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MSE-Based Regularization Approach to Direction
Estimation of Coherent Narrowband Signals Using

Linear Prediction
Jingmin Xin, Member, IEEE,and Akira Sano, Member, IEEE

Abstract—This paper addresses the problem of directions-of-ar-
rival (DOAs) estimation of coherent narrowband signals impinging
on a uniform linear array (ULA) when the number of signals is un-
known. By using an overdetermined linear prediction (LP) model
with a subarray scheme, the DOAs of coherent signals can be esti-
mated from the zeros of the corresponding prediction polynomial.
Although the corrected least squares (CLS) technique can be used
to improve the accuracy of the LP parameters estimated from the
noisy array data, the inversion of the resulting matrix in the CLS
estimation is ill-conditioned, and then, the CLS estimation becomes
unstable. To combat this numerical instability, we introduce mul-
tiple regularization parameters into the CLS estimation and show
that determining the number of coherent signals is closely related
to the truncation of the eigenvalues. An analytical expression of
the mean square error (MSE) of the estimated LP parameters is
derived, and it is clarified that the number of signals can be deter-
mined by comparing the optimal regularization parameters with
the corresponding eigenvalues. An iterative regularization algo-
rithm is developed for estimating directions without any a priori
knowledge, where the number of coherent signals and the noise
variance are estimated from the noise-corrupted received data si-
multaneously.

Index Terms—Array processing, eigenvalue decomposition
(EVD), linear prediction (LP), mean square error (MSE), regu-
larization.

I. INTRODUCTION

A RRAY signal processing is used in many fields to ex-
tract the desired information from data received at an

array of sensors. In these applications, the estimation of the
directions-of-arrival (DOAs) of signals from the noisy data is
a major task. To estimate the DOAs of narrowband signals,
maximum likelihood (ML) methods [41], [42], [51]–[53], [48],
[56] and subspace-based methods are well known [59]. In
general, subspace-based methods have attracted considerable
attention because of their relatively high resolution capability
and low computational complexity. Typical subspace-based
methods include the Pisarenko method [1], multiple signal
classification (MUSIC) [2], estimation of signal parameters via
rotational invariance techniques (ESPRIT) [3], minimum norm
(Min-Norm) [4], method of direction estimation (MODE) [50],
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[51], [54] [for a uniform linear array (ULA)], and weighted
subspace fitting (WSF) [43], [48], [49].

In the Min-Norm linear prediction (LP) method for a ULA
[4], [5], singular value decomposition (SVD) is applied to an
overdetermined LP data matrix with a truncation to reduce the
noise effect and to mitigate the ill-conditioned nature of the con-
ventional LP method. The accuracy of the estimated LP param-
eters is obtained in the sense of least squares, and the DOAs of
the incident signals are estimated from the zeros of a polyno-
mial formed from the LP parameters. It has been shown that the
Min-Norm LP method [4], [5] provides excellent resolution in
moderately low signal-to-noise ratio (SNR) environments [6].
As studied in [7], in the LP-based direction finding methods,
the reliable estimation of the LP parameters is clearly an impor-
tant issue. To improve the accuracy of the LP parameters esti-
mated from the noisy array data, the total least squares (TLS)
technique was used to reduce the noise effect from both the ob-
servation vector and the data matrix [8].

Unfortunately, like the other subspace-based methods except
MODE and WSF, the Min-Norm LP and TLS-LP methods [4],
[8] suffer serious degradation when the incident signals are
mutually coherent in the practical scenarios due to multipath
propagation in which the rank of the source signal covariance
matrix is reduced. To improve the performance of the sub-
space-based direction estimation algorithms, some methods
such as spatial smoothing (SS) [9], smoothed eigenvector
[10], and eigenvector smoothing [11] have been proposed to
combat the deleterious effect due to coherency. Inspired by
SS preprocessing in which the subarray covariance matrices
are averaged for decorrelation, a subarray averaging was used
to produce a noise-free reduced-rank approximation for an
array data matrix, and a smoothed Min-Norm LP method was
proposed to estimate the DOAs of coherent signals [12], [13].
By incorporating a subarray scheme with the LP model, new
TLS-LP methods were developed to accurately estimate the
directions of impinging signals in the presence of multipath
propagation [14], [15]. However, these direction estimation
methods for coherent signals requirea priori knowledge of the
number of incident signals, as do most of the subspace-based
methods [1]–[4], [50]. Because the number of coherent or
noncoherent signals is usually unknown, a detection procedure
[16]–[23] generally must precede the direction estimation.
The ML methods [18], [42], [56], [20] and the WSF method
[43], [48] are generally the optimal solution to the detection
and estimation problem. In these methods, the solution of
direction finding is required for each of several hypotheses.

1053–587X/01$10.00 © 2001 IEEE
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In addition, MODE and WSF are the statistically efficient
direction estimator in cases when either the number of snap-
shots or the SNR is sufficiently large [48], [52]. In general,
MODE needs the number of signals and the dimension of
signal subspace [50], [51], and the WSF detection scheme can
be combined with MODE to provide the estimated number
of signals for MODE/WSF [43], [48]. However, when the
number of snapshots is finite, it will be difficult to choose an
appropriate threshold for the sequential hypothesis testing of
WSF detection scheme without anya priori knowledge [16],
[20], [21], [43].

In this paper, we investigate the problem of estimating the
DOAsofcoherentnarrowbandsignals impingingonaULAwhen
the number of signals is unknown. A new mean-square-error
(MSE) based regularization approach is developed by using
the LP model of array data with an appropriate overdetermined
order (larger than the number of signals) and a subarray scheme.
In general, the ordinary least squares (LS) estimate of the LP
parameters from the noise-corrupted array data becomes biased
[24], [7]. The corrected least squares (CLS) method [25], [26] is
a refinement of the LS method in attempt to obtain a consistent
estimate by combating the noise effect in both the data matrix
and data vector, and it is asymptotically equivalent to the TLS
method [27]. However, because the estimated noisy covariance
matrix is subtracted by a noise covariance matrix, the resulting
matrix has a reduced rank, and then, the CLS estimation of the
LP parameters will be ill conditioned so that adequate truncation
of the eigenvalues of the resulting matrix should be carried out
[28], [29]. To perform this truncation, the noise variance and the
number of signals are obviously required. Unfortunately, they
are unknown in practice.

Therefore, we introduce multiple regularization parameters
into the CLS estimation to stabilize the estimate of the LP param-
eters. We find that the regularization parameters minimizing the
MSE of the estimated LP parameters give an optimal truncation
of the eigenvalues. The number of signals can then be determined
from the number of retained eigenvalues. An asymptotic MSE
is derived through the calculations of the third- and fourth-order
moments of the additive noise, and an analytical expression of
the optimal regularization parameters is provided. A data-based
iterative algorithm is developed to estimate the DOAs of the
coherent signals without anya priori knowledge in which the
noise variance and number of coherent signals are estimated
simultaneously, and the convergence behavior of the iterative al-
gorithm is analyzed. The performance of the proposed approach
is demonstrated and compared with that of the conventional
methods through numerical examples. The simulation results
show that the proposed method performs better than the WSF
detection scheme [43], [48] when the number of snapshots is
small and that it outperforms the SS-MDL and SS-AIC methods
[16], [17] in detecting the number of signals. In addition, when
thenumberofsignals iscorrectlyestimated, theproposedmethod
is superior to SS-based root-MUSIC [9], [58], the smoothed
Min-Norm [13], and the CLS method (with the true number of
signals or noise variance) in resolving closely spaced coherent
signals.

The data model and decorrelation using the LP technique are
presented in Section II. Section III discusses the MSE-based

regularization approach to CLS estimation. In Section IV, the
direction estimation from the received array data is derived. The
effectiveness of the proposed approach is evaluated in Section V,
and the paper is summarized in Section VI.

II. PROBLEM FORMULATION

A. Data Model

We consider a linear array of equally spaced omnidirec-
tional sensors with spacing. We assume that ( )
narrowband signals with center frequencyare far from the
array and impinge on the array from distinct directions .
Under the narrowband assumption, the wavefronts can be ap-
proximated as planar. Then, the propagation of a wavefront be-
tween sensors can be modeled as a simple phase delay, and all
the signals are the baseband equivalents [48], [59], [60]. Then,
the signal received by theth sensor is the superimposition of
impinging wavefronts and the additive noise, which can be ex-
pressed as

(1)

where is the noiseless received signal, and is the
additive noise. The signal is represented as

(2)

where the incident signal is the zero-mean random
process with the direction measured relative to the normal of
array, , , and is the propagation
speed.

The received data can thus be described by using vector-ma-
trix notation as

(3)

where , , and are the vectors of the received
data, the incident signals, and the additive noise given by

,
, and ,

and is the array response matrix given by
, in which

, and denotes transposition.
In this paper, we make the following assumptions in the

derivation of the algorithm.
Assumption A:The ULA is calibrated, and the array

response matrix is unambiguous, i.e., for any collec-
tion of distinct , the corresponding vectors

are linearly independent. Equiva-
lently, the matrix must have full rank.

Assumption B:Without loss of generality, the impinging sig-
nals are coherent and are expressed as

for (4)

where is the multipath coefficient representing the complex
attenuation of the th signal with respect to the first one ,

, and .



XIN AND SANO: MSE-BASED REGULARIZATION APPROACH TO DIRECTION ESTIMATION 2483

Assumption C:The additive noise components are
temporally and spatially white complex Gaussian noise with
zero-mean and variance , and they are uncorrelated with the
source signals. The noise variance is given by

and

(5)

for , where is the Kronecker delta,
and and the asterisk denote the expectation and complex
conjugate.

Remark A: In this paper, a crucial assumption is that the
equally spaced linear array is calibrated so that the noiseless
signals received at each sensor obey a linear difference equation
exactly, i.e., the calibration and other model errors are not
considered. Additionally, the additive noise is assumed to be
temporally and spatially white Gaussian noise. If the spatial
whiteness condition is not met, we can prewhiten the array
data by linearly transforming the estimated covariance matrix
of the noise, which can be estimated from measurements with
no signal present [48], [59]. More specifically, if the noise
covariance matrix is , the received array data are multiplied
by , which denotes a Hermitian square-root factor of

. Furthermore, although we assume that the incident signals
are fully coherent for simplicity, as shown in Remark B, it is
straightforward to extend the proposed method to the case of
partly coherent or incoherent signals.

In array signal processing, the problem of estimating the
signal parameters from the sensor measurements has received
much attention, and many algorithms have been proposed.
However, most of them require knowledge of the number of
signals impinging on the array. In this paper, we consider the
direction estimation of coherent signals from the noise-cor-
rupted array data when the number of signals and the noise
variance are unknown.

B. Linear Prediction and Decorrelation

It is well known that the source signal covariance matrix will
be singular (i.e., rank deficient) in coherent situations so that the
number of signals impinging on the array cannot be estimated
directly from the multiplicity of the eigenvalues of the array co-
variance matrix. To circumvent this crucial rank deficit problem,
specific modifications such as spatial smoothing [9], [30] have
been suggested to decorrelate the signal coherency and restore
the rank of the source signal covariance matrix to the number
of arriving signals [17]. In this paper, we consider a new ap-
proach for estimating the signal parameters in the coherent case
by using the LP technique and a subarray scheme.

In essence, the DOAs are estimated by using the time delays
(phase differences) of signals impinging on the individual
sensors in the array. From the spatial property of array data
where the noiseless signal received at different sensors are
phase-shifted versions of one another, the noiseless received
signals in (2) obey a linear difference equation [4],
[5], [31]–[33]. By dividing the total array into overlap-
ping forward subarrays with sensors where
and , i.e., the th subarray comprises

sensors, the signal can
be predicted from a linear combination of the other signals

for (6)

where ,
, and are the coefficients of the

LP model. Here, and are the subarray size and the number
of subarrays. The order of the LP model is ; therefore,
the model order is larger than the number of signals as we have
assumed that .

By substituting (1) into (6), the noise-corrupted signal
can be expressed using the forward linear predic-

tion (FLP) model

(7)

where ,
is the prediction error given by ,

,
, and .

For to , from (7), we have a compact vector-matrix
form to express the array data as

(8)

where ,
, and

. From (1), we have
, and , where

,
, , and

.
Under the assumptions of the data model, we easily see that

the covariance matrix of the data matrix in (8) can be
represented as the sum of the noiseless (i.e., signal) covariance
matrix and noise covariance matrix

(9)

where is the noiseless covariance matrix given by
, denotes a

identity matrix, and denotes Hermitian transposition.
Now, we can derive the following relationship between the rank
of the noiseless covariance matrix and the number of coherent
signals.

Lemma: If the array is partitioned properly so that the
number of subarrays and the number of coherent signals satisfy
the relation , then the rank of the matrix will equal
the number of coherent signals regardless of whether the source
signals are coherent.

Proof: By defining and as the submatrices con-
sisting of the first and rows of the array response
matrix in (3), from (2) and (4), we can express the noise-
less vector in (6) as [9], [30]

(10)

where diag , and
. By substituting (10) into the definition of the
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noiseless matrix in (8) and performing some manipula-
tions, we obtain

(11)

where diag . We can then obtain the
noiseless covariance matrix in (9) as

(12)

where , and is the autocor-
relation of the source signal .

Under the assumption for the source signals that ,
we easily find that rank . Because the submatrices
and of are Vandermonde matrices and we assumed

, we can obtain rank
and rank for . Hence, we have
rank , i.e., the rank of matrix is given by rank
.
Remark B: When some incident signals are coherent and

the others are uncorrelated with these signals and with each
other, by assuming the first( ) signals are coherent
ones as defined in (4) and performing some manipulations,
we can obtain ,
where the diagonal matrices and are given
by diag , diag

, and . Then, we
easily find that the rank of matrix still equals the number of
incident signals.

Accordingly, for , the eigenvalue decomposition
(EVD) of the noiseless covariance matrix can be expressed
as

(13)

where , diag
and are the eigenvalues and corre-

sponding eigenvectors, , and
. Thus, the

covariance matrix of the data matrix has the following
EVD:

(14)

where diag , and
. The dimension of the signal subspace is . This

rank property is clearly useful for estimating the number of
coherent signals and their directions from (8). The detection
of the number of coherent signals can be formulated as the
determination of the rank of the noiseless covariance matrix
from the noise-corrupted array data.

From the LP parameters , a prediction polynomial
can thus be formed as [4], [33]

(15)

where . The DOAs of the coherent signals can
be estimated from thesignal zeros of closest to the unit
circle in the plane. It follows that the problem of direction

estimation of coherent signals is reduced to that of estimating
the LP parameters from the noisy array data.

III. OPTIMAL REGULARIZATION FOR CLS ESTIMATION

A. CLS Estimation of LP Parameters

From (15), we can find that the reliable estimation of the LP
parameters is very important for direction finding. Even though
the additive noise components in (1) are assumed to
be mutually uncorrelated white Gaussian, the prediction error

in (7) is no longer white. Although the ordinary LS
method is simple, it is no longer an optimal estimator due to
the accumulation of additive noise in . The LS estimate of

from (8) generally has a bias and is not consistent [8], [24],
and this estimate will result in an inaccurate estimation of the
angle of arrival [7]. To obtain an unbiased and consistent esti-
mate, a variety of estimation schemes have been proposed. The
CLS method [25], [26] is a modification of the LS estimation
to combat the noise effects in and in (8) simultane-
ously.

If , from (8), the CLS estimate of the LP
parameters is given by [25]

(16)

where ,
, and is the number of snapshots of the

array data. It should be noted that the true noise varianceis
required in the CLS estimation.

In (16), we can find that the matrix in
the bracket approaches the noiseless covariance matrixas

becomes sufficiently large, i.e.,

(17)

while the noiseless covariance matrix tends to be singular
because its rank is given by rank , where
denotes the probability limit. The small eigenvalues of the ma-
trix will cause the estimate to be numerically
unstable; therefore, the extraneous zeros of the corre-
sponding prediction polynomial tend to fall closer to or outside
the unit circle. They are usually observed as spurious peaks in
the spatial spectrum [35], [36]. It is thus difficult to distinguish
the signal zeros from the extraneous zeros, and furthermore,
the direction estimation will be inaccurate. Although the trun-
cation of the eigenvalues is useful in stabilizing this ill-condi-
tioned estimation [7], [28], [29], [36], [37], [46], the number of
principal eigenvalues (i.e., the number of signals) and the noise
variance are needed.

In the following, we will study ways to determine the rank
of the noiseless covariance matrix (i.e., the number of coherent
signals) and to estimate the noise variance simultaneously so
that we can improve the estimation of the LP parameters from
the noisy measurements.

B. Optimal Regularization for CLS Estimation

It is found that regularization is another approach to alleviate
the ill-posed problem [34], [37], [46], [47]. In fact, regulariza-
tion and truncation are intimately related. Here, we develop a
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regularization scheme for combating the ill-conditioning of the
CLS estimate in (16).

By introducing a regularization matrix into (16), we have
a regularized CLS (RCLS) estimate of the LP parameters as

(18)

where the regularization matrix is given by

(19)

in which diag , and are the mul-
tiple regularization parameters.

The next problem is how to determine the regularization ma-
trix so that the estimation of the LP parameters can be im-
proved. Let us consider the MSE of the estimate de-
fined by

MSE (20)

Because the data vector and matrix are perturbed
by the additive noise components as shown in (8), the
derivation of the MSE of the estimate will be com-
plicated because the third- and fourth-order moments of the ad-
ditive noise should be taken into account [25]. For a sufficiently
large number of snapshots, the analytical expression of the
asymptotic MSE is given by Theorem 1.

Theorem 1: If the number of snapshots is sufficiently
large, the asymptotic MSE of the estimate in (18)
is given by

MSE

(21)

Proof: See Appendix A.
The first term of the asymptotic MSE in (21) is the variance

term, and the second one is the bias term. From (21), we can find
that the small eigenvalues of the matrix will cause
an excessive increase in the MSE of the estimate . If the
regularization parameters are increased, the variance term
in (21) decreases, and the bias term increases. Obviously, an ac-
curate estimate of the LP parameters with a minimum MSE can
be obtained by choosing the adequate regularization parameters

.
Theorem 2: The optimal regularization parameters that min-

imize the asymptotic MSE are given by

for

for
(22)

and the minimum MSE is obtained as

MSE

(23)

Proof: By letting the derivative of MSE in (21) with
respect to equal zero and using the fact that

in (13), the optimal regularization parameters
are easily obtained. Then, by substituting (22) into (21), we ob-
tain the minimum MSE in (23).

Remark C: Here, we consider the theoretical computation of
the true LP parameters included in the definition of the MSE in
(20). In the absence of additive noise, from (6) and (8), we have
a compact LP model

(24)

As derived in the proof of Lemma in Section II, by some
straightforward manipulations, we can obtain a succinct ex-
pression of the Yule–Walker equations

(25)

where

and is the autocorrelation of signal . Because the rank of
the covariance matrix is , from (25), the true LP parameters
can be obtained [4], [28]

(26)

where the principal eigenvalues and eigenvec-
tors are given in (13). Note that (26) is the min-
imum norm solution of LP parameters, and we call it the “true”
solution in this paper.

C. Minimum MSE-Based Truncation and Detection

When the number of snapshotsis sufficiently large, from
(17) and (19), the RCLS estimate in (18) can be expressed as

(27)

It is known that both regularization and truncation tend to
dampen the contributions of the small eigenvalues [37], [46].
From (26) and (27), we can find that the regularization with
multiple parameters plays an important role in the truncation
of small eigenvalues, where a regularization parameter with an
infinite value implies the discarding of the corresponding small
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eigenvalue. As mentioned above, the MSE of the estimate
can be improved by adequately truncating the

small eigenvalues that cause instability in the estimation.
To determine whether the eigenvalueshould be retained

or discarded, we use the MSE as the decision criterion. We can
thus formulate the truncation problem as the minimization of
MSE in (21) on the condition that each regularization pa-
rameter takes only one value: zero or infinity. The solution is
given as the following theorem.

Theorem 3: The optimal truncation of the eigenvaluethat
minimizes the asymptotic MSE is given by

if (retain)

if (discard).
(28)

Proof: See Appendix B.
From Theorem 3, we can find that works as a threshold

value determining whether the eigenvalueshould be retained
or discarded. Therefore, if there exists a number, and in
(28) satisfies

for

for
(29)

the eigenvalues should be retained, whereas
the others should be discarded. The dimension of the subspace
spanned by the retained eigenvectors is. Because the rank
of the noiseless covariance matrix equals as shown in
Lemma, i.e., the dimension of the signal subspace is; there-
fore, we can decide that , i.e., the number of coherent
signals is equal to the determined truncation number.

In summary, we have shown that detecting the number of co-
herent signals is the same as determining the truncation of the
eigenvalues. The decision rule is as follows:

1) Compute the optimal regularization parameters in
(22).

2) Compare with the eigenvalue by using (28) to find
the that satisfies (29).

This is the basic principle for detecting the number of signals.
It implies that we have to obtain the optimal regularization pa-
rameters for determining the optimal truncation.

IV. DATA-BASED ITERATIVE ALGORITHM FOR DOA
ESTIMATION

A. Regularization with Accessible Noisy Data

As shown in (22), the optimal regularization parameters
for depend on the LP parameters, the noise
variance , and the eigenvalues and the eigenvectors
of the noiseless covariance matrix . All of these are unknown
and must be estimated from the received array data. In this sec-
tion, we present an approach to calculating the regularization pa-
rameters needed to detect and estimate the coherent signals from
the finite snapshots of the noisy measurements .

In most practical situations, information about the variance of
the additive noise is unavailable and must be estimated from the
received array data. As derived in (9) and (25), we can obtain

(30)

Then, from (8) and (9), we easily get

(31)

where

and denotes a null vector. From (25), can be
rewritten as , where is an

matrix consisting of the first rows of the matrix in
(3). Hence, we have rank ; therefore, the
matrix in (31) has the following SVD [27]:

(32)

where , ,
diag , and

.
Therefore, by performing the SVD on the matrix

(33)

where and are given in (16), we can estimate the noise vari-
ance as the smallest singular value or as the average of
the smallest singular values [43],
[48], [51], [57]. The eigenvalues and eigenvectors of the matrix

can then be estimated from the finite noisy array data

(34)

Because the RCLS estimate ofwith the optimal regulariza-
tion parameters is still unknown, to replace the true value of
with its estimate, we introduce another set of regularization pa-
rameters , where . We then have an
alternative regularized estimate

(35)

Then, by replacing the true values of, , , and
in (21) with their estimates , , ,
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and respectively, and using the property of EVD that
, we get the estimated MSE (EMSE)

of the estimate

EMSE

(36)

Hence, we can obtain the optimal values of the regularization
parameters from the available data for the given set of

(37)

for .
The alternative parameters used for calculating the es-

timate in (35) must have the same values as the
optimal regularization parameters in order to obtain a
reliable estimate of the LP parameters. That is, the parameters

should be determined by solving the equation

for (38)

As shown in (37), depends on the parameters ,
where . It follows that (38) is a nonlinear
equation in terms of the parameters , and it
is difficult to find the analytical solutions of this equation for
these parameters. However, from (37) and (38), we can deter-
mine the regularization parameters from the received array data
in an iterative manner. The procedure is summarized as follows.

a) Set the initial values of parameters as .
b) Calculate the regularization parameter by

using (37).
c) Update the old values of to the new ones as

. Then, repeat the above steps until
converges to a constant with a specified limit or

exceeds a specified large value.
d) Determine the optimal regularization parameter as

.

B. DOA Estimation with Iterative Regularization Algorithm

As described above, the regularization is the key to detecting
the number of signals and estimating their DOAs. By combining
the principles of the optimal truncation and the data-based reg-
ularization with the estimation of the noise variance, we can
present an iterative regularization algorithm that uses only the
received data . In this algorithm, the regularization
parameters are updated in an iterative manner without anya
priori information. A flowchart of the proposed algorithm is de-
picted in Fig. 1.

Fig. 1. Flowchart of the proposed algorithm for estimating the directions of
coherent signals.

Step 1) Set the subarray size as, where and
, and then, form the vectorand

the matrix as ,
and , by using
(7) and (8).

Step 2) Estimate the noise variance as by
using (33).

Step 3) Estimate the eigenvalues and the eigenvectors
by using (34), i.e.,

.
Step 4) Let , and set the initial values of the regular-

ization parameters as , where is a
small positive number that expresses machine preci-
sion (e.g., ).

Step 5) Calculate the estimate for the given
as

(39)

Step 6) Calculate the regularization parameters as

(40)

Step 7) Replace the old values of with the new ones
as

(41)

If exceeds a specified large value(e.g.,
), force it to , and calculate the increment

of as . Then, set
, return to Step 5), and repeat the above

procedure until any one of the following is satisfied:
i) for (e.g.,

), or ii) the number of iterations .
From the results of the iterative algorithm, the optimal reg-

ularization parameters are estimated as for
. By comparing the eigenvalue and the reg-

ularization parameter , the number of coherent signals is es-
timated to be , where is the number of the converged
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parameters . The noise variance can then be estimated as
[43], [48], [51], [57]

(42)

Finally, by using (34), the RCLS estimate of the LP parameters
is obtained as

(43)

Then, the DOAs of the coherent signals can be estimated from
the zeros of the corresponding LP polynomial

that are closest to the unit circle
in the plane or from the highest peaks of the spectrum

.
Remark D: Because a causal model is used for the prediction

(i.e., FLP), it follows from the Lemma in Section II that the max-
imum number of coherent signals that can be detected is

[9], [30]. Forward–backward averaging is a well-known
method for enhancing the performance of parameter estimation
in array signal processing [30], [54], [60]. Similarly, the full
array can be partitioned intobackward subarrays, each with
sensors [30]; therefore, we have the following backward linear
prediction (BLP) model for the noise-corrupted signal in
the th backward subarray

(44)

where ,
the backward prediction error is given by

, ,
and .

The above derivations and results are still valid if we
use FLP and BLP simultaneously [i.e., forward–backward
linear prediction (FBLP)] [5], [38], except that the number
of subarrays , the vector , and the matrix should be
replaced by , and ,
where , and

. In this case,
the maximum number of coherent signals is
[30], and the performance of the proposed algorithm can be
improved as the number of snapshots is doubled.

Remark E: In practice, the subarray sizeshould be chosen
appropriately because the information on the number of signals
is unavailable. From Remark D, we can find that the maximum
detectable number of signals is or for
sensors when FLP or FBLP, respectively, is used. Therefore, for
the proposed method with FLP or FBLP, we can predetermine
the number of signals as or , and a conser-
vative value of the subarray size can be chosen as
or , where the total number of subarrays will be

(for FLP) or (for FBLP). Clearly,
the inequality condition in the choice of the subarray size can
be satisfied, i.e., and (for FLP) or
(for FBLP); therefore, the DOAs of the coherent signals can be
estimated.

C. Convergence Behavior of Iterative Algorithm

It is rather difficult to strictly and theoretically analyze the
convergence of the proposed iterative regularization algorithm.
Here, we discuss the convergence behavior for a finite but large
number of snapshots when the noise variance and the true noise-
less covariance matrix are known.

In the iterative algorithm, the parameter (and, hence,
) in the th iteration is determined by using the parame-

ters obtained in the th iteration,
where . By substituting (39) into (40) and using the fact
that , we can rewrite as

(45)

where

(46)

(47)

Thus, we can find that in (40) is a quadratic function of
that expresses a parabolic curve on the– plane showing the
trajectory of minimizing the EMSE for the given ,
where , and the value of on this trajectory gives the
next value of [37]. If the parabolic curve does not inter-
sect the line , will diverge to infinity as . On
the other hand, if the parabolic curve intersects the line
in the limit , will converge to a bounded constant.

Hence, the converged regularization parameter is given
by the intersection of the parabolic curve (40) and the straight
line defined by [37], [40]. From (45) and ,
we can obtain

(48)

for , where for . From
(48), we can find that if

for (49)

is satisfied, then the two intersections of (48) are given by

(50)
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where , and . From

(45), the derivatives of in (40) with respect to at the
these intersections can be calculated as

(51)

(52)

The contraction mapping theorem [40] states that if the deriva-
tive at the intersection is less than one, the point is a stable con-
vergence point. Therefore, the smaller solution
will converge to a constant as . Conversely, if the in-
verse inequality of (49) is satisfied, i.e., ,
a solution for (48) does not exist, i.e., the parabolic curve given
by (40) and the straight line do not intersect, and
will diverge to infinity.

It is worthwhile examining the convergence of the iterative
algorithm when the noise variance and the true noiseless co-
variance matrix are known and the number of snapshots
is finite but large. From (46) and (47), we have

(53)

for , where for , and
. By using the fact that

in (13), we can obviously obtain that
for . Fur-

thermore, we can find that the inequality
holds for (i.e., ) when the number of
snapshots is finite but large. Therefore, based on the above
analysis, will diverge to infinity, whereas

will converge to constants for a finite but
large number of snapshots. This agrees with the theoretically
analytical expression of the optimal regularization parameters
derived in Theorem 2.

Unfortunately, when the number of snapshots is finite, the
inequality will hold for ,
where . Thus, we can easily see that the proposed iterative
algorithm sometimes underestimates the number of signals due
to uncertainties in the noise variance and the LP parameters and
small length of data. However, from the viewpoint of stabilizing
the CLS estimate of the LP parameters and reducing its MSE,
the result is reasonable.

V. NUMERICAL EXAMPLES

In this section, we evaluate the effectiveness of the proposed
approach with the FBLP model in estimating the DOAs from
only the observed array data. In the numerical examples, the
ULA has sensors with a half-wavelength spacing,
and the incident signals are the coherent binary phase-shift
keying (BPSK) signals with a raised cosine pulse shape with
50% excess bandwidth. The SNR is defined as the ratio of the
signal power to the noise power at each sensor. For assessing
the detection performance, the spatial smoothing based Akaike
information criterion (AIC) and minimum description length
(MDL) (i.e., SS-AIC and SS-MDL) methods [16], [17] and the
WSF detection scheme (initialization by MODE) [43], [48],
[51] are performed. To examine the estimation performance,
the LS and CLS methods, smoothed Min-Norm [13], spatial
smoothing based root-MUSIC (SS-based root-MUSIC) [9],
[58], MODE (with the optimal weighting matrix and linear
constraint), [48], [51], and WSF (initialization by MODE)
[43], [48] are carried out. In these methods, we assume that
the number of signals is known, and the dimension of the
signal subspace is assumed to equal one in MODE and WSF
and to equal the number of coherent signals in SS-based
root-MUSIC and smoothed Min-Norm. In addition, the sto-
chastic Cramér–Rao lower bound (CRB) [48], [52] is calculated
for proper comparison. To improve the estimation accuracy,
the true noise variance is used in the CLS estimate, and the
last step of the two-step procedure of the MODE algorithm
is iterated five times (see [55] for more details). The results
shown below are all based on 200 independent trials (unless
otherwise explicitly stated).

Example A—Performance versus SNR:Two coherent signals
with equal power impinge on the ULA from angles
and . The number of snapshots and the subarray size
are and , where the number of subarrays is

.
First, we consider the detection of the number of signals by

using the iterative algorithm. When the SNR is 5 dB (
), the calculated regularization parameters (i.e.,

for ) from only the received array data are
plotted in Fig. 2, in which the convergence of the regularization
parameters calculated by using the iterative algorithm with the
true matrix in (12) and the actual data is shown for reference.
In addition, the regularization parameters calculated by using
the iterative algorithm with the true parameters such as, ,

and are plotted, and the theoretically optimal regularization
parameters calculated using the true matrix in (12), the
LP parameters given in (26), and the variance are shown.
The regularization parameters and converge to con-
stants within a few iterations, whereas and diverge to
infinity. The estimated noise variance is , which is
near the true value, where the squared error is .
Based on these results, the optimal regularization parameters

and the eigenvalues of the estimated noiseless co-
variance matrix are obtained, and they are shown in Fig. 3.
We find that the truncation of the eigenvalues is determined by
the intersection of the two lines at , i.e., the number of
signals is estimated to be .
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Fig. 2. Convergence of the regularization parametersf� g in the iterative
algorithm (solid line: values calculated with the received data; dashed line:
values calculated with the true matrix� and the received data; dotted line:
values calculated with the true parameters� , ��� , aaa and� ; and dash-dot line:
theoretically optimal valuesf� g calculated with the true parameters� , aaa
and� ) for Example A (SNR= 5 dB,N = 128,M = 10, andm = 5).

Fig. 3. Optimal truncation of eigenvalues by comparing the estimated
eigenvalues of the noiseless covariance matrix (solid line with “o”) with the
calculated regularization parameters (dashed line) for Example A (SNR= 5

dB,N = 128,M = 10, andm = 5).

Fig. 4 shows the distribution of zeros of the LP polynomials in
the -plane for 100 trials corresponding to the LS, CLS, and pro-
posed RCLS methods. For the LS estimation, the signal zeros
and extraneous zeros deviate greatly from the true locations
though the zeros are inside the unit circle. For the CLS estima-
tion, although the estimated signal zeros cluster around the true
locations in a certain sense, the extraneous ones fluctuate wildly,
and some of them even wander outside the unit circle. It follows
that the estimated DOAs using the LS and CLS methods will
have large squared errors. However, by using the proposed reg-
ularized approach, an accurate estimate of the LP parameters is
obtained. The zeros of the prediction polynomial are almost all

Fig. 4. Distribution of the zeros of prediction polynomials corresponding to
the LS, CLS, and regularized CLS estimates of the LP parameters for Example
A (SNR = 5 dB,N = 128,M = 10, andm = 5).

Fig. 5. Probability of correct detection versus the SNR (dotted line: SS-AIC;
dash-dot line: SS-MDL; dashed line: WSF detection scheme; and solid line with
“o”: proposed method) for Example A (N = 128,M = 10, andm = 5).

inside the unit circle, and the estimated signal zeros are much
less perturbed from their true locations. Thus, a more reliable
estimate of direction can be obtained.

We vary the SNR from 10 to 25 dB and run 200 in-
dependent trials at each SNR. The detection performance
in terms of SNR is shown in Fig. 5. In the SS-AIC and
SS-MDL methods, the AIC and MDL criteria are applied
to the spatially smoothed covariance matrix of
subarrays with sensors [9], [16], [17], and the number
of signals is determined by the multiplicity of the smallest
eigenvalues. The threshold for the hypothesis test of the
WSF detection scheme is chosen as ,
which satisfies the conditions and

for strongly consistent
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Fig. 6. RMSEs of the direction estimates versus the SNR (“x”: LS; “4”:
CLS; dotted line: SS-based root-MUSIC; dash-dot line: smoothed Min-Norm;
dashed line: MODE; solid line: proposed method; and dash-dots line: CRB) for
Example A (N = 128,M = 10, andm = 5).

estimation of the number of signals (see [43], [48], and ref-
erences therein for details), where . The AIC and
MDL methods are rather simple, i.e., only the eigenvalues
are needed, whereas the WSF detection scheme requires a
solution of direction finding for each of several hypotheses.
However, in this paper, the number of signals (i.e., the rank of
the noiseless covariance matrix) is determined by minimizing
the MSE of the estimated LP parameters through the truncation
of the eigenvalues. In the proposed algorithm, the information
about the eigenvalues and eigenvectors is jointly exploited,
whereas an iterative computation is needed to estimate the
regularization parameters. At low SNRs, although the proposed
approach is inferior to the WSF detection scheme, it outper-
forms the SS-AIC and SS-MDL methods. In this example, the
simulation shows that the amount of computations required
by the implementation of the proposed algorithm in terms of
MATLAB flops is approximately 2.6100 and 0.8667 times
that of the SS-AIC (or SS-MDL) method and WSF detection
scheme (averaged over 200 runs).

Next, we examine the performance of direction estimation.
The root MSEs (RMSEs) and squared biases of the estimated

and versus SNR are plotted in Figs. 6 and 7, where the
CRBs of the estimates versus SNR are also plotted in Fig. 6 for
comparison. Due to the noise effects in the data matrix and data
vector, the LS method gives incorrect results at low to medium
SNRs (e.g., at 10 to 5 dB). Because the accumulation of noise
in the matrix (i.e., ) takes a similar effect as the regulariza-
tion parameter, the direction estimation becomes better to a cer-
tain extent at some SNRs (e.g., at 5 to 15 dB). However, the noise
variance is not the optimal parameter for minimizing the MSE of
the LS estimate. The CLS method is better than the LS algorithm
at a few SNRs (especially at2 to 5 dB), but the CLS estimate of
the LP parameters is easily affected by the small eigenvalues of
the noiseless covariance matrix . The smoothed Min-Norm
exhibits better performance than the SS-based root-MUSIC, LS,
and CLS methods at low to medium SNRs because two succes-

Fig. 7. Squared biases of the direction estimates versus the SNR (“x”:
LS; “4”: CLS; dotted line: SS-based root-MUSIC; dash-dot line: smoothed
Min-Norm; dashed line: MODE; and solid line: proposed method) for Example
A (N = 128,M = 10, andm = 5).

sive subspace approximations with the truncated SVD are used
to remove the perturbations of additive noise and to alleviate
the ill-conditioning in the estimate of the LP parameters. The
MODE and WSF method provide most accurate estimates than
the other methods because the true values of number of signals
and dimension of signal subspace are used. Additionally, the re-
sults of MODE are almost indistinguishable from the CRB in
this empirical scenario (the results of WSF are similar to that
of MODE and are omitted here). Even thougha priori infor-
mation on the number of signals and the noise variance is not
used, the proposed approach provides more accurate direction
estimation than the LS method, and it overcomes the numerical
instability of the CLS estimation. However, the proposed ap-
proach has larger errors than the smoothed Min-Norm, MODE,
and WSF method at lower SNRs due to the failure in detecting
the number of signals, as shown in Fig. 5. As the probability of
the successful detection increases, the proposed algorithm out-
performs the other methods except MODE and WSF at medium
to high SNRs, and its RMSEs become closer to the CRB.

As shown in (21), the MSE of the RCLS estimate consists of
the variance term and bias one. In the MSE-based regulariza-
tion method, at the expense of introducing bias, we lower the
variance of the estimate to reduce the overall MSE of the es-
timated LP parameters (and, hence, the MSE of the estimated
directions). As shown in Fig. 7, in general, the actual biases of
the directions estimated by using the proposed method are rather
small at moderately low SNRs and, thus, do not affect the overall
MSE.

Example B—Performance versus Number of Snap-
shots: Here, we study the effect of the number of snapshots
on the detection and estimation performances. The simulation
conditions are the same as in the previous example, except that
the SNR is fixed at 5 dB, and the number of snapshotsis
varied from 10 to 1000.

Fig. 8 shows the probability of detection versus the number of
snapshots. It is found that the proposed method outperforms the



2492 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 49, NO. 11, NOVEMBER 2001

Fig. 8. Probability of correct detection versus the number of snapshots (dotted
line: SS-AIC; dash-dot line: SS-MDL; dashed line: WSF detection scheme; and
solid line with “o”: proposed method) for Example B (SNR= 5 dB,M = 10,
andm = 5).

Fig. 9. RMSEs of the direction estimates versus the number of snapshots (“x”:
LS; “4”: CLS; dotted line: SS-based root-MUSIC; dash-dot line: smoothed
Min-Norm; dashed line: MODE; solid line: proposed method; and dash-dots
line: CRB) for Example B (SNR= 5 dB,M = 10, andm = 5).

SS-AIC, SS-MDL, and WSF detection scheme even for a small
number of snapshots. As mentioned previously, it is difficult to
choose an appropriate threshold for the hypothesis test of
WSF detection scheme without anya priori knowledge when
the number of snapshots is finite [16], [20], [21], [43], and the
performance of WSF detection scheme is degraded. In Fig. 9,
the RMSEs and CRBs of the estimatesand are plotted.
The proposed approach performs better than the smoothed Min-
Norm, LS, and CLS methods, and it can estimate the direc-
tions with less RMSE than the SS-based root-MUSIC at rela-
tively small lengths of data. For a larger number of snapshots,
the estimated covariance matrix more closely resembles the true
one and results in more precise estimation of the eigenvalues
and eigenvectors. Therefore, as the number of snapshots is in-
creased, the estimation performance of the proposed approach

Fig. 10. Probability of correct detection versus the angle separation (dotted
line: SS-AIC; dash-dot line: SS-MDL; dashed line: WSF detection scheme; and
solid line with “o”: proposed method) for Example C (SNR= 5 dB,N = 128,
M = 10, andm = 5).

Fig. 11. RMSEs of the direction estimates versus the angle separation (“x”:
LS; “4”: CLS; dotted line: SS-based root-MUSIC; dash-dot line: smoothed
Min-Norm; dashed line: MODE; solid line: proposed method; and dash-dots
line: CRB) for Example C (SNR= 5 dB,N = 128,M = 10, andm = 5).

becomes more accurate than that of the SS-based root-MUSIC,
smoothed Min-Norm, LS, and CLS methods.

Example C—Performance versus Angle Separation:In this
example, we examine the performance of the proposed approach
with respect to the separation between the angles of the coherent
signals. The simulation conditions are similar to those in the
first example, except that the SNR is fixed at 5 dB, and the two
coherent signals come from and with
varying from 1 to 10 .

The detection performance and the RMSEs of estimates
and versus angle separation are shown in Figs. 10 and
11, where the CRBs are also plotted for reference. As shown
in Fig. 10, the SS-AIC and SS-MDL methods exhibit a sharp
and sudden degradation for moderate angle separation.
The proposed approach has better detection performance for
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Fig. 12. Probability of correct detection versus the subarray size (dotted line:
SS-AIC; dash-dot line: SS-MDL; dashed line: WSF detection scheme; and solid
line with “o”: proposed method) for Example D (N = 128, andM = 10).

relatively small separation because the information on the
eigenvectors is also exploited, though it is worse than the WSF
detection scheme for smaller . From Fig. 11, we can find that
the proposed approach performs better than the LS anda priori
knowledge-based methods such as the SS-based root-MUSIC,
smoothed Min-Norm, and CLS methods for larger separation

. As we noted in the previous examples, the estimation
performance is commensurate with the quality of the detected
number of coherent signals whena priori knowledge on the
number of signals and the noise variance are not available.

Example D—Performance versus Subarray Size:The impact
of the subarray size on the detection and estimation is consid-
ered in this example. The parameters for the simulation are the
same as in Example A, except that the subarray sizeis varied
from 4 to 10, where the number of subarrays is to

. To measure the overall estimation performance in terms
of the subarray size, we define an “empirical RMSE (ERMSE)”
of the direction estimates of the coherent signals as

ERMSE (54)

where is the estimate obtained in theth trial, and is the
number of trials (here, ).

For several SNRs, the probability of correct detection and the
ERMSEs of the estimates and against the subarray size

are plotted in Figs. 12 and 13, in which the results of the
WSF detection scheme and MODE and the “empirical CRB” are
shown for comparison, where the “empirical CRB” is calculated
by averaging the corresponding CRBs over the number of co-
herent signals. The proposed approach outperforms the SS-AIC
and SS-MDL methods in terms of number detection and the
CLS estimation in terms of direction estimation, regardless of
the subarray size at low SNRs. Note that the choice of subarray
size can significantly improve the performance of the proposed
approach. For high SNR, because the number of signals is es-
timated correctly, the relatively minimum ERMSE is attained

Fig. 13. ERMSEs of the direction estimates versus the subarray size (“x”:
LS; “4”: CLS; dotted line: SS-based root-MUSIC; dash-dot line: smoothed
Min-Norm; dashed line: MODE; solid line: proposed method; and dash-dots
line: empirical CRB) for Example D (N = 128, andM = 10).

when the subarray size is about ( ), and this
is roughly in agreement with the results presented in [8], [15],
[44], and [45]. For low SNR, the subarray size giving the min-
imum ERMSE is larger than this value in general. As shown in
Figs. 12 and 13, the trend in detection performance versus the
subarray size does not coincide with that of the estimation per-
formance at lower SNRs. In fact, the subarray size is related to
the decorrelation of the signal coherency. If the subarray size is
reduced, a good decorrelation can be obtained while the resolu-
tion of the direction estimation is degraded due to the small size
of the working array aperture. If the subarray size is increased,
the resolution is improved, but the decorrelation effect may be
unsatisfactory. The optimal subarray size generally depends on
the coordinates of the coherent signals and their relative angle
phases. There is a trade off between the goodness of the decor-
relation and the resolution of the direction estimation; therefore,
the subarray size is set at approximately in the previous
examples given here.

VI. CONCLUSIONS

In most high-resolution methods of array processing for di-
rection finding, the determination of the number of signals is an
important issue. In this paper, we investigated the direction esti-
mation of coherent narrowband signals impinging on an equally
spaced linear array when the number of signals is unknown.
By incorporating the linear prediction technique with a sub-
array scheme, we developed an MSE-based regularization ap-
proach. Analytical expressions of the asymptotic MSE and the
optimal regularization parameters that minimize the MSE of the
estimated LP parameters were derived, and based on them, a
scheme for detecting the number of coherent signals was pro-
posed. Furthermore, an iterative regularization algorithm was
presented to estimate the arrival angles of the coherent signals
from only the received noisy array data withouta priori knowl-
edge, where the number of signals and the noise variance are
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estimated simultaneously. The effectiveness of the proposed ap-
proach was evaluated and compared with those of the conven-
tional methods through numerical examples. The simulation re-
sults showed that the proposed method performs better than the
WSF detection scheme when the number of snapshots is small
and that it outperforms the SS-MDL and SS-AIC methods in
detecting the number of signals. Although the proposed method
is slightly inferior to MODE (with the true number of signals
and dimension of signal subspace), it is superior to the other
methods (with the true number of signals or noise variance) in
resolving coherent signals when the number of signals has been
correctly estimated.

APPENDIX A
PROOF OFTHEOREM 1

The derivation of the MSE is rather tedious because the cal-
culation of the third- and fourth-order moments of the additive
noise is required [25], [39]. Here, we show only an outline of
the proof.

First, by substituting (8) into the RCLS estimate
in (18), we obtain

(A1)

where , ,
, , and denotes a null

vector. Note that .
Under the assumptions of the source signals and additive

noise, by making some manipulations, we obtain the asymptotic
MSE matrix of the RCLS estimate as

(A2)

where

vec

vec

(A3)

and we used the relation for matrixand vector with compat-
ible dimensions so that vec , where vec
is the vector obtained by listing the columns of , one beneath
the other, beginning with the leftmost column, anddenotes
the Kronecker operation.

The first term in (A3) is given by

vec

vec

vec vec

vec vec

vec vec

vec

vec

(A4)

From the fact that

vec vec

where and , and and are vectors with compatible dimen-
sions, we can obtain the terms , , and in (A4) as

vec vec

(A5)

vec vec

(A6)

where is an null matrix. In addition, the fourth term
in (A4) can be obtained as [25]

vec

vec (A7)

where the th block element of is expressed
by

(A8)
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for . Furthermore, the th element
of is given by

(A9)

for . Because
and , we have

for (A10)

for

for
for (A11)

Accordingly, the th block element of in
(A7) is given by

for

for .
(A12)

From (A5), (A6), and (A12), the first term of in (A3)
can be expressed as

(A13)

Additionally, we can obtain the other terms of in (A3) as

vec

vec

(A14)

vec vec (A15)

By concatenating (A13)–(A15) into (A3), we obtain

vec vec (A16)

From (A2) and (A16) and by some manipulations, the asymp-
totic MSE matrix in (A2) of the estimate is ob-
tained as

(A17)

Consequently, from the fact that MSEtr , we obtain the
MSE of the estimate in (18) as

MSE tr

(A18)

where tr denotes the trace operation. By substituting (13)
and (19) into (A18), the asymptotic MSE can be obtained
immediately.

APPENDIX B
PROOF OFTHEOREM 3

Because the minimization of MSE in (21) can be per-
formed independently for each index, then for and

, the th terms of the MSE can be obtained, respectively,
as

MSE (B1)

MSE (B2)

If we set the value as an optimal regularization parameter
rather than for , then the inequality
MSE MSE should hold, i.e.,

(B3)

Hence, we have an optimal rule for retaining the eigenvalue
as for . If we set the value of the regular-
ization parameter as , then MSE MSE
should be satisfied. Hence, we have an optimal rule for dis-
carding an eigenvalue as . The optimal truncation con-
dition can thus be established.
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