecting the asymptotic property
of estimate θ̂k (cf. [39, 46, 47]), and

νk
�= dH (θk) Qz( QH

z Qz)
−1 Q̂

H

z a(θk)

≈ −dH (θk)�z R̂z RH
z1(Rz1 RH

z1)−1a1(θk)

= −gH (θk)[R̂zx,
̂̃Rzx][Rz̄1x, R̃z̃1x]H (Rz1 RH

z1)−1a1(θk)

= νk1 + νk2 (60)

in which

νk1
�= − 1

N

N∑
n=1

gH (θk)z(n)xH (n)h(θk) (61)

νk2
�= −gH (θk)̂̃Rzx h(θk)

= − 1

N

N∑
n=1

gH (θk) JM z∗(n)xT (n)h(θk). (62)

Consequently from (59), the MSE of the estimation error
�θ k is given by

MSE(θk)
�= E{(�θk)2} ≈ 1

2H 2
zkk

Re{E{ν2
k } + E{|νk|2}}

(63)
where the fact that Re{νi}Re{νk} = 0.5(Re{νiνk}
+ Re{νiν

∗
k }) is used implicitly. Thus by substituting (60)

into (63) and performing some lengthy but straightforward
manipulations under the assumptions of data model,
MSE(θ k) in (49) can be readily obtained (see [40] for
details).

On the other hand, as the azimuth angle φ̂k is a
minimum point of fk(φ) in (20), by considering the
relationship between the cost functions fk(φ) in (20) and
f(θ , φ) in (19), we get

0 = f ′
k(φ̂k) = f ′

φ(θ̂k, φ̂k) (64)

where f ′
φ(θ, φ) is the first-order partial derivative of f(θ ,

φ) in (19) with respect to φ given by

f ′
φ(θ, φ)

�= ∂f (θ, φ)

∂φ
= 2Re{d

H

φ (θ, φ)�̂āH (θ, φ)} (65)

in which dφ(θ, φ) = [0T
(M−p)×1, dT (φ)]T. Since θ̂k and φ̂k

are consistent estimates for a sufficiently large number of
snapshots N, the approximation of f ′

φ(θ̂k, φ̂k) can be found
in its Taylors series expansion about the true values θ k and
φk as

f ′
φ(θ̂k, φ̂k) ≈ f ′

φ(θk, φk) + f ′′
φφ(θk, φk)(φ̂k − φk)

+ f ′′
φθ (θk, φk)(θ̂ − θk) (66)

where the second-order partial derivatives f ′′
φθ (θ, φ) and

f ′′
φφ(θ, φ) of f (θ, φ) are given by

f ′′
φθ (θ, φ)

�= ∂f ′
φ(θ, φ)

∂θ

= 2Re{̃d
H

φθ (θ, φ)�̂ā(θ, φ)

+ d
H

φ (θ, φ)�̂dθ (θ, φ)}
= 2Re{d

H

φ (θ, φ)�̂dθ (θ, φ)} (67)

f ′′
φφ(θ, φ)

�= ∂f ′
φ(θ, φ)

∂φ

= 2Re{̃d
H

φφ(θ, φ)�̂ā(θ, φ)

+ d
H

φ (θ, φ)�̂dφ(θ, φ)}
≈ 2Re{d

H

φ (θ, φ)�̂dφ(θ, φ)} (68)

in which dθ (θ, φ) = [dT
2 (θ), 0T

M×1]T , and d̃φθ = 0 is used
implicitly in (67). From (66) and (59), we can obtain the
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estimate error �φ
�= φ̂k − φk as

�φk
�= φ̂k − φk

≈ − 1

f ′′
φφ(θk, φk)

(
f ′

φ(θk, φk) − f ′′
φθ (θk, φk)

Re{νk}
Hzkk

)
≈ − 1

d
H

φ (θk, φk)�dφ(θk, φk)

·(Re{d
H

φ (θk, φk)�̂āH (θk, φk)}
− Re{d

H

φ (θk, φk)�dθ (θk, φk)}Re{νk}
Hzkk

)

= − 1

H̃kk

(
Re{ξk} + H̄kk

Re{νk}
Hzkk

)
(69)

where the estimated orthogonal projector �̂ in the
second-order derivatives f ′′

φφ(θk, φk) and f ′′
φθ (θk, φk) are

replaced with the true � without affecting the asymptotic
property of estimate φ̂k similarly to that used in (59), while

H̃kk
�= d

H

φ (θk, φk)�dφ(θk, φk)

= dH (φk)�22d(φk) (70)

H̄kk
�= −Re{d

H

φ (θk, φk)�dθ (θk, φk)}
= −Re{dH (φk)�21d2(θk)}
= Re{dH (φk)A(φ)(A

H
(θ, φ)A(θ, φ))−1AH

2 (θ)d2(θk)}
(71)

ξk
�= d

H

φ (θk, φk)�̂aH (θk, φk) (72)

in which remark 3 and (24) are used implicitly.

Furthermore the estimated orthogonal projector �̂ in (72)
can be approximated as (cf. [39, 47])

�̂ = I2M−p − R̂(R̂
H

R̂)−1 R̂
H

≈ I2M−p − (R̂ − R)(R
H

R)−1 R
H − R(R̂

H

R̂)−1 R̂
H

(73)

where

R(R̂
H

R̂)−1 R̂
H ≈ R(R

H
R)−1(R̂ − R)H + R(R̂

H
R̂)−1 R

H

(74)
in which

R(R̂
H

R̂)−1 R
H ≈ R(R

H
R)−1(R

H
R − R̂

H

R̂)(R
H

R)−1 R
H

+ (I2M−p − �) (75)

and

R
H

R − R̂
H

R̂ ≈ 2R
H

R − R
H

R̂ − R̂
H

R. (76)

By combining (73)–(76) and after some simple

calculations, we get the approximation of �̂ as

�̂ ≈ (I2M−P − R(R
H

R)−1 R̂
H

)� − �R̂(R
H

R)−1 R
H

.

(77)

Then by substituting (77) into (72) and using the fact
�ā(θk, φk) = 0(2M−p)×1, from (16), ξ k can be
approximated as

ξk ≈ −d
H

φ (θk, φk)�R̂(R
H

R)−1 R
H

ā(θk, φk)

= − ḡH (θk, φk)R̂b(θk, φk)

= − 1

N

N∑
n=1

ḡH (θk, φk) ȳ(n) z̄H
1 (n)b(θk, φk) (78)

where

ḡ(θk, φk)
�= �dφ(θk, φk) = [�

T

12, �
T

22]T d(φk) (79)

b(θk, φk)
�= (R

H
R)−1 R

H
ā(θk, φk)

= (Rs A1(θ)H )−1(A
H

(θ, φ)A(θ, φ))−1

× A
H

(θ, φ)ā(θk, φk)

= (Rs AH
1 (θ))−1ek. (80)

Consequently from (69) and (63), the MSE of the
estimation error �φk is given by

MSE(φ̂k)
�= E{(�φk)2}
= H̄ 2

kk

H̃ 2
kk

MSE(θ̂k) + 1

2H̃ 2
kk

Re{E{ξ 2
k } + E{|ξk|2}}

+ H̄kk

H̃ 2
kkHzkk

Re{E{ξkνk} + E{ξkν
∗
k }}. (81)

Under the basic assumptions on the data model, and by
using the well-known formula for the expectation of four
Gaussian random variables with zero-mean (e.g., [55])

E{x1x2x3x4} = E{x1x2}E{x3x4}
+ E{x1x3}E{x2x4} + E{x1x4}E{x2x3}

and considering the facts that �ā(θk, φk) = 0(2M−p)×1 and
�z ā(θk) = 0M×1, from (60) and (78), we can get

E{ξ 2
k } = 1

N2
E

{
N∑

n=1

N∑
t=1

ḡH (θk, φk) ȳ(n) z̄H
1 (n)b(θk, φk)

× ḡH (θk, φk) ȳ(t) z̄H
1 (t)b(θk, φk)

}
= ḡH (θk, φk)Rb(θk, φk) ḡH (θk, φk)Rb(θk, φk)

+ 0 + 1

N
ḡH (θk, φk)Rb(θk, φk) ḡH (θk, φk)

× Rb(θk, φk) = 0. (82)

Similarly we also obtain

E{|ξk|2} = σ 2

N
H̃kkbH (θk, φk)Rz̄1 z̄1 b(θk, φk) (83)

E{ξkνk1} = σ 4

N
ḡH (θk, φk)�h(θk)gH (θk)�b(θk, φk) (84)

E{ξkν
∗
k1} = σ 2

N
ḡH (θk, φk)�̃g(θk)hH (θk)RH

z̄1x
b(θk, φk)

(85)
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E{ξkνk2} = σ 2

N
ḡH (θk, φk)�̃ JM g∗(θk)h

T
(θk)RH

z̄1x
b(θk, φk)

(86)

E{ξkν
∗
k2} = σ 4

N
ḡH (θk, φk)�h

∗
(θk)gT (θk) JM�b(θk, φk)

(87)
where �� = � and ḡH (θk, φk)A(θk, φk) = 01×p are used
implicitly. Therefore by substituting (82)–(87) into (81),
MSE(φ̂k) in (50) can be obtained immediately.
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