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Computationally Efficient Subspace-Based
Method for Direction-of-Arrival Estimation

Without Eigendecomposition
Jingmin Xin, Member, IEEE, and Akira Sano, Member, IEEE

Abstract—A computationally simple direction-of-arrival (DOA)
estimation method with good statistical performance is attractive
in many practical applications of array processing. In this paper,
we propose a new computationally efficient subspace-based
method without eigendecomposition (SUMWE) for the coherent
narrowband signals impinging on a uniform linear array (ULA)
by exploiting the array geometry and its shift invariance property.
The coherency of incident signals is decorrelated through sub-
array averaging, and the null space is obtained through a linear
operation of a matrix formed from the cross-correlations between
some sensor data, where the effect of additive noise is eliminated.
Consequently, the DOAs can be estimated without performing
eigendecomposition, and there is no need to evaluate all correla-
tions of the array data. Furthermore, the SUMWE is also suitable
for the case of partly coherent or incoherent signals, and it can be
extended to the spatially correlated noise by choosing appropriate
subarrays. The statistical analysis of the SUMWE is studied,
and the asymptotic mean-squared-error (MSE) expression of the
estimation error is derived. The performance of the SUMWE
is demonstrated, and the theoretical analysis is substantiated
through numerical examples. It is shown that the SUMWE is
superior in resolving closely spaced coherent signals with a small
number of snapshots and at low signal-to-noise ratio (SNR) and
offers good estimation performance for both uncorrelated and
correlated incident signals.

Index Terms—Direction-of-arrival estimation, eigendecompo-
sition, linear operation, multipath environment, subspace-based
method.

I. INTRODUCTION

THE directions-of-arrival (DOAs) estimation of signals im-
pinging on an array of sensors is a fundamental problem

in array processing used in many fields such as radar, sonar,
communications, seismic data processing, and so on [1]–[6].
For the DOA estimation of narrowband signals, the maximum
likelihood (ML) and subspace-based methods have been
studied extensively (see [1]–[7] and references therein). The
ML methods yield the optimal solutions [10], [13], [34]–[39],
[45], but their computational burdens are cumbersome because
they typically need a nonlinear and multidimensional optimiza-
tion procedure [4], [7]. The advantage of most subspace-based
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methods, e.g., multiple signal classification (MUSIC) [8], over
the ML methods is their relatively computational simplicity,
where the directions are estimated through the search of a
one-dimensional spectrum or the calculation of the roots of
a certain polynomial based on either the eigenvalue decom-
position (EVD) of an array covariance matrix or the singular
value decomposition (SVD) of a matrix of array data. Among
subspace-based methods, the method of direction estimation
(MODE) [9], [10], [13] and weighted subspace fitting (WSF)
method [11]–[13] are derived as a large-sample realization
of the ML method, and they can be implemented efficiently,
especially for the uniform linear array (ULA) case [4], [9],
[40]. Unfortunately, the eigendecomposition process is still
computationally intensive and time-consuming, which means
that subspace-based methods are unsuitable for some practical
situations when the number of sensors is large and/or the
directions of impinging signals should be tracked in an on-line
manner [14].

For alleviating the difficulty of subspace-based methods,
many techniques have been developed to reduce the compu-
tational burden involved in eigendecomposition (see [14] and
[15] for extensive surveys); however, they are rather complex.
The last decade has seen the emergence of computationally
simple subspace-based direction estimation methods that do
not require EVD or SVD computation [16]–[23]. In linear
operation based methods such as the bearing estimation
without eigendecomposition (BEWE) [16]–[18], orthonormal
propagator method (OPM) [19], [20], and subspace methods
without eigendecomposition (SWEDE) [21], the signal or noise
(null) subspace is easily obtained from the array data relying
on a partition of array response matrix, and then, the directions
are estimated in a manner similar to that of the MUSIC [8].
Unfortunately, their accuracy is generally poorer than that
of the conventional subspace-based methods (e.g., MUSIC)
from the statistical viewpoint [18], [20], [21]. The WSF
without eigendecomposition (WSF-E) [22] and alternative ML
algorithm [23] achieve the asymptotic efficiency when either
the number of snapshots or the signal-to-noise ratio (SNR) is
large, but they are computationally much more complicated
than linear operation based algorithms [16]–[21]. Further-
more, most of these computationally simple subspace-based
methods suffer serious degradation when the incident signals
are coherent (i.e., fully correlated) in some practical scenarios
due to multipath propagation (e.g., [26], [46], [47]), where
the rank of the source signal covariance matrix becomes less
than the number of incident signals. Although the WSF-E [22]

1053-587X/04$20.00 © 2004 IEEE



XIN AND SANO: COMPUTATIONALLY EFFICIENT SUBSPACE-BASED METHOD 877

and a variant of BEWE [16] can resolve the coherent signals,
their performance degrades severely at low SNR and with a
small number of snapshots. We previously presented a simple
direction estimation method without eigendecomposition for
the coherent cyclostationary signals [41], but it is based on the
special temporal property of signals, and its performance is
poor when the number of snapshots is small.

Therefore, the purpose of this paper is to develop a computa-
tionally efficient direction estimation method that would still be
accurate. First, we propose a new computationally efficient sub-
space-based method without eigendecomposition (SUMWE)
for the coherent narrowband signals impinging on a ULA by
exploiting the array geometry and its shift invariance property.
The coherency of incident signals is decorrelated through
subarray averaging, and the null space is obtained by a linear
operation of the matrix formed from the cross-correlations
between some sensor data, where the effect of additive noise is
eliminated. Then, the DOAs are estimated easily without the
need to evaluate all correlations of the array data, to perform
(forward) spatial smoothing (SS) [24] (or forward-backward
SS (FBSS) [33]), which is a fairly common technique for
subspace-based methods to combat the problem of signal co-
herency, and to do eigendecomposition. The proposed SUMWE
is suitable for the case of partly coherent or incoherent signals,
and it can be extended to the spatially correlated noise by
choosing appropriate subarrays (i.e., cross-correlations of array
data). As a result, the SUMWE has two notable advantages over
the (SS- or FBSS-based) MUSIC [8], [24], [33]: computational
simplicity and less restrictive noise model. The statistical
analysis of the SUMWE is studied, and the explicit expression
of asymptotic (large-sample) mean-squared-error (MSE) (or
variance) of the estimation error is derived. Furthermore, an
analytical study of the SUMWE error variance is performed
for the case of one signal, and the quantitative comparisons
show that the SUMWE error variance is bounded from below
by the asymptotic error variance of the MUSIC estimator and
from above by that of the BEWE algorithm. As shown in [31]
and [32], the large number of subarrays and the large working
array aperture are expected to decorrelate the signal coherency
and to improve the resolution of direction estimation. Thus, the
performance advantage of the SUMWE method stems from
the exploitation of the maximum possible number of subarrays
and working array aperture becuase the subarray size is set as
the number of incident signals. The estimation performance of
the SUMWE is demonstrated, and the theoretical analysis is
confirmed through numerical examples. The simulation results
show that the SUMWE is superior in resolving closely spaced
coherent signals with a short length of data and at low SNR,
and it offers good estimation performance for both uncorrelated
and correlated incident signals.

II. DATA MODEL AND BASIC ASSUMPTIONS

Consider a ULA of identical and omnidirectional sensors
with spacing , and suppose that narrowband signals
with the center frequency are in the field far from the array
and impinge on the array from distinct directions . Under

the narrowband assumption, the received noisy signal at
the th sensor can be expressed as [1]–[7], [13], [31]

(1)

(2)

where is the noiseless received signal, is the ad-

ditive noise, is the propa-
gation speed, and are measured relative to the normal of
array. The received signals can be reexpressed more compactly
as

(3)

where , and are the vectors of the received
signals, the incident signals, and the additive noise given by

is the

array response matrix given by

with , and
denotes transpose.

In this paper, we make the following basic assumptions on
the data model.

A1) The array is calibrated, and the array response matrix
is unambiguous, i.e., the array response vectors

are linearly independent for
any set of distinct . Equivalently, the
matrix has full rank.

A2) Without loss of generality, the signals are all
coherent so that they are all some complex multiples
of a common signal ; then, under the flat-fading
multipath propagation, they can be expressed as [6],
[24], [26]–[33], [39]

for (4)

where is the complex attenuation coefficient with
, and .

A3) For the simplicity of theoretical performance analysis,
the incident signal is a temporally complex white
Gaussian random process with zero-mean and the vari-
ance given by

(5)

where , and denote the expectation, the
complex conjugate, and Kronecker delta.

A4) The additive noise is a temporally and spa-
tially complex white Guassian random process with
zero-mean and the following covariance matrix

(6)

where , and indicate the iden-
tity matrix, the null matrix, and Hermitian trans-
pose. In addition, the additive noise is uncorrelated
with the incident signals.
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A5) The number of incident signals is known, and it sat-
isfies the inequality that for an array of
sensors.

Remark A: Although the incident signals are assumed to
be fully coherent, the proposed SUMWE algorithm can be
extended to the case of partly coherent or incoherent signals
(see Remark B). The identifiability condition that guarantees
the uniqueness of direction estimation is that , which
is less strict than the sufficient condition with
every single snapshot in the absence of additive noise and the
necessary condition with probability one (w.p. 1)
[42]. Additionally the number of sensors necessitated by the
SUMWE is smaller than that needed by the SWEDE
[21] for the case of incoherent signals. Furthermore, if the
number of signals is unknown, it can be estimated by some
proposed techniques (e.g., [31] and references therein).

In the following, we concentrate on the problem of estimating
the DOAs of coherent signals from snapshots of noisy
array data in a computationally simple way with
good statistical performance.

III. SUBSPACE-BASED METHOD WITHOUT

EIGENDECOMPOSITION—SUMWE

A. Decorrelation With Subarray Averaging

In the presence of coherent signals, the source signal covari-
ance matrix becomes singular, i.e., the rank of the source signal
covariance matrix is smaller than the number of signals. In order
to estimate the DOAs of incident signals, we must ensure that
the dimension of signal subspace used in the direction estima-
tion is equal to the number of signals. Here, we use subarray
averaging to tackle the problem of rank deficit.

First, the noiseless received signal in (2) can be reex-
pressed by

(7)

where

and the correlation of signals and is defined as

, where . Then, the full array
can be divided into overlapping subarrays with sensors in
the forward and backward directions [24], [33], where

, and the th forward or backward subarray comprises
or sensors,

respectively, where . From (1) and (7), we can
express the signal vector of the noisy signals in the th
forward subarray and that of the conjugate noisy signals
in the th backward subarray as [24], [5], [30]–[33]

(8)

(9)

where

diag
, and is the submatrix of in (3)

consisting of the first rows with the column
.

Under the basic assumptions, from (4)–(8), we can obtain the
correlation between the signal vector of the th for-
ward subarray and the signal

for (10)

where , and . Hence, by
concatenating the correlations in (10) and by performing
some algebraic manipulations, we can form a correlation matrix

as

...

(11)

where diag , and is the submatrix of

consisting of the first rows with the column
. Straightforwardly, we can

see that the Hankel matrix is composed of the cross-cor-
relations . Similarly, we can get the
correlation between the signal vector and the signal

for (12)

In addition, we can easily obtain a correlation matrix formed
from the correlations in (12)

(13)

Obviously, the Hankel matrix consists of the cross-correla-
tions .

By evaluating the correlation

between and and the correlation
between and , we can obtain

the correlation matrices and for the backward subarrays

(14)

(15)

It is apparent that the Hankel matrix consists of the
cross-correlations , whereas the
Hankel matrix is formed by the cross-correlations

. Furthermore, we can easily find
that and , where is
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an counteridentity (or reversal) matrix that has unity
elements along the cross-diagonal and zeros elsewhere.

From (11) and (13)–(15), we can straightforwardly see that
the correlation matrices , and are not affected
by the additive noise (see Remark E for reference).
Because (i.e., ), , and is a
Vandermonde matrix with full rank, we can find that the ranks
of these correlation matrices equal [30]–[32],
i.e., the dimension of their signal subspace equals the number
of coherent signals. Hence, the directions of coherent
signals can be estimated from the subspaces of these matrices

, and .
Remark B: When some of the incident signals are coherent

and the others are uncorrelated with these signals and with each
other, by assuming that the first signals are
coherent as defined in (4) and performing some algebraic ma-
nipulations, we can obtain

(16)

(17)

(18)

(19)

where

diag , and

diag . Then, we show that
the ranks of the matrices in (16)–(19) still equal the number of
incident signals.

B. Direction Estimation Without Eigendecomposition

Because it is assumed that (i.e., ), we can
divide the matrix in (11) and (13)–(15) into
two parts as follows:

(20)

where has the column
. Since and

are two submatrices of the Vandemonde matrix with full
rank in (3), the rows of can be expressed as a linear com-
bination of linearly independent rows of ; equivalently,
there is a linear operator between
and [19], [20]

(21)

Then, it follows from (21) that

(22)

where . Because the
matrix has a full rank of , the columns of in
fact form the basis for the null space of , and
clearly, the orthogonal projector onto this subspace is given by

, which implies that [10]

for (23)

where , and is
an null vector. Evidently, the directions can be estimated
based on the orthogonal property (23) without any eigendecom-
position.

Remark C: By considering the SVD of matrix , we
readily verify that the orthogonal projector in (23) can be
written as [10],
[3].

Then, the next problem is how to find the null space of
(i.e., ) from the available array data. Based on the partition of

in (20), the correlation matrices in (11),
in (13), in (14), and in (15) can be also divided as

(24)

(25)

(26)

(27)

From (21), we can obtain the following relation between the
submatrices of , and :

(28)

where , and
. Thus, the matrix can be found from and

as

(29)

Proof: See Appendix A.
Remark D: To avoid the effect of additive noise ,

the auto-correlations of the sensor data are not used in the
computation of the projector onto the null space in the SWEDE
and the proposed SUMWE method. In general, the SWEDE
needs two and one subarray cross-covariance
matrices of three nonoverlapping subarrays with , and

sensors, and these three subarray cross-covariance matrices
share two linear operators and

, where

(see [21] for details). However, in the SUMWE method, the four
matrices , and share a common linear operator

because of the exploitation of the ULA geometry and its shift
invariance property.

Therefore, when the finite array data are available, the direc-
tions of coherent signals can be estimated in a manner sim-
ilar to that of the MUSIC [8] by minimizing the following cost
function:

(30)

where , and .
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C. Implementation of SUMWE

Based on the above analysis and by using the matrix inver-
sion lemma (e.g., see [3] and [49]), the implementation of the
SUMWE for estimating the directions of coherent signals with
the finite array data can be summarized as follows.

Step 1) Calculate the estimated correlation vector between
and and that between and

as

(31)

where , and
.

Step 2) Form the estimated correlation matrices
, and from and by using (11) and

(13)–(15).
Step 3) Estimate the linear operator as

(32)

and calculate the estimated orthogonal projector
as

(33)

Step 4) Estimate the directions by searching the
highest peaks of the spatial spectrum

(the spectral approach) or by finding the phases
of the zeros of the polynomial closest
to the unit circle in the -plane (the root ap-

proach), where

, and

.
Remark E: By defining the array covariance matrix

as ,

where , we can find that the matrices
, and are formed from the correlations in the

th and first columns and those in the first and th rows
of , except for the auto-correlations and , which
contain the variance of additive noise. Hence, the number
of needed correlations is , which is smaller than

, which is needed by the SS-based
MUSIC [24], [30], where is the number of sensors in the
subarray with . Furthermore, because the matrix

is Hermitian, the actual number of needed correlations is
.

Remark F: Like the SWEDE [21] and BEWE [16], the
SUMWE can accommodate a more general noise model of
the spatially correlated noise if we choose the signal vectors

and used to form the matrices , and
appropriately. If the spatial correlation length of additive

noise is (i.e., for ) [18]
and , where , then the noise
covariance matrix will become a banded Toeplitz matrix

with nondiagonals. To avoid the effect of additive
noise in direction estimation, we can define the correla-
tion matrices as

,

and . Then, the expressions of
, and in (11) and (13)–(15) still hold, except

that their dimensions become , and their ranks
are still based on the assumption that (i.e.,

). Thus, the proposed SUMWE algorithm is still
valid.

Remark G: The implementation of the proposed SUMWE
algorithm requires two major steps: i) computation of the corre-
lations and to form the matrices , and , and ii)
estimation of the orthogonal projector . The number of flops
needed to calculate and in (31) is approximately 16 ,
where a flop is defined as a floating-point addition or multipli-
cation operation as adopted by MATLAB software. The compu-
tation of in (32) takes about
flops, whereas the calculation of in (33) requires roughly

flops, where the number of arithmetic operations needed by the
inversion of a Hermitian matrix is in the order of ,
which is about flops for . Thus, the estimated number
of MATLAB flops required by the SUMWE algorithm is nearly

when , which occurs
often in applications of DOA estimation, where the computa-
tions needed in the remaining steps are negligible.

Remark H: If the orthogonal projector is calculated di-

rectly by using in (30), it will necessi-

tate the inversion of the matrix and
take approximately

flops. However, the calculation of

in (33) involves the inversion of the matrix in
operations. From Remark G, we can find that the number

of flops needed by the direct computation of in (30) is gen-
erally larger than that of the calculation in (33) when .
Thus, the proposed SUMWE method can be implemented effi-
ciently by using the matrix inversion lemma [20].

IV. STATISTICAL ANALYSIS

A. Asymptotic Properties of SUMWE

As the SUMWE estimator is a complicated nonlinear func-
tion of the received array data, its statistical behavior for “small”
number of snapshots appears to be difficult to analyze like the
other common DOA estimators [35]–[37]. In this section, we
study the statistical properties of the proposed SUMWE method
for large number of snapshots. First, we can easily obtain the fol-
lowing Lemma on the consistency of the SUMWE estimates.

Lemma: As the number of snapshots tends to infinity, the
estimates obtained by minimizing the cost function
in (30) approach the true parameters w.p. 1.

Proof: This lemma can be readily established by adopting
the proof of Lemma 1 in [18]. Clearly, converges to the

true cost function w.p. 1 and uniformly
in when , and the minima of are achieved if
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and only if . Thus, the estimates approach the true
parameters w.p. 1 as .

From this Lemma, we can find that the estimates of
the proposed SUMWE method are consistent. To evaluate the
estimation accuracy achieved by the SUMWE method, we will
investigate the asymptotic (for ) MSE (or variance) of
the estimation error.

As the signal vectors or of the first or
last forward/backward subarrays are used in forming the
correlation matrices , and , here, by defining the
noisy signals comprised in these forward/backward subarrays

as

, we can
introduce the auto/cross-covariance matrices

, and of these
forward/backward subarrays as

Then, for a sufficiently larger number of snapshots , we can
obtain the expression of the asymptotic MSE (or variance) of
the SUMWE estimates by the following theorem.

Theorem: For the estimates obtained by minimizing the
function in (30), the large-sample MSE (or variance) of
the estimation errors is given by

MSE var

Re

(34)

where

, and the
th elements of the matrices and

are given, respectively, by

for
others

(35)

for
others

(36)

whereas Re denotes the real part of the bracketed quantity,
represents the th element of the bracketed matrix, and

denotes the Kronecker product.
Proof: Because the estimate is obtained by minimizing
and it is a consistent estimate, for a sufficiently large

number of snapshots , we can approximate the derivative of
using two terms in its Taylor series expansion about the

true value as [10], [13], [18], [35]–[37]

(37)

where the second- and higher order terms in (37) can be ne-
glected, and the first- and second-order derivatives of with
respect to the scalar variable are given by

Re (38)

Re

(39)

in which . From (37)–(39) and Appendix B,

the first-order expression for the estimation error
can be obtained as

Re
(40)

where the estimated orthogonal projector in the denomi-
nator of (40), i.e., (39), can be replaced with the true one
without affecting the asymptotic property of estimate [10],
[18], [35]–[37], [43].

Then, by using the fact that and by
substituting the approximation of presented in Appendix C
into (40), the estimation error can be approximately given
by

Re

Re
(41)

where

(42)

Consequently, because the estimate is consistent, from (41),
the MSE (or variance) of the estimation error is given by

MSE var

Re (43)



882 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 52, NO. 4, APRIL 2004

where the fact that Re Re Re
Re is used implicitly.

By letting and , we can easily
obtain a first-order approximation of [18]

(44)

where . From (32), we
get the following approximation as well:

(45)

where the term of order is neglected [21]. Addition-
ally, from (11) and (13)–(15), the estimated correlation matrices

, and can be expressed by

(46)

(47)

(48)

(49)

where

, and .
It is noted that can be partitioned as

. Then, by using the formula
vec for matrix and vector with com-

patible dimensions, where vec is a matrix operation
stacking the columns of a matrix one under the other
to form a single column, from (22) and (44)–(49), we can
approximate in (42) for a sufficiently large as

(50)

where

vec

vec (51)

vec (52)

vec (53)

vec (54)

and . Hence, from (50), we obtain the
terms and in (43) as

(55)

(56)

By concatenating the results for the expectations
and in Appendix D with (55) and (56) and by sub-
stituting (55) and (56) into (43), we readily get

MSE var

Re

(57)

Therefore, the asymptotic (large-sample) MSE MSE (or
variance var ) of the estimation error in (34) can be

obtained from (57) immediately by using the definition
.

As shown in Remark B, the proposed SUMWE method is
suitable for the case of partly coherent or incoherent signals.
It is noteworthy that the expression of asymptotic MSE in
(34) is valid, regardless of correlation between the incident
signals as the proof does not require the signals to
be uncorrelated.

B. Analytic Study of Performance

The general expression of asymptotic MSE (variance) of esti-
mation error in (34) for any (uncorrelated or correlated) incident
signals is complicated. In order to gain insights into the pro-
posed SUMWE method, we will specialize in the case of one
signal for sake of conciseness and study the asymptotic error
variance of the SUMWE estimator in detail. Furthermore, the
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statistical performance of the SUMWE is compared quantita-
tively with that of the MUSIC [8] and BEWE [16] methods and
with the stochastic Cramér–Rao lower bound (CRB) [35].

In this case (i.e., and ), we can readily have

(58)

(59)

(60)

and , where . Here, we assume

that and set SNR . To avoid a complication
of notation, and are used as the brief notation for and

in the following. From (58)–(60) and Remarks B and C,
we can obtain (e.g., see [36])

(61)

(62)

(63)

(64)

(65)

(66)

Furthermore, after some calculations, we get

(67)

(68)

(69)

(70)

(71)

(72)

(73)

where denotes an matrix with unity elements along
the th lower diagonal off the major diagonal
and zeros elsewhere, represents an matrix with
unity elements along the th upper (for ) or
lower (for ) diagonal off the major cross-diagonal and zeros
elsewhere, and their elements are given by [51]

for
others

for
others

and
for
others.

Thus, by substituting (63)–(73) into (34) and by performing
some calculations as shown in Appendix E, the asymptotic
(large-sample) error variance var of the estimate
obtained by the proposed SUMWE method is given by

var
SNR

SNR
(74)

The CRB is a lower bound on the estimation error variance
for any unbiased estimator, and the stochastic CRB for the case
of one incident signal is readily obtained by [35]

CRB
SNR SNR

(75)

Following the results presented in [36] and [18], the asymp-
totic error variances of estimate obtained by the MUSIC and
BEWE estimators are given by

var

SNR SNR
(76)

var

SNR SNR
(77)

Note that the MUSIC is a large-sample realization of the ML
method in the case considered here, and its error variance
asymptotically achieves the stochastic CRB [35], [36] and that
we choose for getting the BEWE variance
var in (77) (see [16] and [18] for more details).

For a large value of the number of sensors , from (75)–(77),
we easily get

var
SNR SNR

(78)

CRB var

SNR SNR
(79)

var
SNR SNR

(80)

Thus, we can obtain

CRB var var var
(81)

Obviously, the SUMWE error variance var is
bounded from below by var (i.e., CRB ) and
from above by var . In addition, the SUMWE variance
var will near var when the number of
sensors is sufficiently large and the SNR is reasonably high.

Furthermore, to verify the above observations, we de-
fine the relative efficiency ratios between the error vari-

ances shown in (74), (76), and (77) as
var var and var
var , which are functions of the SNR and number of
sensors . These relative efficiency ratios in terms of the SNR
are shown in Fig. 1 for , and . Apparently
eff is smaller than eff , and eff is close
to one for large values of SNR and , which show that
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Fig. 1. Relative efficiency ratios of the SUMWE and BEWE estimators versus
the SNR for several numbers of sensors. (a)M = 5. (b)M = 10. (c)M = 20.
(d) M = 40 (dashed line: BEWE; solid line: SUMWE).

the SUMWE is more accurate than the BEWE and that the
SUMWE would be comparable to MUSIC when the SNR and
the number of sensors are reasonably large.

Remark I: In the case of uncorrelated signals, the SUMWE
may be less accurate than the MUSIC due to its small working
array aperture (i.e., ) but may be more accurate than the
BEWE, and it may be equivalent to the MUSIC for reasonably
large values of the SNR and . As shown in Remark B, the
SUMWE method is suitable for the case of partly coherent or
incoherent signals, and hence, it may be insensitive to the cor-
relation between the signals. Furthermore, as shown in [31] and
[32], the large number of subarrays and large working array
aperture are expected to decorrelate the signal coherency and
to improve the resolution of direction estimation when the inci-
dent signals are full correlated (i.e., coherent). In the SUMWE
method, the subarray size is set as the number of incident signals
(i.e., ) so that the maximum permissible number of subarrays
(i.e., ) and the maximum possible array aperture
(i.e., ) are used. Therefore, the SUMWE method
usually provides good estimation performance for highly corre-
lated signals.

V. NUMERICAL EXAMPLES

We now evaluate the performance of the proposed SUMWE
algorithm in estimating the DOAs of coherent and incoherent
signals and confirm the derived statistical analysis through sev-
eral numerical examples. The ULA with sensors is sepa-
rated by a half-wavelength, and two signals with equal power
come from angles and . The SNR is defined as the ratio
of the power of the source signals to that of the additive noise
at each sensor. In the simulations, the root approach version of
the SUMWE algorithm is used to measure the performance of
the proposed method precisely and appropriately. To compare
the estimation performance of the SUMWE, the root-MUSIC
[8], [25], SS-based root-MUSIC [24], [25], FBSS-based root-

Fig. 2. RMSEs of the estimates �̂ and �̂ versus the SNR (dotted line:
SS-based root-MUSIC; dotted line with “+”: FBSS-based root-MUSIC; “4”:
FBSS-based OPM; “x”: BEWE; solid line: FBSS-based SWEDE; dashed line:
WSF-E; solid line with “o”: SUMWE; dash-dot line: theoretical RMSE of
SUMWE; and dash-dots line: CRB) for Example 1 (N = 128 andM = 10).

MUSIC [33], [25], BEWE [16], OPM [20], SWEDE (variant G)
[21], and WSF-E (equivalently MODE without eigendecompo-
sition) [22] are carried out, and the stochastic CRB [13], [35],
[38], [45] is calculated. The FBSS preprocessing [33] is also
performed for the OPM and SWEDE to combat the problem
of coherency of the coherent signals, and we call these algo-
rithms the FBSS-based OPM and FBSS-based SWEDE. For the
BEWE, the variant for coherent signals is used in the first four
examples, whereas the general variant for incoherent signals is
used in Example 5 (see [16] for more details). Additionally, a
two-step procedure of the WSF-E algorithm with the linear con-
straint is used (see [9] and [40] for more details), and the second
step is not iterated to enable comparison of the computational
burden. The results shown below are all based on 1000 indepen-
dent trials.

Example 1—Performance versus SNR: In this example, we
examine the performance of the proposed SUMWE algorithm
against the SNR. The incident directions of two coherent signals
are and , and their SNR is varied from
to 25 dB. The number of sensors is , and the number
of snapshots is . Additionally, the subarray size is set
as [48] for the SS- and FBSS-based
algorithms.

The empirical root MSEs (RMSEs) of the estimates and
are shown in Fig. 2, where the theoretical RMSEs of the

SUMWE in (34) and the stochastic CRBs are also plotted for
comparison. Because the maximum possible number of subar-
rays (i.e., ) and working array aperture (i.e.,

) are exploited and the effect of additive noise
is eliminated by appropriately choosing the used subarrays, the
proposed SUMWE method generally outperforms the SS-based
root-MUSIC with EVD and the methods without eigendecom-
position such as the BEWE and FBSS-based SWEDE, and it is
superior to the FBSS-based OPM without eigendecomposition
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Fig. 3. RMSEs of the estimates �̂ and �̂ versus the number of snapshots
(dotted line: SS-based root-MUSIC; dotted line with “+”: FBSS-based
root-MUSIC; “4”: FBSS-based OPM; “x”: BEWE; solid line: FBSS-based
SWEDE; dashed line: WSF-E; solid line with “o”: SUMWE; dash-dot line:
theoretical RMSE of SUMWE; and dash-dots line: CRB) for Example 2
(SNR = 5 dB and M = 10).

at low SNRs. Although the WSF-E performs better at high SNR,
its performance degrades severely, and its RMSEs are larger
than those of the SUMWE at low to moderate SNRs. We also
note that the FBSS-based root-MUSIC provides the most accu-
rate estimates than the other methods due to the use of EVD and
the forward-backward subarray averaging. From Fig. 2, we can
see that the empirical RMSEs of the SUMWE are very close
to the theoretical ones (except at low SNR) and that the differ-
ence between the theoretical RMSEs and the CRBs is small. It
is also shown that the theoretical and empirical RMSEs of the
SUMWE decrease monotonically with the increasing SNR. In
addition, the proposed SUMWE algorithm is computationally
efficient, and the simulation shows that the ratio of the number
of MATLAB flops required by the SS-based MUSIC and the
WSF-E to that required by the SUMWE is about 7.147 and
18.677, respectively.

Example 2—Performance versus Number of Snapshots:
Now, the performance of the SUMWE algorithm versus the
number of snapshots is assessed. The simulation conditions
are similar to those in Example 1, except that the SNR is set at
5 dB, and the number of snapshots is varied from to

.
The empirical RMSEs of the estimated directions and

are plotted in Fig. 3, and they are compared with the theoretical
RMSEs of the SUMWE and the CRBs. We can see that the
SUMWE is superior to the SS-based root-MUSIC, BEWE,
FBSS-based OPM, FBSS-based SWEDE, and WSF-E, even
for a small number of snapshots. As described in Example 1,
the FBSS-based root-MUSIC performs better than the other
methods because of the use of EVD and the forward-backward
subarray averaging. Furthermore, we can find that the empirical
RMSEs agree very well with the theoretical RMSEs derived in
Section IV (their difference is almost indistinguishable), and

Fig. 4. RMSEs of the estimates �̂ and �̂ versus the angular separation (dotted
line: SS-based root-MUSIC; dotted line with “+”: FBSS-based root-MUSIC;
“4”: FBSS-based OPM; “x”: BEWE; solid line: FBSS-based SWEDE; dashed
line: WSF-E; solid line with “o”: SUMWE; dash-dot line: theoretical RMSE of
SUMWE; and dash-dots line: CRB) for Example 3 (SNR = 10 dB,N = 128,
and M = 10).

the empirical and theoretical RMSEs of the SUMWE decrease
monotonically with the number of snapshots.

Example 3—Performance versus Angular Separation: Here,
the performance of the SUMWE algorithm is studied in terms
of the angular separation between two coherent signals. In this
example, two coherent signals impinge on the array along

and , where is varied from to
, and the other simulation parameters are the same as

those in Example 1, except that the SNR is fixed at 10 dB.
Fig. 4 shows the empirical and theoretical RMSEs of the es-

timates and of the proposed SUMWE method against the
angular separation . The corresponding empirical RMSEs of
the estimates obtained by the SS- and FBSS-based root-MUSIC
methods, BEWE, FBSS-based OPM, FBSS-based SWEDE, and
WSF-E and the CRBs are also plotted. As shown in Fig. 4, the
SUMWE generally estimates the directions of closely spaced
signals more accurately with a much smaller RMSE than the
other methods, and the empirical RMSEs of the SUMWE are
much closer to the theoretical ones derived in (34) for large
angular separation. Because the two directions and

are much closer for small angular separation , the
WSF-E gives a few better estimates of one of the directions
and for , and , whereas the other one is esti-
mated inaccurately with a much larger RMSE. In the simulation,
the empirical and theoretical RMSEs of the SUMWE do not de-
crease monotonically with the increasing angular separation as
the CRB, which is in contrast to the cases with the increasing
SNR and number of snapshots, as shown in Figs. 2 and 3.

Example 4—Performance versus Number of Sensors: We
evaluate the performance of the SUMWE algorithm with
respect to the number of sensors with the simulation parameters
being identical to those in Example 1, except that the SNR is
set at 10 dB, and the number of sensors is varied from
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Fig. 5. RMSEs of the estimates �̂ and �̂ versus the number of sensors (dotted
line: SS-based root-MUSIC; dotted line with “+”: FBSS-based root-MUSIC;
“4”: FBSS-based OPM; “x”: BEWE; solid line: FBSS-based SWEDE; dashed
line: WSF-E; solid line with “o”: SUMWE; dash-dot line: theoretical RMSE
of SUMWE; and dash-dots line: CRB) for Example 4 (SNR = 10 dB and
N = 128).

to , where the identifiability condition is sat-
isfied. The subarray size for the SS- and FBSS-based methods
is chosen as round , where round denotes
the round-off operation, and the FBSS-based SWEDE is per-
formed for (i.e., ) to ensure its identifiability.

The empirical RMSEs of arrival angle estimates and
versus the number of sensors are shown in Fig. 5, where the the-
oretical RMSEs of the SUMWE and the CRBs are also plotted
for reference. In general, the proposed SUMWE algorithm per-
forms better than the SS-based root-MUSIC, BEWE, FBSS-
based OPM, FBSS-based SWEDE, and WSF-E, and it has good
accuracy like the FBSS-based root-MUSIC. Furthermore, the
empirical RMSEs of the SUMWE nearly coincide with the the-
oretical RMSEs for a large number of sensors, and they do not
decrease monotonically with the increasing number of sensors.

Example 5—Performance versus Correlation Between
Signals: In the previous examples, the performance of the
SUMWE method in estimating the directions of coherent
signals is tested. Here, we verify its estimation performance in
terms of the correlation between the incident signals, where the
correlation factor is denoted by .

First, we consider the estimation performance of the SUMWE
algorithm with respect to the SNR when two incident signals are
uncorrelated (i.e., ), where the simulation conditions are
similar to that of Example 1. The RMSEs of the estimates
and obtained by the SUMWE method are depicted in Fig. 6,
where the results of the root-MUSIC, BEWE, OPM, SWEDE,
and WSF-E are plotted as well. Except for the fact that the
SUMWE is worse than the root-MUSIC due to the smaller array
aperture (i.e., ) and the avoidance of eigen-
decomposition, it usually performs better than the BEWE and
the OPM, SWEDE, and WSF-E at relatively low SNRs. Fur-
thermore, the difference between the CRBs and the theoretical

Fig. 6. RMSEs of the estimates �̂ and �̂ versus the SNR in the case of
uncorrelated signals (dotted line: root-MUSIC; “4”: OPM; “x”: BEWE; solid
line: SWEDE; dashed line: WSF-E; solid line with “o”: SUMWE; dash-dot
line: theoretical RMSE of SUMWE; and dash-dots line: CRB) for Example 5
(N = 128 and M = 10).

Fig. 7. RMSEs of the estimates �̂ and �̂ versus the correlation factor (dotted
line: root-MUSIC; dotted line with “+”: FBSS-based root-MUSIC; “4”: OPM;
“x”: BEWE; solid line: SWEDE; dashed line: WSF-E; and solid line with “o”:
SUMWE; dash-dot line: theoretical RMSE of SUMWE; dash-dots line: CRB)
for Example 5 (SNR = 10 dB, N = 128, and M = 10).

RMSEs derived in (34) is small, and there is a very close agree-
ment between the theoretical and empirical RMSEs of the pro-
posed SUMWE method.

Then, we study the performance of the SUMWE in terms of
the correlation factor in resolving the closely spaced signals,
where two signals arrive from and , and the
signal is a superposition of two uncorrelated signals
and with equal power given by [5]

(82)

in which the magnitude of the correlation factor is varied be-
tween 0 and 1 (the phase of the correlation factor is assumed to
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be zero) for simplicity. The other parameters for simulation are
similar to those in Example 1, except that the SNR is fixed at
10 dB.

Fig. 7 shows the empirical RMSEs of the estimates
and obtained by the SUMWE, root-MUSIC, FBSS-based
root-MUSIC, BEWE, OPM, SWEDE, and WSF-E methods.
As shown in Fig. 7, the root-MUSIC has an excellent per-
formance for uncorrelated and weakly correlated signals,
but its performance degrades significantly with the increase
of correlation between the incident signals. However, the
SUMWE is generally superior to the BEWE, OPM, SWEDE,
and WSF-E for both uncorrelated and correlated signals and
performs better than the root-MUSIC for highly correlated
signals. Moreover, we can see that the SUMWE possesses a
remarkable insensitivity to the correlation between the incident
signals.

VI. CONCLUSION

In many practical applications of array processing, a compu-
tationally simple direction estimation method with good statis-
tical performance is quite attractive. In this paper, we proposed
a new computationally efficient subspace-based method called
SUMWE that estimates the directions of narrowband signals im-
pinging on a ULA by exploiting the array geometry and its shift
invariance property. The proposed SUMWE method does not
require the computationally cumbersome eigendecomposition
and the evaluation of all correlations of the array data, and the
effect of additive noise is eliminated. Furthermore, the SUMWE
algorithm can be extended to the spatially correlated noise by
appropriately choosing the used subarrays (i.e., cross-correla-
tions of array data). The statistical analysis of the SUMWE was
studied, and the explicit expression of asymptotic MSE (or vari-
ance) of the estimation error was derived. The performance ad-
vantage of the SUMWE method stems from the fact that the
maximum permissible number of subarrays and working array
aperture are exploited to decorrelate the signal coherency and
to improve the resolution of direction estimation by setting the
subarray size as the number of incident signals. The estimation
performance of the SUMWE was demonstrated, and the theo-
retical analysis was substantiated through numerical examples.
Although the SUMWE method performs slightly worse than the
subspace-based methods with eigendecomposition such as the
(FBSS-based) root-MUSIC in general, it mostly outperforms
the subspace-based methods without eigendecomposition such
as the BEWE, OPM, SWEDE, and WSF-E, and the simulation
results showed that the SUMWE algorithm has the advantages
of reduced computational load and superior estimation perfor-
mance in resolving closely spaced correlated and uncorrelated
signals with a short length of data and at low SNR.

APPENDIX

A. Proof of Linear Operator in (29)

It follows from Assumption A1) that the Vandermonde ma-
trix has full rank and that the inverse matrix
exists; thus, we can readily verify that the first equality

satisfies (28).

Next, we consider the second equality in (29). Under the as-
sumption that , from (24)–(28), some simple manipula-
tions give

(A1)

(A2)

where

and diag with . Because
and are the submatrices of the Vandermonde ma-

trix , we can easily get the ranks of the matrices and
as rank rank [30]–[32].

Hence, it implies that the matrix belongs to the range space
of the matrix (i.e., ), and the

SVD of the matrix is given by [3], [49]

(A3)

where
diag with , the
matrix is an orthonormal basis of , and is
the orthogonal projector onto , whereas the dimension
of the null space of is given by
(i.e., ) [3]. By some straightforward manipula-
tions, from (A3), the second equality of (29) can be expressed
as

(A4)

Then, we easily get

(A5)

Because and is the orthogonal pro-
jector onto , we can conclude that
and, hence, that is a solution of (28), [3]. Furthermore, let
it be supposed that there is another solution to (28), except

, where can be expressed by [3], [50]

(A6)

Then, substituting (A6) into (28), we obtain

(A7)

Obviously, this implies that the matrix should
satisfy that , i.e., .
However, we can see that the matrix does not exist by taking
into account that the fact . Thus,

is the unique solution to (28), and the proof
is completed.
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B. Approximation of Second-Order Derivative of Cost
Function

As the cost function converges to
w.p. 1 and uniformly in when ,

the first-order perturbation expressions of in (38) and
in (39) can be obtained as [43]

(B1)

(B2)

where and are the corresponding first- and
second-order derivatives of , and , and are the
perturbation terms in the first- and second-order derivatives

and of with the estimated orthogonal
projector , respectively. Because ,

we easily get that and .
Hence, from (37), (B1), and (B2), the estimation error

can be reexpressed as [43]

(B3)

where the terms neglected in the approximation tend to zero
faster than as . It is shown that the asymptotic
property of is not affected by replacing with
in the denominator of in (B3).

C. Approximation of Estimated Orthogonal Projector

Here, we derive a first-order approximate of the orthog-
onal projector appearing in the numerator of in
(40). Following the idea in [18], we can get the following
approximations:

(C1)

where

(C2)

in which

(C3)

and

(C4)

By substituting (C2)–(C4) into (C1), and after some simple cal-
culations, we can obtain the approximation of as

(C5)

D. Calculation of Expectations and

Under the basic assumptions on the data model, and by using
the formula for the expectation of the product of four com-
plex Gaussian random matrices and vectors with zero-mean and
compatible dimensions [44]

(D1)

from (51) and (11), after some straightforward manipulations,
we can obtain

vec

vec

vec

vec

vec

vec vec

vec

vec vec

vec vec

vec vec

vec (D2)

where the fact that is used. By

noting the fact that vec vec

vec , and vec , in a
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similar fashion to (D2), from (52)–(54), (13)–(15), and (22),
we get

vec

vec

vec vec (D3)

vec

vec

vec vec (D4)

vec

vec

vec vec (D5)

vec

vec

vec vec

(D6)

vec

vec

vec vec

(D7)

vec

vec

vec vec

(D8)

vec

vec

vec vec

(D9)

Additionally, by defining and

, under the basic assumptions in
Section II, and after some straightforward manipulations, we
get and , where

, and
the th elements of the matrices and
are given, respectively, by

for
others

(D10)

and
for and
others.

(D11)

Then, from (51), (52), (D10), and (D11), we obtain

vec

vec

vec

vec vec

vec vec
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vec

vec vec

vec vec

vec vec

vec vec vec

vec (D12)

where the fact that is used implicitly.

Further, by defining and
, it follows from some manipulations

that and ,
where

, and
. Hence, we can get

vec

vec

vec vec

vec vec

vec vec

(D13)

In much the same way as in evaluating the expectation
shown in (D2)–(D13), by performing some manip-

ulations, we can obtain the expectation in (56) as

vec

vec

vec vec

(D14)

vec

vec

vec vec

(D15)

vec

vec

vec vec

(D16)

vec

vec

vec vec

(D17)

vec

vec

vec vec

(D18)

vec

vec

vec vec

vec vec
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vec vec

(D19)

vec

vec

vec vec

vec vec (D20)

vec

vec

vec vec

vec vec (D21)

vec

vec

vec vec

vec vec

vec vec

(D22)

vec

vec

vec vec

(D23)

where vec vec , and vec

vec , and their th elements are given in (35) and (36).

E. Calculation of Asymptotic Error Variance for a Single
Signal

From (58) and (59), we can obtain, after some manipulations

(E1)

(E2)

(E3)

Hence, from (E1)–(E3) and (62), we get

(E4)

Similarly, some calculations give

(E5)

(E6)

(E7)

(E8)

(E9)

(E10)
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(E11)

(E12)

(E13)

(E14)

Hence, we obtain

(E15)

(E16)

(E17)

Furthermore, it follows from some straightforward manipula-
tions that

(E18)

Therefore, by substituting (60) and (64)–(73) into (34) and using
the results shown in (E4) and (E15)–(E18), after some manipu-
lations, we can get the asymptotic error variance var
(or MSE MSE ) as

var

SNR

SNR
(E19)

where the facts that and are
used implicitly.
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