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Linear Prediction Approach to Direction Estimation
of Cyclostationary Signals in Multipath Environment

Jingmin Xin, Member, IEEE,and Akira Sano, Member, IEEE

Abstract—In this paper, we investigate the estimation of the di-
rections-of-arrival (DOA) of closely spaced narrowband cyclosta-
tionary signals in the presence of multipath propagation. By ex-
ploiting the spatial and temporal properties of most communica-
tion signals, we propose a new cyclic forward-backward linear pre-
diction (FBLP) approach for coherent signals impinging on a uni-
form linear array (ULA). In the proposed algorithm, the evaluation
of the cyclic array covariance matrix is avoided, and the difficulty
of choosing the optimal time lag parameter is alleviated. As a re-
sult, the proposed approach has two advantages: 1) The compu-
tational load is relatively reduced, and 2) the robustness of estima-
tion is significantly improved. The performance of the proposed ap-
proach is confirmed through numerical examples, and it is shown
that this approach is superior in resolving the closely spaced co-
herent signals with a small length of array data and at relatively
low signal-to-noise ratio (SNR).

Index Terms—Array signal processing, cyclostationarity,
directions-of-arrival estimation, linear prediction, singular value
decomposition, spatial smoothing.

I. INTRODUCTION

I N ARRAY signal processing, a major problem is the es-
timation of the directions-of-arrival (DOA) of the signals

impinging on an array of sensors. For estimating the directions
of multiple narrowband signals from the noisy array data, max-
imum likelihood (ML) methods and subspace-based methods
are well known. While subspace-based methods such as MUSIC
[1], ESPRIT [2], minimum-norm [3], and MODE [in a uniform
linear array (ULA) case] [6], [41] are more computationally
efficient than the ML methods [4]–[7], all of them except MODE
are unsuitable for coherent signals. To tackle the problem of
coherent signals, several modifications to the subspace-based
methods have been proposed [8]–[12]; among them, spatial
smoothing (SS) [8] is a popular preprocessing scheme. MODE
is also known to be statistically efficient in cases when either
the number of snapshots or the signal-to-noise ratio (SNR) is
sufficiently large [6], [48], [49]. However, in array processing
of wireless communication systems, there are some practical
situations where the overall number of incident signals is greater
than the number of sensors, even though the number of desired
signals is smaller, and multipath propagation due to various
reflections is often encountered. Furthermore, the number of
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snapshots is usually limited. In these scenarios, the performance
of most subspace-based methods and their variants will degrade.
Moreover, the subspace-based methods basically rely on the
spatial information contained in the received data, whereas the
temporal properties of the desired incident signals are ignored.

Most man-made communication signals exhibit cyclosta-
tionarity for a given cycle frequency because of the underlying
periodicity arising from carrier frequencies or baud rates [13],
[14]. Many direction estimation methods exploiting this inher-
ently temporal property have been developed recently (see, e.g.,
[14]–[21] and references therein) in which the stationary noise
and the interfering signals that do not share a cycle frequency
common to the desired signals are suppressed. For estimating
the directions of coherent cyclostationary signals, a cyclic ML
method [22] and an SS-based cyclic MUSIC method [23],
[50] were proposed. However, the former is computationally
expensive because it involves a multidimensional optimization,
whereas the latter is still not computationally efficient enough
since the cyclic correlation matrices of subarrays must be
evaluated.

Therefore, this paper aims to investigate an efficient method
for estimating the DOA of closely spaced narrowband cyclo-
stationary signals in a multipath propagation environment. The
linear prediction (LP) methods are attractive for resolving the
closely spaced signals with small length of data and at low
SNR because of their computational simplicity [24]–[26]. In this
paper, we propose a new cyclic forward-backward LP (FBLP)
approach to localizing the coherent signals impinging on a ULA.
By utilizing the spatial and temporal properties of the incoming
signals, a modified FBLP equation is formed with a subarray
scheme, and then, the prediction coefficients determined from a
cyclic LP equation can be used to estimate the DOA of the co-
herent signals. As the cyclic correlation function is dependent on
the time lag parameter, the choice of the optimal lag is crucial for
the cyclic methods [15], [17], [18], [20], but it is rarely available.
In this paper, we use multiple lags in a forward-backward way to
exploit the cyclic statistical information efficiently. In addition,
the choice of the subarray size (i.e., the order of the LP model
plus one) is important to achieve the best performance of DOA
estimation. For sufficiently high SNR, an analytical expression
of error variance of spectral peak position is derived using linear
approximation. Then, the optimal subarray size minimizing the
peak position variance is clarified. Unlike the SS-based cyclic
MUSIC method [23], [50], the proposed approach avoids evalu-
ating the cyclic array covariance matrix. Thus, it is more capable
of discriminating in favor of the desired coherent signals against
the noise and interfering signals than the conventional LP-based
methods [9], [11], and its computation is simpler than that of the

1053–587X/01$10.00 © 2001 IEEE



XIN AND SANO: LINEAR PREDICTION APPROACH TO DIRECTION ESTIMATION 711

SS-based cyclic MUSIC method. The performance of the pro-
posed approach is verified through numerical examples.

II. PROBLEM FORMULATION

A. Data Model

We consider a ULA of identical and omnidirectional
sensors with spacing and assume that narrowband signals

with zero-mean and center frequencyare far enough
away and come from distinct directions . The received
signal at the th sensor can be expressed by

(1)

(2)

where is the noiseless received signal, is the addi-
tive noise, , , is the speed of
propagation, and is the measured relatively to the normal of
the array.

From (1) and (2), the received array data can be rewritten in
a more compact form as

(3)

where ,
,

, ,
, and denotes transpose.

We will consider the direction estimation under the following
assumptions on the data model.

A1) The array steering matrix is unambiguous, i.e.,
the steering vectors
are linearly independent for any set of distinct

.
A2) There is frequency-flat multipath propagation [8], [28].

Without loss of generality, the first ( and
[see Remark C)] signals are coherent ones

from the desired source that are expressed by

(4)

where is the multipath coefficient that represents the
complex attenuation of theth signal with respect to
the first one with and .

A3) The desired source exhibits the second-order cyclosta-
tionarity with the cycle frequency, and it is cyclically
uncorrelated with the other signals for this cycle fre-
quency.

A4) The noises are cyclically uncorrelated with
themselves and with the incident signals at the consid-
ered cycle frequency.

A5) The number of coherent signalsand the cycle fre-
quency are known.

Remark A: When the number of coherent signals is un-
known, it can be estimated by using the methods presented in
[14, ch. 3] and [16]. We have also proposed a detection method
by minimizing the mean-squared-error (MSE) of the estimated
LP parameters in [21] and [46], and it is well suited to be
used in conjunction with the approach for the coherent signals
described in this paper. If the cycle frequencyis unknown,

it can be estimated from the finite data by using the methods
proposed in [18] and [29].

B. Linear Prediction with Subarrays

Here, we consider the case that the interfering signals are ab-
sent. The noiseless received signals in (2) differ only
by a phase factor ; therefore, from Prony’s method [30],
we can find that the noiseless signals obey a linear dif-
ference equation [9], [24]. By dividing the array intoover-
lapping subarrays of size , where and

, i.e., the th forward subarray comprises sensors
, the signal can be exactly

predicted by as [24], [30]

(5)

where ,
, and are the LP coefficients. Sim-

ilarly, by partitioning the full array into subarrays with sen-
sors in the backward direction, we obtain the LP equation for the
th backward subarray as [9]

(6)

where ,
and the asterisk denotes the complex conjugate.

From (1), (5), and (6), we then get the following forward LP
(FLP) and backward LP (BLP) models for the noisy received
data

(7)

(8)

where ,
,

and are the forward and backward predic-
tion errors given by ,

,
,

.
In theLP-basedDOAestimationmethods, theestimationof the

LP coefficients is very important [31]. The accumulation of the
additive noises in , , , and
will cause the ordinary least squares (LS) orminimum-norm esti-
mate from (7) and (8) to become biasedand inconsistent [32], and
this estimate will make the DOA estimation unreliable. The total
least squares (TLS) LP [33] and the smoothed LP [11] methods
can be applied to reduce the noise effect, but their performances
deteriorate when the total number of incoming signals exceeds
the number of sensors, even though the number of desired signals
is smaller. In this paper, we will exploit the inherent cyclostation-
arity of most communication signals to suppress the interfering
signals and noise.

III. CYCLIC DOA ESTIMATION OF COHERENTSIGNALS

A. Cyclic Correlation of Noisy Data

First, the noiseless signal in (2) can be rewritten com-
pactly as

(9)
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where
. Then, from the definition of the cyclic correlation function

[13], [14] and under the assumptions regarding the source sig-
nals and additive noises, we obtain the cyclic correlation func-
tion between the noisy signals and as

(10)

where denotes the time
average of , is the lag parameter, and is the cyclic
covariance matrix of the source signals given by

(11)

where denotes the Hermitian transpose. Clearly, the affec-
tions of the arbitrary (not necessarily stationary and/or spatially
white) noise and interference vanish if the cycle frequencyis
appropriately selected; therefore, the signal detection capability
can be improved.

However, because of the coherency of thesignals from the
desired source, the cyclic covariance matrix of source signals

in (11) is obtained as

(12)

where is the vector of multipath coefficients given by
with ,

is defined in (4) for , and is the cyclic
autocorrelation function of the signal given by

. We can easily find that the cyclic
matrix is singular, i.e., rank , and it brings
degradation to the ordinary cyclic methods.

B. Linear Prediction Approach to DOA Estimation

In the absence of interfering signals, from (10), (1) and (7), we
obtain the cyclic correlation between the noisy
signal in the th forward subarray and the signal

as

(13)

where
. Equivalently, we can obtain the cyclic correlation

between the noisy signal and the signal
in the thbackwardsubarrayas

(14)

where
. As shown in (10)–(12), even in the presence of interfering

signals, theaffectionsof the interferingsignalsandnoiseareelim-
inatedbyexploitingthecyclostationarity.Wecanfindthat thepre-
diction relations (13)and (14) in thecyclicdomainarevalidwhen
theinterferingsignalsarepresent.Now,weconsidertheDOAesti-

mationof thedesiredcoherentcyclostationarysignalsbyutilizing
theLPtechnique.

By letting to and combining (13) and (14), we can
obtain an FBLP equation for the cyclic correlations as

(15)

where , ,
,

,
, and

. To combat the rank deficiency
resulting from signal coherency, we have the following propo-
sition.

Proposition: If the array is partitioned properly to ensure
, the rank of the cyclic matrix in (15) equals the

number of the desired coherent signals.
Proof: See Appendix A.

We can find that the dimension of signal subspace is restored to
as long as the total number of subarrays is at least; therefore,

it is possible to estimate the directions of the desired coherent
signals from (15) without any influence from additive noise or
interfering signals. However, the matrix in
(15) is usually rank-deficient due to and .
Hence, the ordinary LS estimateof the parameterfrom (15) will
be numerically unstable [38]; this ill-conditioning can adversely
affect the performance of direction estimation [31]. Hence, we
use the truncated singular value decomposition (SVD) to obtain
a numerically reliable estimation, where theprincipal singular
values and the corresponding singular vectors of the matrix
are used [9], [24], [31], [35], [36].

By performing the SVD on the matrix in (15), we obtain

(16)

where and are the unitary matrices given by
and , is the di-

agonal matrix given by diag
with ,
are the singular values, and and are the corresponding
right and left singular vectors. Then, the minimum-norm esti-
mate of the LP parameteris obtained [24], [35]

(17)

Finally, by finding the phase of the zeros of the polynomial
closest to

the unit circle in the -plane, or by searching for thehighest
peaks of the spectrum , the directions of
the desired coherent signals can be estimated [3], [24], [30].

C. Cyclic Localization Algorithm

As the cyclic correlation function is dependent on the lag pa-
rameter [13], [14], if the cyclic correlation of one source is
zero or insignificant for a given, then this signal will not be
resolved. The choice of the optimal lag parameter is important in
cyclic methods [15], [17], [18], [20], but it is rarely available. To
combat this problem, some methods were suggested [15], [17],
[27]. In the SS-based cyclic MUSIC method [23], [50], the spa-
tially smoothed cyclic correlation matrices corresponding to the
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lags were averaged and then
used to estimate the directions of coherent signals, whereis
a positive integer. However, this method is not computationally
efficient enough because the cyclic correlation matrices of sub-
arrays must be evaluated.

In order to alleviate the difficulty in choosing the optimal lag
and to exploit the cyclic statistics effectively, we use multiple
lags to obtain a robust estimate of the LP parameter. By con-
catenating (15) for , we can ob-
tain a modified cyclic vector-matrix form as

(18)

where
, and

. Then, on the above derivations, we can estimate
the directions of the desired coherent signals with the cycle
frequency from (18).

In summary, the proposed FBLP-based algorithm for esti-
mating the DOA of coherent cyclostationary signals from the
finite array data is as follows.

1) Set the subarray size to satisfy and ,
where .

2) Calculate the estimates of the cyclic correlation functions
and from the finite received sig-

nals for as

for (19)

for (20)

where and for ,
whereas and for .

3) Form the estimated cyclic vectorand matrix as (18)
by using (19), (20), and (15).

4) Perform the SVD on the estimated matrix as (16),
where is replaced by .

5) Calculate the minimum-norm estimate of the LP param-
eter as

(21)

6) Estimate the DOA of the coherent signals from the
highest peak locations of the spectrum given by

.

Remark B: We find that the proposed cyclic FBLP-based ap-
proach involvesthecomputationof the cycliccorrelations
of the sensor signals to form the cyclic matrixin (18), i.e., it
requires operations, whereas the cyclic MUSIC algo-
rithms[23], [50]basedontheSS[8]and improvedSS[37] require

and operations for
theevaluationof thecyclicmatrices, respectively,whereis the

total number of time lags. Obviously, in this paper, the computa-
tional load indecorrelationstep is reducedby

or times, respectively,because theevaluationof the
cyclic array covariance matrix can be avoided.

The implementation of the proposed approach requires two
major steps: i) computation of the cyclic correlations to form
and and ii) estimation of LP parameterby SVD. Calculating
the cyclic correlations for multiple lags takes approximately

flops, where a flop is defined as a floating-point ad-
dition or multiplication operation as adopted by MATLAB soft-
ware. The number of flops needed by the SVD of matrixis
of the order , whereas the computation of

requires flops. Thus,
a rough estimate of the number of MATLAB flops required by
the proposed approach is when , where the
computations needed by the remaining steps are negligible.

Remark C: For estimating the directions of thecoherentsig-
nals,asstated in theProposition, thenumberof forwardandback-
ward subarrays must be at least, i.e., , and the size of
each subarray must be greater than, where .
It follows that and , i.e., the
minimum number of sensors needed in the array must be at least

(it follows that the maximum number of the coherent
signals will be for sensors). Equivalently, the sub-
arraysize (i.e., theorderof thepredictionmodelplusone)must
be chosen to satisfy the inequality .
To improve the estimation performance,should be chosen as
large as possible in order to increase the effective aperture. How-
ever, for a very large value of , fewer element terms of
[equal to in number] are formed to compute the
singular values and singular vectors of (and ). This re-
sults in larger perturbations of the singular values and singular
vectors so that the resolution capability decreases despite the in-
creased aperture [9], [24]. The choice of the optimal value of
is crucial to achieve the best performance of direction estimation.
A compromise value of the subarray size should be determined
by balancing the effects of resolution and stability [9], [24]; we
experimentally determine it to be about for high SNR.
More details can be found in Section III-D.

Remark D: In practice, the cyclic correlation function has to
be evaluated from the array data with a finite number of snap-
shots , and estimation perturbation is unavoidable. Ifis very
large, the disturbances due to the finite number of snapshots may
have a relatively large influence, and the effect of additive noise
will be included. On the other hand, if it is very small, the effect
of multiple lags may be neglected because very little informa-
tion about the cyclic correlation characteristics is contained. As
a result, should be determined by a tradeoff. In this paper, we
choose large enough so that are nonzero and signif-
icantly varying for [17]. The statistical test [29] can be
used to select a statistically significant value of.

D. Optimal Subarray Size

The optimal subarray size (i.e., the optimal order of LP model
plus one) is desired to obtain the best estimation performance,
but it generally depends on the number of desired coherent sig-
nals, the SNR, and the angle separation of incident signals. In
the proposed approach, the directions are determined from the
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peak positions of the spectrum . Here, we
investigate the choice of the subarray size to minimize the vari-
ance of peak position error.

The derivation of the error variance of spectral peak position
for direction estimation is tedious, so here, we sketch the deriva-
tion for the FLP method when the SNR is sufficiently high.
As the interfering signals are suppressed in the proposed ap-
proach, for notational simplicity, we assume that the interfering
signals are absent and that the noises are temporally and spa-
tially uncorrelated white complex Gaussian noises, i.e., ,

for , and
and , where and denote the ex-
pectation and Kronecker delta.

Then, the calculation in Appendix B results in the following
variance for the peak position error in terms of noise variance,
signal power, and subarray size

var

for

for

(22)

where denotes the “spatial frequency” for conve-
nience, and is the autocorrelation of the signal given
by . Therefore, we can find that var
increases with subarray size for , whereas
var has the minimum when is about for

. It is straightforward to show that the minimum
variance of (and, hence, ) can be obtained when the sub-
array size is about . The derivation and result for the
FBLP-based method are similar and are omitted here.

We note that for two closely spaced coherent signals with
equal power, a remarkable rule for the SS-based MUSIC scheme
is that , which was derived by maximizing
the distance between the signal and noise subspaces [42].

IV. NUMERICAL EXAMPLES

The effectiveness of the proposed cyclic FBLP-based direc-
tion estimation approach is illustrated through several numerical
examples, in which the desired coherent binary phase-shift
keying (BPSK) signals can be distinguished from the interfering
BPSK signals that have different cycle frequencies. In the
simulations, the sensor separation of the ULA is ,
where the center frequency and speed of propagation are
MHz and m/s, respectively, the sensor outputs
are collected at the rate MHz, and the lag parameter
is chosen as . The BPSK signals have a raised-cosine
pulse shape with 50% excess bandwidth. The additive noises are
temporally and spatially uncorrelated white complex Gaussian
noise with zero-mean and variance. The SNR is defined as
the ratio of the power of the source signals to that of the additive
noise at each sensor. For comparing the estimation performance,

SS-based MUSIC [8], smoothed LP method [11], SS-based
cyclic MUSIC [23], [50] and MODE (with linear constraint) [6],
[47], are performed, and the Cramér–Rao lower bound (CRLB)
[5] is calculated. For improving the estimation accuracy, the last
step of the two-step procedure of the MODE algorithm is iterated
five times (see [47] for more details). The results shown below
are all based on 100 independent trials, and the dimension of
signal subspace is assumed to be the number of desired coherent
signals for the SS-based MUSIC and smoothed LP method.

Example 1—Performance versus SNR:We assess the perfor-
mance of the proposed approach with respect to the SNR of
the coherent signals. The direct-path signal from the BPSK 1
source impinges on the ULA of sensors from angle

with 1.6 MHz baud rate ( normalized to the
sampling rate [17]), whereas one coherent arrival comes from

with mutipath coefficient . There is one inter-
fering BPSK 2 signal that arrives from with 2.0 MHz
baud rate ( normalized to the sampling rate). Here, the
numbers of impinging signals and coherent signals are
and . The number of snapshots and the subarray size
are and , where the number of subarrays is

. The SNR of the direct-path signal from the desired co-
herent source is varied from5 dB to 30 dB, whereas that of
the interference is fixed at 10 dB.

Therootmean-squared-errors(RMSEs)oftheestimatesand
versusSNRareshowninFig.1.BecauseSS-basedMUSICand

smoothedLPmethoddonotexploit the temporalpropertiesof the
incoming signals, they have no signal selective capability. Thus,
theyareunabletodistinguishthedesiredsignalsfromtheinterfer-
ence correctly even when the dimension of signal subspace is as-
sumed to be the number of coherent signals. Although the RMSE
ofestimate obtainedbyMODEdecreasesastheSNRincreases,
theperformanceofMODEdegradesseverelyat lowSNR,and the
estimate has a rather large RMSE. Except at very low SNR, the
proposed approach performs better over SS-based MUSIC and
smoothed LP method, and the proposed approach is more accu-
rate thanSS-basedcyclicMUSICwith itsRMSEveryclose to the
CRLBathigherSNR.Wealsofindthattheperformanceofthepro-
posedapproachisbetter thanthatofMODEatrelatively lowSNR.

Example 2—Performance versus Number of Snapshots:We
examine the performance of the proposed approach in terms of
the number of snapshots, where the simulation conditions are
similar to those in Example 1, except that we fix the SNR of the
direct-path signal at 10 dB and vary the number of snapshots

from 32 to 1024. Fig. 2 shows the RMSEs of the estimates
and versus number of snapshots. As described in Ex-

ample 1, SS-based MUSIC and smoothed LP method fail to es-
timate the directions of the desired coherent signals correctly,
and MODE performs worse as the number of data is not suf-
ficiently large. When the length of the data is small, SS-based
cyclic MUSIC degrades. However, the proposed approach out-
performs SS-based MUSIC, the smoothed LP method, SS-based
cyclic MUSIC, and MODE, and it can estimate the directions
of coherent signals accurately even for a small number of snap-
shots. As the number of snapshots is increased, the improvement
of the proposed approach is much larger than that of the other
methods, although its asymptotic inefficiency is noticeable due
to the finite length of data like the minimum norm LP method
[24], [26], [35].
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Fig. 1. RMSEs of the estimates of� and� versus SNR by using SS-based
MUSIC (dotted line), smoothed LP (dashed line), SS-based cyclic MUSIC
(dash–dot line), MODE (solid line with small circles) , and the proposed
approach (solid line) in Example 1 (dash–dots line denotes CRLB).

Fig. 2. RMSEs of the estimates of� and � versus number of snapshots
by using SS-based MUSIC (dotted line), smoothed LP (dashed line), SS-based
cyclic MUSIC (dash–dot line), MODE (solid line with small circles), and the
proposed approach (solid line) in Example 2 (dash–dots line denotes CRLB).

Example 3—Performance versus Angle Separations:Here,
we test the accuracy of the proposed approach against the angle
separation between the desired coherent signals. The simula-
tion parameters are identical to those in Example 1, except that
the two coherent signals of BPSK 1 source come fromwith
equal power, where the SNR is fixed at 10 dB, andis varied
from to . The RMSEs of the arrival angle estimates versus
angle separation are plotted in Fig. 3. The simulation results
show that the proposed approach can resolve the closely spaced
coherent signals with much less RMSE than SS-based MUSIC,
the smoothed LP method, and SS-based cyclic MUSIC in gen-
eral. However, it is noted that the smoothed LP method gives
better estimates with less RMSE for small angle separations in
this empirical scenario.

Fig. 3. RMSEs of the estimates of�� versus angle separation2� by using
SS-based MUSIC (dotted line), smoothed LP (dashed line), SS-based cyclic
MUSIC (dash–dot line), and the proposed approach (solid line) in Example 3
(dash–dots line denotes CRLB).

Example 4—Performance versus Subarray Size:We study
the effect of the subarray size (i.e., the order of the prediction
model plus one) on the estimation performance of the proposed
approach. The simulation parameters are the same as that in
Example 1, except that the subarray sizeis varied from 3 to
8, i.e., the number of subarrays is to .

Formeasuring theoverall performanceofestimating thedirec-
tions of coherent signals in terms of the subarray size, we define
an “empirical RMSE (ERMSE)” of the estimated directions as

ERMSE (23)

where is the number of trials, and is the estimate obtained
in the th trial. When the SNR of the direct-path signal is2.5
dB, 0 dB, 5 dB, and 17.5 dB, the ERMSEs of the estimatesand

against subarray size are shown in Fig. 4, where the “empir-
ical CRLB” is calculatedbyaveraging the correspondingCRLBs
over the number of coherent signals. It is noted that the choice of
subarray size can significantly improve the performance of the
proposed approach. We find that the best estimation can usually
be attained when is about for medium and high SNR,
whereas a reasonable estimation can be obtained with a larger
valueof for lowSNR.Thesimulationresultsagreewith thedis-
cussion in Section III; therefore, a compromise value of subarray
size should be determined by balancing the effects of resolution
and stability. We experimentally choose it to be approximately

for high SNR [33], [39], [40].
Example 5—Performance versus Number of Sensors:Next,

we consider the impact of the number of sensors on the esti-
mation performance of the proposed approach. The simulation
conditions are similar to that of Example 1, except that the
SNR of direct-path signal is assumed be 10 dB, and the sensor
number is varied as 6, 8, 10, 12, 16, 20 and 24, where the
subarray size is chosen as round , where round
denotes round-off operation. The RMSEs of the estimates
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Fig. 4. ERMSE’s of the estimates of� and� versus subarray size by using
SS-based MUSIC (dotted line), smoothed LP (dashed line), SS-based cyclic
MUSIC (dash–dot line), and the proposed approach (solid line) in Example 4
(dash–dots line denotes the empirical CRLB).

Fig. 5. RMSEs of the estimates of� and� versus number of sensors by using
SS-based MUSIC (dotted line), smoothed LP (dashed line), SS-based cyclic
MUSIC (dash–dot line), and the proposed approach (solid line) in Example 5
(dash–dots line denotes CRLB).

and versus number of sensors are plotted in Fig. 5. As in
the previous examples, the proposed approach outperforms
SS-based MUSIC, the smoothed LP method, and SS-based
cyclic MUSIC, and its superiority over the other methods
improves as the number of sensors is increased.

Example 6—Performance of Signal Selective Capa-
bility: We verify the signal selective capability of the proposed
cyclic FBLP-based approach to estimate the DOA of coherent
signals from two sources with different cycle frequencies. Two
coherent signals with equal power from the BPSK 1 source
impinge on an array of sensors from
and , whereas three coherent signals with equal power
from the BPSK 2 source arrive from , , and

. The SNR for each signal is 10 dB, the number of
snapshots is , and the subarray size is chosen as .

We perform the proposed approach with and
to estimate the directions of the coherent signals from the two
cyclostationary sources. Due to the presence of two coherent
sources, the SS-based MUSIC and smoothed LP method cannot
distinguish the desired coherent signals from the interfering sig-
nals even though the dimension of signal subspace is assumed to
be and , respectively, because they have no signal
selective capability. To compare SS-based cyclic MUSIC and
the proposed approach, the averaged estimate and the RMSE
for each angle estimate are illustrated in Table I. Because the
incoming signals are spatially close, SS-based cyclic MUSIC
gives estimates with larger errors. However, the proposed ap-
proach can estimate the DOA of the two coherent sources more
accurately.

V. CONCLUSIONS

Recently, many cyclostationarity-based direction estimation
methods have been proposed for improving signal detection ca-
pability. Unfortunately, most of them perform as poorly as the
ordinary subspace-based methods in multipath propagation sce-
narios, which are often encountered in many communications
systems. To estimate the directions of narrowband coherent cy-
clostationary signals impinging on a ULA, we proposed a new
cyclic approach by applying the LP technique. In order to im-
prove the estimation performance, multiple lag parameters are
used to exploit the cyclic statistics sufficiently and effectively.
Moreover, the optimal subarray size that minimizes the peak po-
sition variance was derived using linear approximation for suffi-
ciently high SNR. Since the computation of the cyclic array con-
variance matrix is avoided, the proposed approach has advan-
tages over SS-based cyclic MUSIC in computation load and im-
plementation. The effectiveness of the proposed approach was
verified and compared with SS-based MUSIC, smoothed LP
method, SS-based cyclic MUSIC, and MODE through numer-
ical examples, and it was clarified that the proposed approach is
superior in resolving the closely spaced coherent signals with a
small number of snapshots and at low SNR.

APPENDIX A
PROOF OFPROPOSITION

By defining and as the and sub-
matrices of the array steering matrix in (3) consisting
of the first and rows, respectively, the noiseless signal
vectors and in (5) and (6) can be expressed com-
pactly [8], [34]

(A1)

(A2)

where diag . From
(1), (9), (11), and (A1), under the assumptions on the data
model, we can rewrite the cyclic correlation vector in
(13) as

(A3)
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TABLE I
COMPARISON OF THEAVERAGED ESTIMATES AND THE RMSES FOREACH ANGLE ESTIMATE BY USING SS-BASED CYCLIC MUSIC

AND THE PROPOSEDCYCLIC FBLP-BASED APPROACH INEXAMPLE 6

where . Then, by some manipulations, we can
re-expresse the cyclic matrix in (15) as

...

(A4)

where diag . Equivalently, we
have

(A5)

(A6)

By substituting (A4) and (A6) into the definition of the cyclic
matrix in (15), some straightforward manipulations give
us

(A7)

where diag with
for , for

, and .
Because for , whereas for

, the ranks of the matrices and are given
by rank rank . As and are the submatrices
of the Vandermonde matrix , we clearly have rank

and rank . Consequently, since
it has been assumed that and , we obtain
that rank . Additionally, the rank of the matrix is
given by rank ; therefore, rank iff

. Thus, if , the rank of the cyclic matrix
is equal to the number of the desired signalsregardless of
the coherence of the source signals. Here, and the
assumption are used implicitly.

APPENDIX B
DERIVATION OF VARIANCE OF SPECTRALPEAK POSITION

By defining the correlation of noiseless signals and
as , from (5), we can ob-

tain the following relation between the LP parameters and the
correlations:

(B1)

for , where . Then, the parame-
ters can be determined by solving the Yule–Walker
equations. In fact, the LP parameters satisfy the relation
[43], [44]

(B2)

where is a complex constant. From (B1) and (B2),
by some manipulations, we can succinctly express the
Yule–Walker equations as , where ,

, , ,
, and

. After some manipulations,
we can explicitly express the equations that needed to be solved
as [43]

(B3)

for , where
. Thus, the analyt-

ical expression of LP parameters can be obtained by
solving a smaller set of equations in the coefficients,
and then, the null-spectrum function
can be exactly obtained, where ,

, and .
When there is additive noise, the estimates can

be expressed as , where is the error,
and the corresponding null-spectrum function can be
written as , where ,

, and the peak positions are
related to the perturbation , where

. Then, for the function
around the spatial frequency , we have the following

Taylor series expansion for sufficiently large:

(B4)

(B5)
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where and , and
the higher-order derivative terms are neglected. Thus, the esti-
mation error of the spatial frequency is given approxi-
mately by [5], [45]

Re

Re

Re
(B6)

where , and (the terms
neglected in approximation are ).

From (7), we get the following forward prediction error
for the estimate

(B7)

where ,
, and

is used implicitly. Then, we obtain the prediction error power

Re

(B8)

where ,
, and the small

terms are neglected in the approximation. By following the idea
of [45], we can find the perturbation by an approximate
minimization of the prediction error power in (B8). Letting
the derivative of with respect to be zero, it follows
that

(B9)

for , where
, , , and

.
Therefore, by solving the two equations (B3) and (B9)

to get and , we can obtain the approximate error
of peak position from (B6). For obtaining a simple

expression of the variance of spectral peak position, here, we

consider the “well-separated” signals [i.e.,
], where the two equations (B3) and (B9) can be approximated

as diagonal. As a result, we obtain Im ,
where the LP parameters and are given by

(B10)

(B11)

and . For sufficiently large , the variance of
the estimate is then given by

var Re Re
(B12)

From the fact that for matrix and vector with compatible
dimensions that vec , where vec is a
vector obtained by listing the columns of one beneath the
other beginning with the leftmost column, anddenotes the
Kronecker operation, we can get

(B13)

where vec vec
, is the identity matrix, and .

By performing some manipulations, theth element of the ma-
trix is given by

for

for
for

(B14)

where . From (B13) and (B14), we then have

(B15)

for [i.e., ], and we get

(B16)
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for [i.e., ]. On the other hand, we have

(B17)

because . Thus, by substituting (B15)–
(B17) into (B12), (22) can be obtained.
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