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Simple and Efficient Nonparametric Method
for Estimating the Number of Signals

Without Eigendecomposition
Jingmin Xin, Senior Member, IEEE, Nanning Zheng, Fellow, IEEE, and Akira Sano, Member, IEEE

Abstract—Inspired by the computational simplicity and nu-
merical stability of QR decomposition, a nonparametric method
for estimating the number of signals without eigendecomposi-
tion (MENSE) is proposed for the coherent narrowband signals
impinging on a uniform linear array (ULA). By exploiting the
array geometry and its shift invariance property to decorrelate the
coherency of signals through subarray averaging, the number of
signals is revealed in the rank of the QR upper-trapezoidal factor
of the autoproduct of a combined Hankel matrix formed from the
cross correlations between some sensor data. Since the infection of
additive noise is defused, signal detection capability is improved.
A new detection criterion is then formulated in terms of the row
elements of the QR upper-triangular factor when finite array data
are available, and the number of signals is determined as a value
of the running index for which this ratio criterion is maximized,
where the QR decomposition with column pivoting is also used to
improve detection performance. The statistical analysis clarifies
that the MENSE detection criterion is asymptotically consistent.
Furthermore, the proposed MENSE algorithm is robust against
the array uncertainties including sensor gain and phase errors
and mutual coupling and against the deviations from the spatial
homogeneity of noise model. The effectiveness of the MENSE is
verified through numerical examples, and the simulation results
show that the MENSE is superior in detecting closely spaced
signals with a small number of snapshots and/or at relatively low
signal-to-noise ratio (SNR).

Index Terms—Array signal processing, direction-of-arrival esti-
mation, eigendecomposition, multipath environment, QR decom-
position, signal detection.

I. INTRODUCTION

ESTIMATING the number of incident signals from noisy
array data is an essential prerequisite for high-resolution

direction-of-arrival estimation in array processing (e.g., [1]–[3]
and references therein), where the performance of direction
estimation can be adversely affected if the number of signals
is inaccurately determined. When the incoming signals are
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incoherent in the presence of temporally and spatially white
Gaussian additive noise, eigenstructure-based nonparametric
detection methods have been proposed (e.g., [7], [13]–[19],
and [32]), where the relation between the number of signals
and the “multiplicity” of the smallest eigenvalues of the array
covariance matrix is utilized. The most popular ones are the
Akaike information criterion (AIC) and minimum description
length (MDL) criterion [7] originally introduced to select
model order [4]–[6], which are formulated in terms of eigen-
values without any subjective setting of a threshold (confidence
levels) required in conventional hypothesis testing, and their
performance have been widely studied [8]–[12]. Although non-
parametric methods have been attracted considerable attention
because of their relatively computational simplicity without the
need to estimate direction parameters, they suffer from serious
degradation, when the incident signals are coherent (i.e., fully
correlated) such as in multipath propagation environments,
where the rank of the signal covariance matrix is smaller than
the number of signals. Furthermore, the AIC and MDL criterion
are very sensitive to the array uncertainties and the deviations
from the spatial homogenous assumption of the additive noise
in some practical situations [17], [52]–[54].

Generally, parametric detection methods are the optimal ap-
proaches for the coherent signals by combining the problems of
detecting the number of signals and estimating their directions
as a whole [20]–[26], [50]. However, they are computationally
unattractive, because maximum-likelihood (ML) direction
estimation is involved [20]–[22], [25], [26], [50], which usu-
ally requires a nonlinear and multidimensional optimization
procedure, and the choice of a judiciously chosen threshold is
not easy without any a priori knowledge in the case of a finite
number of snapshots [23], [24]. Another solution of detecting
coherent signals is nonparametric methods [12], [28]–[30] with
decorrelation preprocessing such as spatial smoothing (SS)
[27]; unfortunately, their performance is usually susceptible
to the accuracy of the estimated eigenvalues. In particular,
these nonparametric methods perform poorly in difficult sce-
narios with closely spaced signals, low signal-to-noise ratio
(SNR), and a small number of snapshots, because the bias in
the estimated eigenvalues becomes quite significant and the
population of eigenvalues is not well separated (e.g., [32]). In
addition, the regularization-based method [3] has the drawback
of slightly increased computational complexity. Furthermore,
most nonparametric and parametric methods require the eigen-
decomposition such as eigenvalue decomposition (EVD) or
singular value decomposition (SVD) of the (smoothed) corre-
lation matrix, which is computationally demanding [33]–[36].
Therefore, a considerable computation amount of EVD/SVD

1053-587X/$25.00 © 2007 IEEE
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turns out to be a major obstacle to real-time implementation of
most detection methods, especially when the number of sensors
is large and/or online detection is required.

To eliminate the need for the costly computation of eigen-
values, some detection methods without EVD/SVD have
emerged [35], [37]–[40]. Because the QR decomposition,
which factors a matrix into the product of a unitary matrix and
an upper-triangular matrix (customarily represented as and

) requires much lesser computational effort than the complete
eigendecomposition, it is a useful alternative to the EVD/SVD
and is more amenable to real-time implementation (e.g., [33],
[34], [41], and [42]). However, the first QR-based detection
method with SS preprocessing needs a priori knowledge of
true noise variance and subjective assessment [35], [36], and
its performance generally degrades in difficult scenarios. Other
QR-based detectors for the incoherent signals are essentially
the modified/approximate MDL method [37], [38], where the
ordinary eigenvalues are replaced by the diagonal elements of
the QR upper-triangular factor of the array covariance matrix
or their lower/upper bounds provided by the rank revealing QR
factorization (RRQR) [43]. However, the former [37] is poor in
difficult scenarios, while the latter [38] is complicated because
of more computations of the involved RRQR. The supervised
training approach [39] is restricted for no more than two in-
coherent/coherent signals and is not computationally efficient
enough due to its implementation with neural network. Though
the maximum-likelihood update (MUD) detection scheme is
applicable to uncorrelated and correlated signals [40], which
is a modification to the parametric method of weight subspace
fitting (WSF) detection [23], [24] without EVD, it is still
computationally more complicated.

In this paper, we investigate the detection of coherent nar-
rowband signals impinging on the a uniform linear array (ULA)
and propose a QR-based nonparametric method for estimating
the number of signals without eigendecomposition (MENSE).
By exploiting the array geometry and its shift invariance prop-
erty to decorrelate the coherency of signals through subarray
averaging, the number of signals is equal to the rank of a com-
bined Hankel matrix formed from the cross correlations be-
tween some sensor data and can be revealed in the rank of the
QR upper-trapezoidal factor of the autoproduct of this combined
matrix. Since the influence of additive noise is eliminated, the
robustness to noise can be improved. A new detection crite-
rion is then formulated in terms of the elements of the corre-
sponding QR upper-triangular matrix when finite array data are
available, and hence the number of signals is determined as the
value of the running index for which this criterion is maximized,
where the QR decomposition with column pivoting is also used
to improve the detection performance. The MENSE criterion is
asymptotically consistent, and its detection performance can be
predicted by examining the QR decomposition of the asymp-
totical autoproduct matrix with different permutation matrices.
The choices of the subarray size and the predetermined permu-
tation matrix are also considered. The proposed MENSE is com-
putationally efficient and suitable for real-time implementation
having remarkable insensitivity to the correlation of incident
signals, and it can be extended to the spatially correlated noise
by appropriately choosing the used subarrays (i.e., cross corre-
lations of array data). Furthermore, the MENSE algorithm is ro-
bust to the array uncertainties including sensor gain and phase

errors and mutual coupling and to the statistical modeling er-
rors corresponding to deviations from the Gaussian assumption
of signals and from the spatial homogenous assumption of ad-
ditive noise. It is a companion to the subspace-based method
without eigendecomposition (SUMWE) for direction estima-
tion [44] and its online implementation [45]. The simulation
results demonstrate that the MENSE is superior to the conven-
tional QR-based method and can effectively detect the closely
spaced signals with insignificantly degraded performances as
compared to the MDL and AIC methods, when the number of
snapshots is small and/or the SNR is low.

II. DATA MODEL AND ASSUMPTIONS

We consider a ULA of identical and omnidirectional sen-
sors (i.e., unity gain and zero phase shift in all directions) with
spacing and suppose that narrowband signals with
the carrier frequency are in the far field of the array and arrive
from distinct directions , where , and is less than
or equal to half a wavelength of the carrier. The received signal

at the th sensor can be expressed as

(1)

where is the additive noise, ,
, and is the propagation speed. Then, the received

signals can be rewritten more compactly as

(2)

where , , and are the vectors of the re-
ceived signals, the incident signals, and the additive noise
given by ,

,
, is the array response matrix given

by with

, and denotes
transposition.

Herein, we make the following basic assumptions on the data
model, which are similar to those in the SUMWE [44].

A1) The signals are coherent under the flat-fading
multipath propagation and given by

for (3)

where is the complex attenuation coefficient with
and .

A2) For the simplicity of theoretical analysis, the incident
signal is a temporally complex white Gaussian
random process with zero-mean and the variance given
by

(4)

, where , , and denote the expectation,
the complex conjugate, and Kronecker delta.
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A3) The additive noise is a temporally and spa-
tially complex white Gaussian random process with
zero-mean and the following variance:

(5)

and . And the additive noise is uncorrelated
with the incident signals.

A4) The number of incident signals satisfies the inequality
that for an array of sensors.

Remark 1: The proposed method can be extended to uncor-
related or correlated signals and to partly correlated or coherent
signals, and it can accommodate a more general noise model
for the spatially correlated noise if we choose appropriate sub-
arrays (cf. Remark 3 and [44]). The detectability condition is
that (cf. Remark 4), which is the same as the identi-
fiability condition for the SUMWE [44] and less strict than the
necessary condition with probability one for esti-
mation problem [46].

Remark 2: Although the ideal omnidirectional array and
the normal signal and noise models are assumed, the proposed
method is robust against the array uncertainties including
sensor gain and phase errors and mutual coupling and against
the deviations from the complex white Gaussian assumption of
incident signals and from the spatial homogenous assumption
of additive noise (cf. Section V).

III. ESTIMATING THE NUMBER OF SIGNALS

WITHOUT EIGENDECOMPOSITION

Under the assumptions of data model, we easily get the array
covariance matrix as

(6)

where and indicate the Hermitian transposition and
identity matrix, and is the signal covariance matrix

given by

(7)

with . By defining the correla-
tion between the noisy signals and as

, where , clearly the diag-
onal elements of in (6) are affected by the noise
variance. In addition, since the incident signals are coherent,
the matrix in (7) is singular, and the dimension of the signal
subspace of is smaller than the number of incident signals
(i.e., rank , when ). Hence,
the number of signals cannot be estimated directly from the
multiplicity of the eigenvalues of the matrix in (6).

A. Decorrelation of Signal Coherency and Insensitivity to
Additive Noise

First, for the sake of tractability in theoretical analysis, the
noisy received signal in (1) can be reexpressed by

(8)

where
. Now, we can divide the full array into

overlapping subarrays with sensors in the forward
and backward directions [31], and the th forward or
backward subarray comprises or

sensors for ,
where and (see Remark 4 for the choice
of subarray size ). The signal vectors of the th forward and
backward subarrays are given by

(9)

(10)

where ,

,
is the submatrix of in (2) consisting of the first rows
with the column ,
and . Then by
defining the correlations , , , and between the
signal vectors and in (9) and (10) and the sig-

nals and in (1) as ,

, , and

, after some algebraic manipulations,
we can obtain four Hankel correlation matrices (cf. [44])

(11)

(12)

(13)

(14)

where is the submatrix of in (2) consisting
of its first rows with the column

, ,

and .
Obviously, the Hankel correlation matrices , , , and
with the relations and

are not affected by the additive noise and can be simply formed
from the elements and in the th and first columns

and of in (6) except for the autocorrelations and
, which contain the noise variance , where is an

counteridentity matrix, , and
. The ranks of these matrices equal the number

of signals iff and (cf. [3], [44], and [47]),
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i.e., the dimension of the signal subspace of these matrices is re-
stored to the number of signals without the ordinary SS prepro-
cessing [27], in which the spatial averaging of subarray covari-
ance matrices is required. The rank property of these matrices
and their insensitivity to the additive noise lay the basis for the
proposed method.

Remark 3: When the incoming signals are uncorrelated, four
Hankel correlation matrices are given by (cf. [44])

(15)

(16)

where , and

. Clearly, the ranks of these matrices still
equal the number of incident signals .

B. QR-Based Approach to Estimating the Number of Signals

From (11)–(14), we define an combined cor-
relation matrix as

(17)

where

, and
. Then, we obtain an

autoproduct of matrix as

(18)

which is a special centrosymmetric matrix with double sym-
metry (Hermitian and persymmetric about the principle and
cross diagonals, respectively), i.e.,

(19)

Then, we have the following relation between the number of in-
coming signals and the rank of the QR upper-trapezoidal factor
of in (18).

Theorem 1: The number of incident signals equals the rank of
the QR upper-trapezoidal factor of the matrix in (18), when
the detectability condition that is satisfied, i.e.,
rank , where the Householder QR decomposition of the
matrix is given by

(20)

where is the unitary matrix, is
the upper-triangular and nonsingular matrix, is the

matrix with nonzero elements, and
denotes the null matrix.

Proof: See Appendix A.
Thus, the rank property of the QR factor in Theorem 1

has the potential for detecting the number of signals due to the
avoidance of EVD and the robustness to additive noise.

Remark 4: As the information on the number of signals is
unavailable, the subarray size should be chosen appropriately.

From the detectability condition , where ,
we can find that the maximum detectable number of signals is

, i.e., , where denotes the
smallest integer not less than . Therefore, we can choose a
conservative value of , which satisfies the inequality
condition that , where
denotes the largest integer not greater than .

C. Detecting Absence of Incident Signal

In many fields such as radar and sonar (e.g., [52] and [55]),
we sometimes encounter the absence of incident signal(s).
Hence, we should firstly infer whether the measurements con-
sist of noise only or of a number of incident signals corrupted
by noise and then have to determine the exact number of signals
if they are present. From Theorem 1, we can easily get the
following lemma for the case of one signal, which is useful for
setting a detection threshold automatically without the need
for “manual” adjustment to detect the absence or presence of
incident signal(s).

Lemma: For the special case of a single signal, the correlation
matrix in (17) is given by

(21)

and the analytical expressions of the QR factors of the auto-
product of in (21) can be explicitly given by

(22)

(23)

where is an unit vector with a unity element at
the th location and zeros elsewhere, and rank .

Proof: This Lemma can be established from Theorem 1
and Appendix A immediately.

When there is only one impinging signal, from (6), the auto-
correlation of the received signal is given by

for (24)

By comparing this correlation with the element of the
QR factor matrix in (23), we have

SNR
SNR

(25)

where we set SNR and assume that . If the SNR
and the power of signal satisfy the condition

SNR
(26)
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we find that . Hence, if the subarray size is chosen
as (cf. Remark 4), when SNR (i.e., SNR

10 dB), the low threshold can be approximated as

(27)

Consequently, as long as the signal power is not less than ,
we can find that ; whereas when there is no signal,
evidently we can obtain that .

Thus, for the case of SNR 10 dB and , when
, which is a reasonable condition in practice where the

number of sensors is usually not too small and hence results
in small , by letting the binary hypotheses be

absence

presence (28)

we can accept or by quantitatively comparing the ele-
ment of the QR factor and the autocorrelation of the
signal , i.e.,

(29)

If is accepted, we can see that there is no incident signal;
otherwise is accepted, then the number of incident signals
should further be estimated by the rank property in Theorem 1.

D. Implementation of MENSE With Accessible Noisy Data

When only finite and noisy array data are available, the
Hankel correlation matrices in (11)–(14) (and hence ) should
be replaced with their estimates , , , and (and hence

), and then the sample estimate of autoproduct of is
given by

(30)

However, the principle effect of using a finite number of snap-
shots is that the influence of noise will not be completely can-
celled out in the sample estimate in (30). As a result, when the
number of snapshots is not sufficiently large, the QR factor

of will be perturbed from its true value in (20) and
may become an upper-triangular and nonsingular matrix with
full rank due to the effect of estimation error. Consequently, the
rank property in Theorem 1 will not be satisfied exactly, and the
number of incident signals (i.e., the effective rank of ) could
not be determined simply by comparing the magnitude relation
between the diagonal elements of . Here, we propose a ratio
criterion based on the row elements of QR factor to estimate
the number of signals without any ad hoc threshold setting.

Now, performing the QR decomposition with column piv-
oting to the matrix in (30) (e.g., [33]), we get

(31)

where is an permutation matrix, which
is used to represent different methods of the QR decomposition

with column interchanges (see Section IV-C for the choice of
). Then, by introducing an auxiliary quantity in terms of

the nonzero elements of the th row of QR factor as

for (32)

we can define a ratio criterion as

for (33)

where is an arbitrary and positive small constant (e.g.,
) for avoiding the possibly undetermined ratio of 0/0 in

(33). Thus, the number of incident signals is determined as the
value of the running index for which
the criterion is maximized, i.e.,

(34)

Moreover, with an finite number of snapshots , the detec-
tion rule in (29) is modified as

(35)

Then, if is accepted, we can get . Otherwise, we further
have to estimate the number of signals with (34).

Therefore, the implementation of the proposed MENSE with
finite array data and the computational complexity
of each step can be summarized as follows.

1) Set the subarray size to . flops
2) Calculate the sample correlation vector between

and and those of between and as

(36)

where , and
. flops

3) Form the estimated Hankel correlation matrices , ,

, and , and hence the estimated matrix from and
, as

Hank Hank (37)

(38)

(39)

where
, ,

, and Hank denotes the
Hankel operation. flops

4) Calculate the autoproduct with (30) and perform its
QR decomposition with (31).

flops
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TABLE I
COMPARISON BETWEEN THE COMPUTATIONAL COMPLEXITY OF THE IMPLEMENTATION OF THE MDL AND

SS/FFSS-BASED MDL METHODS AND THAT OF THE MENSET ALGORITHM IN MATLAB FLOPS

5) If , the number of signal is estimated as ,
and stop the detection procedure; otherwise , and
continue with the next step. 0 flops

6) Calculate the ratio criterion with (32) and (33) for
and determine the number of

incident signals with (34).
1 flops

The computational complexity above is roughly indicated
in terms of the number of flops, where a flop is defined as a
floating-point addition or multiplication operation as adopted
by the MATLAB software, and a predetermined permutation
matrix is used in Step 4) to simplify calculation.

Remark 5: Since the unitary matrix (or ) of the QR de-
composition is not necessary, the detection algorithm can be im-
plemented more efficiently without computing this QR factor
(see [45, App. A] for basic algorithm for Householder QR de-
composition).

Remark 6: The implementation of the benchmark MDL
or AIC method [7] and its variants usually involve three
major steps: i) calculation of the array covariance matrix or
the spatially smoothed subarray covariance matrix (for the
SS and forward-backward SS (FBSS) based MDL/AIC) and
ii) computation of eigenvalues with EVD, and iii) calculation
of the criterion. The computational complexities of the MDL,
SS/FBSS-based MDL in MATLAB flops are roughly shown and
compared with that of the MENSE algorithm in Table I, where

is the subarray size used in the SS/FBSS-based method with
and (for SS) or

(for FBSS) [27], [31].
By denoting the numbers of MATLAB flops required by

the MDL, SS/FBSS-based MDL, and the MENSE algorithm
as , , and , we can define the relative
efficiency ratios as and ,
and these ratios in terms of the number of sensors are shown
in Fig. 1, where is verified from to ,
while and . When the number
of snapshots is not significantly larger than the number of
sensors , the computational complexity is mostly dominated
by the calculation of needed correlation matrix and the EVD or
QR operation, and hence we approximately get

for and . When , the
computations of EVD or QR operation will be also are neg-
ligible, and we easily obtain and

Fig. 1. Relative efficiency ratios between the estimated number of MATLAB
flops required by the MENSE algorithm and that needed by the MDL and
SS/FBSS-based MDL methods in terms of the number of sensors (M = 100

and m = �p = bM=2c).

. Ob-
viously is smaller than and , and
these quantitative comparisons show that the MENSE algo-
rithm is computationally efficient than the (SS/FBSS-based)
MDL method with EVD. The computational complexity of
the (SS/FBSS-based) AIC method is almost identical that of
the (SS/FBSS-based) MDL method, except that the flops of
last step is given by (or ), hence the
behaviors of and are similar
to that shown in Fig. 1 and are omitted herein.

IV. STATISTICAL ANALYSIS

A. Consistency of MENSE Detection Criterion

Because the finite-sample properties of detection methods are
difficult to study analytically, an important characteristic of a
detection scheme is its ability to provide an unbiased estimate
of the number of signals for a large number of snapshots . For
investigating the consistency of the MENSE criterion, we first
consider the asymptotical error of .

Theorem 2: By dividing the total array into overlapping
“virtual” forward and backward subarrays with sensors,
the asymptotical error of the autoproduct in (30) is given by

(40)
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where and are the spatially summed covariance matrices
of the first and last “virtual” forward subarrays, while and

are those of the first and last “virtual” backward subarrays.
Proof: See Appendix B.

Thus, as the number of snapshots tends to infinity, the
asymptotical error of the estimated autoproduct in (30) ap-
proaches zero. Then, we easily obtain the following theorem on
the consistency of the proposed criterion.

Theorem 3: As the number of snapshots tends toward in-
finity, the estimated number of incident signals obtained with
the MENSE detection criterion is consistent.

Proof: See Appendix C.

B. Asymptotical Threshold for Detection

Now, by defining an asymptotical autoproduct of the
sample estimate in (30) as its expectation and substituting
(B5)–(B8) into (40), we obtain

(41)

where , and the ranks of four noise-free
summed “virtual” subarray covariance matrices equal the
number of signals . Then, from the facts that rank

rank rank and rank rank rank
(e.g., [48]), the rank of matrix is given by

rank for and/or
others

(42)

Evidently, the estimated number of signals is perturbed by the
noise variance and the number of snapshots . Thus, by sub-
stituting into the proposed algorithm, we can obtain a theo-
retical detection threshold for the SNR, number of snapshots, or
angular separation for correct detection and gain some insights
into the detection performance.

Especially when no incident signal is present, from (24) and
(41), we easily get

and (43)

and the element of the QR factor of is given by

(44)

Then, in view of the hypothesis given in (28) and (29),
we can theoretically obtain the low threshold for the number

of snapshots for correctly detecting the absence of incident
signal(s) as

(45)

C. Choice of QR Permutation Matrix

Although the permutation matrix in (31) could be deter-
mined by a successive dynamic swapping of the columns of

during the process of QR decomposition according to the
QR decomposition with column pivoting (QRP) [33] or RRQR
[43], this data-dependent pivoting scheme may be undesirable
for some real-time applications due to its extra computational
cost [41]. To avoid the dynamic column shuffling procedure,
here we propose a way of predetermining by considering the
asymptotical autoproduct in (41).

By reexpressing the matrix in its column vectors ,
the Gramian matrix of is given by

(46)

where , and is centrosymmetric, Hermitian, and
persymmetric as well as . Then a quantitative measure of
linear independence of columns is the dependency coeffi-
cient defined as

(47)

where , and
under Cauchy-Schwarz inequality. Thus, by comparing

the elements of a dependency coefficient matrix , we
can form a permutation matrix to ensure the minimum linear
dependency between the adjacent columns of . Further,
this (referred as the QRPA) can be used in (31) to improve
the detection performance by lowering the detection threshold
without increased computational complexity.

Remark 7: It should be emphasized that the proposed de-
termination of the permutation matrix may not be feasible in
some applications, when the knowledge of asymptotical auto-
produce is unavailable. Then, an alternative a priori manner
is the column index maximum-difference bisection rule-based
scheme [37], [41] (referred as the QRPP), where is given by
the equation, shown at the bottom of the page. This data-inde-
pendent scheme could possibly provide the shuffled columns
with relatively small dependency by taking the special symme-
tries of the matrices (i.e., ) and into account.

for even
for odd
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V. NUMERICAL EXAMPLES

The effectiveness of the proposed MENSE algorithm in esti-
mating the number of signals is evaluated through numerical ex-
amples. The ULA with sensors is separated by a half-wave-
length, and the SNR is defined as the ratio of the power of
the source signals to that of the additive noise at each sensor.
The AIC and MDL methods with EVD [7], [10], the SS- and
FBSS-based AIC and MDL methods [12], [27], [31], and the
QR-based MDL method [37], which is modified by combining
the FBSS-MDL criterion [12], [31] with the QRPP decomposi-
tion [37], [41], are carried out for performance comparison. The
simulation results shown below are based on 1000 independent
trials.

Example 1—Performance Versus SNR: First we examine the
detection performance of the MENSE algorithm with respect to
the SNR, where two coherent signals with equal power
arrive from 5 and 12 , and their SNR is varied
from 10 to 15 dB. The numbers of sensors and of snapshots
are and . The subarray sizes are set at

and for the MENSE and the SS/FBSS-based
methods.

By examining the asymptotical autoproduct in (41),
the QRPA predetermined permutation matrix is given by

. The probabilities of correct detection
(i.e., ) of the MENSE algorithm with QRPA, QRPP
[37] (i.e., ), QRP [33], and QR (i.e.,

) in terms of the SNR are shown in Fig. 2. The
performance of the SS-based AIC and MDL methods is poor
at lower and medium SNRs due to the bias in the estimated
eigenvalues, whereas the detection of the FBSS-based AIC
and MDL methods is considerably enhanced because of the
forward-backward averaging, which effectively doubles that
the amount of available data and improves the estimation
of eigenvalues [12]. The QR-based MDL method performs
slightly better than the FBSS-based MDL method but worse
than the FBSS-based AIC method. The MENSE algorithm with
QR generally outperforms the SS/FBSS-based methods and
the QR-based MDL method because of the reduced effect of
additive noise, while it is slightly inferior to the FBSS-based
AIC method at medium SNR. Further, by introducing the
column pivoting into the QR decomposition to remedy the
effect of additive noise, the MENSE algorithm with the QRP,
QRPP, and QRPA can be significantly improved at lower SNR,
and the proposed QRPA can ensure efficient detection similarly
to the QRPP [37].

Moreover, by considering matrix in (41), as shown in
Fig. 2, we find that the low threshold SNR for the MENSE
with QR, QRP, or QRPP/QRPA is given by 3, 2, or 9 dB,
respectively. Here the difference between the actual and
theoretical thresholds for correct detection results from the
statistical fluctuations, and the theoretical threshold based on
the asymptotical analysis usually corresponds to the 40% 60%
range of the ensemble-averaged probability of correct detection.
Additionally the probabilities of missing and false alarm (i.e.,

and defined in Appendix C) of the MENSE algorithm
with QR permutation matrices versus the SNR are depicted

Fig. 2. Probability of correct detection versus the SNR for Example 1 (vertical
dotted line: detection threshold; N = 64,M = 10, and p = 2).

Fig. 3. (a) Probability of missing and (b) probability of false alarm versus the
SNR with different QR permutation matrices for Example 1 (N = 64, M =

10, and p = 2).

in Fig. 3. Clearly is much smaller than at low SNR,
and these probabilities of incorrect detection can be decreased
significantly at low SNR when the QRPP [37] and the proposed
QRPA are used.

Example 2—Performance Versus Number of Snapshots: Now
we inspect the performance of the MENSE against the number
of snapshots with the similar simulation conditions to those of
Example 1, except that the SNR is set at 2.5 dB, and the number
of snapshots is varied from to .

As shown in Fig. 4, evidently the small number of snapshots
causes the estimated eigenvalues to be inaccurate and hence
leads to degraded detection with the SS-based AIC and MDL
methods. The MENSE algorithm with QR or QRP generally
performs better than the FBSS-based MDL method and suffers
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Fig. 4. Probability of correct detection versus the number of snapshots for Ex-
ample 2 (vertical dotted line: detection threshold; SNR = 2.5 dB, M = 10,
and p = 2).

only slight degradation as compared with the FBSS-based AIC
method for a relatively small number of snapshots. However,
the MENSE algorithm with QRPP/QRPA is significantly supe-
rior to the other methods even with a small number of snap-
shots, where the QRPP or QRPA well offsets the influence of
a small number of snapshots. Further, its probability of correct
detection approaches one promptly even though the number of
snapshots is not “significantly large.” In addition, the theoret-
ical threshold for the number of snapshots is effectively reduced
from (with QR) or (with QRP) to in
this empirical scenario.

Example 3—Performance Versus Angular Separation: Here,
we assess the performance of the MENSE with respect to the an-
gular separation between two coherent signals. In this example,
two coherent signals impinge on the array along 5 and

, where is varified from 2 to 12 ,
and the other simulation conditions are the same as those in Ex-
ample 1, except that the SNR is fixed at 2.5 dB.

Although the MENSE algorithm with QR or QRP performs
similarly to the FBSS-based MDL method, from Fig. 5, we
can see that the MENSE algorithm with QRPP or QRPA can
efficiently detect the closely spaced coherent signals and out-
performs the other methods. We also find that the theoretical
threshold for angular separation is decreased from 6
(with QR) or 5.75 (with QRP) to 5 (with QRPP)
or 4.75 (with QRPA) by studying the asymptotical au-
toproduct .

Example 4—Performance Versus Subarray Size: We then
study the effect of the subarray size on the MENSE detection
performance. The simulation conditions are similar to those
in Example 1, except that the SNR is set at 2.5 dB, and the
subarray size is varied from to to satisfy the
condition , while the subarray size for the
SS/FBSS-based methods is varied to , and

Fig. 5. Probability of correct detection versus the angular separation for Ex-
ample 3 (vertical dotted line: detection threshold; SNR = 2.5 dB, N = 64,
M = 10, and p = 2).

Fig. 6. Probability of correct detection versus the subarray size for Example 4
(SNR = 2.5 dB, N = 64,M = 10, and p = 2).

is chosen as the QRPA
permutation matrix for the sake of simplicity.

Fig. 6 plots the probabilities of correct detection against the
subarray size or . As the dimension of
matrix varies with the subarray size , the coherency decor-
relation and the detection capability of the MENSE are affected
by the subarray size similarly to that of the SS/FBSS-based
methods, when the number of snapshots is small and/or the SNR
is low. Clearly, a high probability of correct detection can be
achieved by the MENSE algorithm with QRPA and QRPP for

3, 4, 5, and 6 (the differences are almost indistinguishable),
and the setting of subarray size is an appropriate
and reasonable choice.
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Fig. 7. Probability of correct detection versus the correlation factor for Ex-
ample 5 (SNR = 0 dB, N = 64,M = 10, and p = 2).

Example 5—Performance Versus Correlation Factor: Then,
we evaluate the detection performance with respect to the corre-
lation between the incident signals, where the correlation factor

between and is defined by [56]

where . Here, the correlation factor is varied from 0
to 1 (its phase is assumed to be zero), the SNR is set at 0 dB,
and the number of snapshots is fixed at , while the other
parameters are the same as those in Example 1.

The simulation results in terms of the correlation factor are
shown in Fig. 7. Because the maximum possible array aperture
(i.e., ) is used, the MDL method provides the best detec-
tion for uncorrelated and weakly correlated signals. But its per-
formance degrades sharply with the increased signal correlation
as that of the AIC method, whereas the SS-based AIC and MDL
methods perform poorly due to the smaller array aperture (i.e.,

) and the slightly strict conditions of the low SNR and
the small number of snapshots. While the FBSS-based AIC and
MDL and the QR-based MDL methods perform better than the
SS-based AIC and MDL methods for correlated signals, their
probabilities of correct detection do not tend toward one despite
the use of forward-backward averaging. Although the MENSE
with QR or QRP is inferior to the FBSS-based AIC method,
the MENSE algorithm with QRPP or QRPA is superior to the
other methods in detecting strongly correlated signals, where
the slight degradation for low correlations is due to the reduced
dimension of the sample matrix , where

. Thus, we can see that the MENSE with
QRPP/QRPA is insensitive to the correlation between incident
signals.

Example 6—Performance Versus Number of Sensors: Next,
we test the detection performance against the number of sensors,
where the number of sensors is varied from to ,

Fig. 8. Probability of correct detection versus the number of sensors for Ex-
ample 6 (vertical dotted line: detection threshold; SNR = 2.5 dB, N = 64,
and p = 2).

and are chosen as the subarray sizes. The
other simulation parameters are identical to those in Example 1,
except that the SNR is fixed at 2.5 dB, and the QRPA permuta-
tion matrix is given by for
the sake of simplicity.

As shown in Fig. 8, the MENSE algorithm with QRPP/QRPA
has a higher probability of correct detection than the other
methods for a small number of sensors. Further the proba-
bility of correct detection tends toward one when
no matter which QR permutation matrix (i.e., the QR, QRP,
or QRPP/QRPA) is used, and the theoretical threshold for the
number of sensors is given by 9, 8, or 7, respectively.

Example 7—Detecting Absence of Incident Signal: Here we
verify the performance of the MENSE in detecting the absence
of impinging signals. The number of sensors is , and
the number of snapshots is varied from to .

The probability of false alarm of the MENSE with
QRPP/QR versus the number of snapshots is plotted in Fig. 9
for several noise variances 1, 0.5, 0.3, and 0.2. Evidently,
the AIC and MDL methods are not affected by the noise
variance, but they pose an unacceptably high risk of false alarm
for a small number of snapshots (i.e., ) due to the
bias in the estimated eigenvalues; further the AIC’s tends
toward 5% even for a larger number of snapshots. Generally,
the MENSE algorithm has a rather small and outperforms
for a smaller number of snapshots when . Additionally
the theoretical threshold for the number of snapshots is given
by 21, 11, 7, and 5 for the noise variances 1, 0.5,
0.3, and 0.2, respectively.

Example 8—Performance in the Presence of Array Uncer-
tainties: Now we consider the performance of the MENSE
versus the SNR, when the sensor gain and phase errors and
the mutual coupling between sensors exist, which are often en-
countered in many practical situations (e.g., [51]). The received
signal model in (2) is modified as
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Fig. 9. Probability of false alarm versus the number of snapshots for several
noise variances for Example 7 (vertical dotted line: detection threshold; M =
10, and p = 0).

where is a banded Toeplitz matrix representing the effect of
mutual coupling between the sensors, is a diagonal matrix
with the elements , , and and denote the
gain and phase of each sensor, which can be chosen according
to the following relations [51]:

and

where and are independent random variables dis-
tributed uniformly in the interval ( 0.5, 0.5), and and
are the standard deviations of the gain and phase . In this
example, the Toeplitz mutual coupling matrix has the first
column as , and
5 , while the other simulation parameters are similar to those of
Example 1.

The probabilities of correct detection versus the SNR are
shown in Fig. 10. Clearly regardless of the sensor gain and
phase errors and the mutual coupling effect between three
adjacent sensors, the MENSE algorithm is robust to these
uncertainties. Further the MENSE algorithm with QRPP and
QRPA can determine the number of signals from the uncali-
brated array data with high probability of correct detection and
outperform the other methods even at low SNR.

Example 9—Performance Under Spatially Inhomogenous
Noise: Finally we investigate the performance of the MENSE
in the presence of the deviations from the spatial homogeneity
of noise model given by (5), which appears in some practical
applications (e.g., [52]–[54]), where the noise variance matrix
is given by

where is a positive constant, is a diagonal matrix with the
elements , and are independent random variables dis-
tributed uniformly over the interval (0, 1). Here, we set ,
and the simulation conditions are similar to that of Example 1,

Fig. 10. Probability of correct detection versus the SNR in the pres-
ence of array uncertainties for Example 8 (� = 0:1, � = 5 ,
��� = [1; 0:1;0:025; 0; � � � ; 0] , N = 64, M = 10, and p = 2).

Fig. 11. Probability of correct detection versus the SNR for spatially inho-
mogenous noise model for Example 9 (� = 1, N = 64,M = 10, and p = 2).

except that the SNR is varied from 5 to 20 dB, where the SNR
is calculated when [54].

Fig. 11 depicts the probability of correct detection with re-
spect to the SNR for this nonideal noise model. Because the
AIC and MDL criterion can be interpreted as a test for de-
termining the multiplicity of the smallest eigenvalues [7], and
hence they performs poorly when the noise variance at each
sensor is unequal [16], [17], [52]–[54], where the relation be-
tween the number of signals and this multiple becomes invalid.
However, since the autocorrelation of array data, which con-
tains the noise variance at each sensor, is not used in the com-
bined Hankel correlation matrix and hence its autoproduct
in principle, the MENSE algorithm is robust to the deviations
from the normal noise model. As shown in Fig. 11, although the
number of snapshots is small, we can see that the MENSE algo-
rithm performs better than the (FBSS/SS-based) MDL and AIC
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methods under the spatially inhomogenous noise model when
the SNR is relatively low.

VI. CONCLUSION

A computationally efficient QR-based nonparametric method
called MENSE was proposed for estimating the number of nar-
rowband signals impinging on a ULA. The MENSE algorithm
does not require the computationally cumbersome eigendecom-
position and the evaluation of all correlations of the array data,
where the effect of additive noise is remedied by appropriately
choosing the used subarrays. Consequently, the MENSE algo-
rithm is suitable for real-time implementation and is remarkably
insensitive to the correlation of incident signals and flexible with
the spatially correlated noise. The asymptotical consistency of
the MENSE estimator was studied, and its ability to detection
could be predicted by examining the QR decomposition of the
asymptotical autoproduct matrix with different permutation ma-
trix. The simulation results showed that the MENSE algorithm
with a predetermined QR permutation matrix such as QRPA
or QRPP is superior in detecting closely spaced signals with
a small number of snapshots and/or at relatively low SNR and
is robust against the array uncertainties and the deviations from
the spatial homogenous assumption of additive noise.

APPENDIX A
PROOF OF THEOREM 1

It follows from the basic assumptions that the th row of
matrix in (2) can be expressed as a linear combination of the
first rows with complex coefficients

which are not all zero for ,
i.e.,

(A1)

By defining be the submatrix of in (2) consisting of
the first rows, i.e., , from (A1),
we easily obtain the coefficients

(A2)

where , and the inverse matrix of
the full rank matrix exists. When the condition that

is satisfied, from (18) and (A1), we obtain

(A3)

where ,
, and (A1) is used implicitly.

Now we consider and choose the complex Householder trans-
form matrix to zero out but the first element of the first
column of in (A3) as (see, e.g., [33] and [48])

(A4)

where the Householder vector is given by
, and is an unit vector

with a unity element at the first location and zeros elsewhere,
and the for complex quantity is chosen according the
sign of its real part. Through some simple computations, we get

(A5)

By defining for
and pre-multiplying (A3) with in (A4), we have

(A6)

where . We then continue the
process of QR decomposition by expressing the th column of
the matrix as

(A7)

where , where
, and . We can zero

out the last elements of

the th column of the matrix by using
the complex Householder transform matrix given by

(A8)

for , where

(A9)

(A10)

in which , and is an
unit vector with a unity element at the first location and zeros
elsewhere. As a result, we can obtain

(A11)
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for , where

and especially

(A12)

(A13)

Therefore, by forming a sequence of transformations
, from (A11)–(A13), the QR factors of

can be obtained

(A14)

where [see equations (A15)–(A17), shown at the bottom of the
page], the facts that the Household transform matrix (and

) is unitary and are used implicitly. From (A12),
since for and (i.e., ), obvi-
ously we can find that rank rank

, i.e., the number of incident signals can be determined from
the rank of QR factor of the matrix .

APPENDIX B
PROOF OF THEOREM 2

As the signal vectors and of the th “virtual”
forward and backward subarrays are given by

(B1)

(B2)

where , and

, for

, we can get the covariance matrices and
of the th “virtual” forward and backward subarray as

(B3)

(B4)

Further, we easily obtain

(B5)

(B6)

(B7)

(B8)

where the noise-free counterparts are given by
, ,

, and
.

From (36)–(38), the estimated Hankel correlation matrices
, , , and can be reexpressed by (cf. [44])

(B9)

(B10)

...
...

...
. . .

...

(A15)

...
. . .

...

(A16)

(A17)
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where ,

,

, and
. Under the basic assumptions and by using the

formula for the expectation of the product of four complex
Gaussian random variables and vectors with zero-mean [49],
we can get

(B11)

where , and
. Similarly, we obtain

(B12)

(B13)

(B14)

where , ,

, ,
, and .

From (18) and (30), by combining (B11)–(B14) together, we
straightforwardly get

(B15)

Therefore, the asymptotical error in (40) can be
obtained immediately from (B15).

APPENDIX C
PROOF OF THEOREM 3

To established the consistency of proposed criterion, it suf-
fices to prove that almost sure (a.s.) with prob-
ability one (w.p.1) when for (cf. [7] and [11]).

Because the predetermined permutation matrix does not af-
fect the statistical property of and the estimate is asymp-
totically consistent, we easily find that the QR factor in (31)
is asymptotically consistent, i.e., a.s. w.p.1. Then,
from (20), (31), and (32), we can get for

while for , where

. Hence, from (33), we have

for

for
for

(C1)
where is a positive constant. Thus, it follows that

for and as ; consequently the maximum
is achieved at . That is the probability of missing

and that of false alarm goes
to zero asymptotically while the probability of correct detection
approaches to one, when . Therefore, we can conclude
that the estimate in (34) is asymptotically consistent, i.e.,

w.p.1 as .
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