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Subspace-Based Localization of Far-Field and
Near-Field Signals Without Eigendecomposition

Weiliang Zuo, Jingmin Xin , Senior Member, IEEE, Nanning Zheng, Fellow, IEEE, and Akira Sano, Member, IEEE

Abstract—We propose a new subspace-based localization of far-
field (FF) and near-field (NF) narrowband signals (LOFNS) with-
out eigendecomposition impinging on a symmetrical uniform linear
array, where the oblique projection operator is utilized to isolate
the NF signals from the FF ones, and the procedures of compu-
tationally burdensome eigendecomposition are not required in the
estimation of the NF and FF location parameters and the com-
putation of oblique projection operator. As a measure against the
impact of finite array data, an alternating iterative scheme is pre-
sented to improve the estimation accuracy of the oblique projection
operator and, hence, that of the NF location parameters, where the
“saturation behavior” encountered in most of localization methods
is overcome. Furthermore, the statistical analysis of the proposed
LOFNS is studied, and the asymptotic mean-squared-error ex-
pressions of the estimation errors are derived for the FF and NF
location parameters. Finally, the effectiveness and the theoretical
analysis of the proposed LOFNS are substantiated through nu-
merical examples, and the simulation results demonstrate that the
LOFNS provides remarkable and satisfactory estimation perfor-
mance for both the NF and FF signals compared with some existing
localization methods even with eigendecomposition.

Index Terms—Direction-of-arrival, far-field, near-field, oblique
projection, source localization, uniform linear array.

I. INTRODUCTION

LOCALIZATION of the multiple narrowband signals im-
pinging on an array of sensors is a fundamental problem

in many applications (see, e.g. [1]–[4] and references therein),
where the plane-wave model characterized by only the direction-
of-arrival (DOA) or the spherical-wave model parameterized by
the DOA and the range are considered for the incident sig-
nals located in far-field (FF) or near-field (NF), respectively. In
the array processing literature, numerous localization methods
were studied for the FF signals (e.g., [5]–[11]) or the NF ones
(e.g., [12]–[23]), where the pair-matching (i.e., association) of
the estimated DOAs and ranges is usually required in the lat-
ter. However, in some practical scenarios (for example, speaker
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localization with microphone arrays) (e.g., [24]–[26]), the FF
signals and the NF ones usually coexist, and the aforemen-
tioned methods only based on the plane-wave or spherical-wave
model deteriorate dramatically, and hence the localization of
these mixed signals has received considerable attention.

Recently the localization of the mixed FF and NF signals
were investigated from different aspects, and most of them (i.e.,
[30]–[43]) generally consist of three major stages: (i) the DOA
estimation of FF signals, (ii) the isolation of the NF signals
from the FF ones with the matrix differencing or oblique
projection technique, and (iii) the DOA and range estimation
of NF signals, where the crux is the separation (i.e., isolation).
Some higher-order statistics (HOS) or cyclostationarity based
localization methods [29]–[35] were presented by exploiting
the specifically temporal properties of incident signals (e.g.,
[27], [28]), but they often require many array snapshots and
have high computational load. Several differencing methods
were suggested to eliminate the contribution of the FF signals
and the additive noises in the NF localization [36]–[38], but
the required structure property of the signal covariance matrix
is only valid for large number of snapshots. By utilizing the
geometric configuration of a symmetrical uniform linear array
(ULA), some subspace-based methods with second-order
statistics (SOS) were proposed for the mixed incident signals
[39]–[43]. The generalized ESPRIT and polynomial rooting
(GESPR) [39] performs worse, because the generalized ESPRIT
(GESPRIT) [44] encounters ambiguity in some scenarios owing
to the selection of weighting matrix (cf. [45]), and it results
in spurious peaks for more than one FF signals. The method
[40] requires two-dimensional MUSIC-like spectrum peak
searching, and a subjective criterion is needed to distinguish the
FF and NF signals. Further some other methods were presented
[41]–[43], where the NF and FF signals are separated with
oblique projection, which is an extended orthogonal projection
and used in the DOA estimation of the mixed noncoherent and
coherent FF signals (cf., [46]–[49], [67]–[71]). In the oblique
projection based MUSIC (OPMUSIC) [41], the DOAs of FF
signals are estimated by finding the peaks of the MUSIC-like
one-dimensional (1D) spectrum obtained from the array
covariance matrix, and then the oblique projection technique
[47] is adopted to separate the NF signals from the FF signals by
using the estimated DOAs of FF signals, while the DOAs of NF
signals are estimated by finding the peaks of the MUSIC-like
1D spectrum obtained from the Hankel matrix constructed with
the anti-diagonal elements of the projected array covariance
matrix, and by using these estimated DOAs, the ranges of
the corresponding NF signals are estimated by finding the
peaks of another MUSIC-like 1D spectrum obtained from the
array covariance matrix. Obviously the major computational
complexity of the OPMUSIC is dominated by not only the
computations of array covariance matrix and the projected
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array covariance matrix and their eigendecompositions but also
by three peak picking procedures of the MUSIC-like spectra,
where the precise peak searching necessitates fine grid interval
but is rather time-consuming task with heavy computation
load. The sparse recovery and oblique projection based
method (SROP) [42] needs to solve the convex optimization
problems and has a difficulty to determine the regularization
parameter that balances the tradeoff between the Frobenius and
�1-norm terms. The oblique projector based MUSIC-GESPRIT
(OPMUGE) [43] estimates the DOAs of FF and NF signals
with two different procedures of MUSIC- and GESRPRIT-like
spectrum searching and estimates the range of NF signals by the
polynomial rooting in the compressed searching area, yet it suf-
fers from degradation as mentioned above [45]. Unfortunately,
when the number of snapshots is not large sufficiently, the
off-diagonal influence in the sample signal covariance matrix
and the erroneous estimated oblique projector usually causes
the “saturation behavior” in the localization of NF signals re-
gardless of the signal-to-noise ratio (SNR), where the estimated
DOAs and ranges have high elevated error floors, which do
not decrease with the increasing SNR. Although we proposed a
localization method for the mixed signals [50], it was applicable
only for one NF signal. Moreover, most of the aforementioned
localization methods require the eigendecomposition proce-
dure, which is computationally intensive and time-consuming,
when the number of sensors is large (cf. [51], [10], [11]).

Therefore, in this paper, we propose a new oblique projec-
tion and subspace based localization of the FF and NF signals
(LOFNS) impinging on a ULA with symmetrical geometric con-
figuration in a computationally efficient way, where the eigen-
decomposition and pair-matching processes are avoided. Firstly
the DOAs of FF signals are estimated from the array correlation
matrix through a linear operator, and then the oblique projec-
tion operator is calculated with these estimates to isolate the NF
signals from the FF ones. Thirdly the DOAs of NF signals are
estimated from a Toeplitz correlation matrix through another
linear operator, and hereafter the ranges of NF signals are ob-
tained from the array covariance matrix through a polynomial
rooting with the corresponding estimated DOA. Further as a
measure against the impact of finite array data, an alternating
iterative scheme is presented to improve the estimation accuracy
of the oblique projection operator and that of the NF location
parameters, where the aforementioned “saturation behavior” is
alleviated. The statistical properties of the LOFNS are analyzed,
and asymptotic mean-squared-error (MSE) expressions of the
estimation errors are derived for the FF and NF signals. Evi-
dently compared with the OPMUSIC [41], the proposed LOFNS
has the following main differences: (i) the eigendecomposi-
tion procedure is avoided by using the linear operation in DOA
and range estimation, (ii) the eigendecomposition procedure is
also avoided by using QR decomposition in the computation of
oblique projection operator in a different way, (iii) an iterative
method is proposed to alleviate the “saturation behavior”, and
(iv) the asymptotic MSE expressions of the estimation errors are
clarified explicitly. Finally, the effectiveness and the theoretical
analysis of the LOFNS are substantiated through numerical ex-
amples, and the simulation results demonstrate that the LOFNS
performs well for both the FF and NF signals at relatively low
SNR and with a small number of snapshots.

Notation: Throughout the paper, Om×n , Im , Jm , 0m×1 , and
δn,t stand for an m× n null matrix, m×m identity matrix,
m×m counter-identity matrix, m× 1 null vector, and Kro-
necker delta, while E{ · }, { · }∗, ( · )T , and ( · )H represent the

Fig. 1. The geometric configuration of the symmetrical ULA and the propa-
gations of the FF and NF signals.

statistical expectation, complex conjugate, transposition, and
Hermitian transposition, respectively. Additionally, ρ( · ), ( · )†,
det{ · }, R( · ), and N ( · ) indicate the rank, Moore-Penrose
pseudoinverse, determinant, the range space, and null space of
the bracketed matrix, while diag( · ) and blkdiag( · ) denote the
diagonal matrix or block diagonal matrix operator. Further ⊗,
tr{ · }, ⊕, and ∩ signify the Kronecker product, the trace opera-
tor, the direct sum operator, and the intersection operator, while
Re{ · } denotes the real part of the bracketed quantity, vec(X)
is a matrix operation stacking the columns of a matrix X one
under the other to form a single column, and O[ · ] indicates the
order of magnitude.

II. PROBLEM STATEMENT

A. Data Model and Basic Assumptions

As shown Fig. 1, there are K noncoherent mixed FF and
NF narrowband signals {sk (n)} impinging on the ULA, which
consists of 2M + 1 omnidirectional sensors with spacing d
and indexed by m = −M, . . . ,−1, 0, 1, . . . ,M , where the K1

signals {sk (n)}K 1
k=1 are in the FF with the location parameters

{(θk ,∞)}K 1
k=1 , and the other K2 signals {sk (n)}Kk=K 1 +1 are

in the NF with the location parameters {(θk , rk )}Kk=K 1 +1 ,
while θk is the DOA of sk (n) measured at the reference sensor
relative to the normal of array, rk is the corresponding range
between the signal source and the reference sensor, where
K = K1 +K2 . By letting the center of ULA (i.e., sensor 0) be
the phase reference point, the noisy data xm (n) received at the
mth sensor is given by

xm (n) =
K∑

k=1

sk (n)ejτm k + wm (n) (1)

where wm (n) is the additive noise, and τmk indicates the phase
delay of the kth signal sk (n) due to the propagation time be-
tween the reference sensor and themth sensor. For the NF signal
located in the Fresnel region rk ∈ (0.62(D3/λ)1/2 , 2D2/λ

)

[4], [52], τmk can be approximated by the second-order Taylor
expansion as [12], [13], [15], [19]

τmk ≈ mψk +m2φk (2)

where ψk and φk are called as the electric angles given by

ψk � −2πd
λ

sin θk (3)

φk � πd2

λrk
cos2 θk (4)
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in which λ is the wavelength of incident signals, while D is the
aperture of array given by D = 2Md herein. Otherwise, for
the FF signal lies in the Fraunhofer region rk ∈ (2D2/λ,∞)
[4], [52], τmk is parameterized by only the DOA θk and
approximated as [12], [14]

τmk ≈ mψk . (5)

Then the received array data in (1) can be rewritten compactly

x(n) = As(n) + w(n) (6)

where x(n), s(n), and w(n) are the vectors of the received data,
the incident signals and the additive noises given by x(n) �
[x−M (n), . . . , x−1(n), x0(n), x1(n), . . . , xM (n)]T , s(n) �
[sTf (n), sTn (n)]T , sf (n) � [s1(n), s2(n), . . . , sK 1 (n)]T , sn

(n) � [sK 1 +1(n), sK 1 +2(n) . . . , sK (n)]T , and w(n) � [w−M
(n), . . . , w−1(n), w0(n), w1(n), . . . , wM (n)]T , while A is
the array response matrix given by A � [Af ,An ], where Af

� [af (θ1),af (θ2), . . . ,af (θK 1 )], An �[an (θK 1 +1 , rK 1 +1),
an (θK 1 +2 , rK 1 +2), . . . ,an (θK , rK )], in which af (θk ) �
[e−jM ψk , . . . , e−jψk , 1, ejψk , . . . , ejM ψk ]T , and an (θk , rk ) �
[e−jM ψk ejM

2 φk , . . . , e−jψk ejφk , 1, ejψk ejφk , . . . , ejM ψk

· ejM 2 φk ) ]T .
Here we make the basic assumptions as follows.
A1) The array is calibrated, and the array response matrix A

has full rank and unambiguous.
A2) The incident signals {sk (n)} are temporally complex

white Gaussian random processes with zero-mean and
the variance given by E{sk (n)s∗k (n)} = rsk δn,t and
E{sk (n)sk (n)} = 0,∀n, t.

A3) The additive noises {wm (n)} are temporally and spat-
ially complex white Gaussian random processes with
zero-mean and the covariance matrices E{w(n)wH

(n)} = σ2I2M+1δn,t , and E{w(n)wT (n)} = O(2M

+1)×(2M+1) , ∀n, t. Additionally, the additive noises are
independent to the incident signals.

A4) The numbers of the FF and NF signals K1 and K2 are
known (cf. [53]), and the number of all incident signals
K satisfies the relation K < M + 1.

A5) The sensor spacing d satisfies the relation d ≤ λ/4 for
avoiding the estimation ambiguity.

Remark A: In fact, the estimation of the number of FF signals
and that of NF signals are necessitated, however this problem
has not been studied in the literature of array processing to
the best of our knowledge. We proposed an oblique projection
based enumerator for the mixed noncoherent and coherent FF
signals (OPEMS) in [53], where the computationally intensive
and time-consuming eigendecomposition is avoided, and we
would modify this number detection method [53] to the case of
mixed FF and NF signals considered herein. Such an elaborate
algorithm is currently under investigated. �

B. Problem of Localizing Mixed Incident Signals

Under the basic assumptions, from (6), the array covariance
matrix R is given by

R � E{x(n)xH (n)} = ARsA
H + σ2I2M+1 (7)

where Rs , Rsf , and Rsn are the covariance matrices of all
incident signals, the FF signals, and the NF signals defined by

Rs � E{s(n)sH (n)} = blkdiag(Rsf ,Rsn ) (8)

Rsf � E{sf (n)sHf (n)} = diag(rs1 , rs2 , . . . , rsK 1
) (9)

Rsn � E{sn (n)sHn (n)} = diag(rsK 1 + 1 , . . . , rsK ). (10)

Obviously the range spaces R(Af ) and R(An ) associated
with the FF and NF signals are nonoverlapping (or dis-
joint) and not orthogonal, i.e., R(A) = R(Af ) ⊕R(An ) and
R(Af ) ∩R(An ) = {0}, where the orthogonal projector can-
not completely cancel the influence of the known DOAs on the
estimation of the unknown ones [47]. Hence the localization
of these mixed signals cannot be accomplished directly from
R in (7).

Thus in this paper, we investigate the problem of estimating
the location parameters {θk}Kk=1 and {rk}Kk=K 1 +1 of the FF and
NF signals from finite array snapshots {x(n)}Nn=1 in a compu-
tationally efficient way, where the oblique projection operator
is utilized to suppress the FF signals and to preserve the NF
signals in the localization of the NF signals.

Remark B: The random matrix theory (RMT) [54], [55] is
used to study the asymptotic behavior of the eigenvalues and
eigenvectors of different random matrix models including the
sample covariance matrix for solving the “threshold effect” of
subspace-based direction estimation in the asymptotic situation,
where both the numbers of snapshots and sensors are large and
of the same order of magnitude (see, e.g., [56]–[59]). Herein we
consider the subspace-based localization of the mixed FF and
NF signals without eigendecomposition, where the number of
sensors is not comparable in the same order of magnitude to that
of snapshots. �

III. SUBSPACE-BASED LOCALIZATION OF MIXED SIGNALS

WITHOUT EIGENDECOMPOSITION

As depicted in Fig. 2, the proposed LOFNS consists of three
major parts: (1) DOA estimation of the FF signals through a
linear operator, (2) computation of oblique projection operator
with accessible data, and (3) DOA and range estimation of NF
signals with an alternating iterative scheme.

A. DOA Estimation of FF Signals

By partitioning the array covariance matrix R in (7) as

K 2M+1−K

R =
[

R11 , R12
R21 , R22

]
K

2M+1−K (11)

the noise variance σ2 is given by [60]

σ2 =
tr{R22Π}

tr{Π} (12)

where Π = I2M+1−K − R21R
†
21 , and R†

21 = (RH
21R21)−1

·RH
21 , we easily have the noiseless array covariance matrix R̄

R̄ � R − σ2I2M+1 = ARsA
H . (13)

By dividing the matrices A and R̄ in (13) as A = [AT
1 ,A

T
2 ]T

and R̄ = [R̄T
1 , R̄

T
2 ]T , where A1 (or R̄1) and A2 (or R̄2)



4464 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 66, NO. 17, SEPTEMBER 1, 2018

Fig. 2. The implementation flowchart of the proposed LOFNS.

consist of the first K and the last 2M + 1 −K rows of A
(or R̄), respectively, we can obtain a K × (2M + 1 −K) lin-
ear operator P , which satisfies the following relation for DOA
estimation (cf. [10], [11])

QHA = O(2M+1−K )×K (14)

i.e.,

QHAf = O(2M+1−K )×K 1 , QHAn = O(2M+1−K )×K 2

(15)

where Q � [P T ,−I2M+1−K ]T , and P = A−H
1 AH

2 = (R̄1

·R̄H
1 )−1R̄1R̄

H
2 .

Thus when only finite array data are available, the sample
array covariance matrix R̂ is given by

R̂ =
1
N

N∑

n=1

x(n)xH (n) (16)

where N is the number of snapshots, and the DOAs {θk}K 1
k=1

of the FF signals {sk (n)}K 1
k=1 can be estimated from R̂ by

minimizing the following cost function

f(θ) = aHf (θ)ΠQ̂af (θ) (17)

where

ΠQ̂ = Q̂(Q̂
H

Q̂)−1Q̂
H

= Q̂(I2M+1−K − P̂
H

(P̂ P̂
H

+ IK )−1P̂ )Q̂
H

(18)

P̂ = ( ˆ̄R1
ˆ̄RH

1 )−1 ˆ̄R1
ˆ̄RH

2 (19)

and Q̂ = [P̂
T
,−I2M+1−K ]T , in which ΠQ̂ is calculated using

the matrix inversion lemma implicitly, and the orthonormaliza-
tion of the matrix Q̂ is used in ΠQ̂ to improve the estimation
performance [11].

Remark C: Theoretically the matrix A1 may have rank de-
ficiency (i.e., ρ(A1) < K or det{A1} = 0) under very strictly
circumstance, e.g., for a given NF signal, which locates at the
position determined by the roots of the polynomial det{A1}
= 0 and only have (K − 1)2 roots. However in practice, we can
find that A1 is almost of full rank for a continuous space, espe-
cially for a small K. Further, we usually have the electric angle
φk � 1 [19] and hence A1 is nearly a Vandermonde matrix,
which is of full rank under Assumption A1. �

B. QR Decomposition Based Oblique Projection Operator

As described in Section II-B, the range spaces R(Af ) and
R(An ) of the FF and NF signals are nonoverlapping and not or-
thogonal, and hence the orthogonal projector cannot completely
cancel the influence of the FF signals on the DOA estimation
of the NF ones. Here we consider the utilization of the oblique
projection technique (cf., [46]–[48]) to isolate the NF signals
from the FF ones in a feasible manner.

The oblique projection operator EAf |An
which projects onto

the space R(Af ) along a direction parallel to the space R(An )
is given by (e.g., [48])

EAf |An
� Af (AH

f Π⊥
An

Af )−1AH
f Π⊥

An
(20)

where

EAf |An
Af = Af , EAf |An

An = O(2M+1)×K 2 (21)

and Π⊥
An

is the orthogonal projector onto N (AH
n ) defined

by Π⊥
An

� I2M+1 − ΠAn
, while ΠAn

� An (AH
n An )−1AH

n .
Unfortunately, the matrix An in (20) for the NF signals
{sk (n)}Kk=K 1 +1 (i.e., ΠAn

or Π⊥
An

) is unknown. Although there
are several ways to calculate the oblique projector (e.g., [46]–
[48]), herein we consider the computation of oblique projector
with the QR decomposition (cf. [49], [53]), which factors a ma-
trix into the product of a unitary matrix and an upper-triangular
matrix and requires much lesser computational effort than the
complete eigendecomposition (e.g., [51]).

By defining the orthogonal projector Π⊥
Af

onto N (AH
f ) as

Π⊥
Af

� I2M+1 − Af (AH
f Af )−1AH

f , from (13), we easily get

a new matrix R̃ as

R̃ � R̄Π⊥
Af

= AnRsnAH
n Π⊥

Af
(22)
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where R̃ only contains the information of the NF signals with
ρ(R̃) = K2 , and its QR decomposition is given by [51], [49]

R̃Π̃ = Q̆R̆ = Q̆1R̆1 (23)

in which the unitary matrix Q̆ is defined by Q̆ � [Q̆1 , Q̆2 ]
with Q̆1 � [q̆1 , q̆2 , . . . , q̆K 2

] and Q̆2 � [q̆K 2 +1 , q̆K 2 +2 , . . . ,

q̆2M+1], and the upper-triangular matrix R̆ is given by R̆ =

[R̆
T

1 ,O
T
(2M+1−K 2 )×(2M+1)]

T with the K2 × (2M + 1) upper-

triangular and full row rank matrix R̆1 , while Π̃ is the
(2M + 1) × (2M + 1) permutation matrix, which does not
change the correlation of the columns in Q̆ (cf. [51]). Then
from (23), Π⊥

An
in (20) can be obtained as (cf. [Appendix A,

49])

Π⊥
An

= Π⊥
Q̆ 1

= Q̆2Q̆
H

2 (24)

where Π⊥
Q̆ 1

� I2M+1 − Q̆1(Q̆
H

1 Q̆1)−1Q̆
H

1 . Hence by substi-
tuting (24) into (20), we can obtain the oblique projection oper-
ator EAf |An

as (cf. [49])

EAf |An
= Af (Q̆2Q̆

H

2 Af )†. (25)

Evidently EAf |An
in (25) is not affected by the unknown pro-

jector Π⊥
An

and can be calculated from R̄ and Af with the
accessible array data, where the computationally burdensome
eigendecomposition is avoided as well.

C. DOA Estimation of NF Signals

Now we consider the DOA estimation of NF signals in a
computationally efficient manner. From (11)–(13) and (20)–
(21), by using EAf |An

in (25) to isolate the NF signals from the
FF signals, we get a new correlation matrix Rn corresponding
to the NF signals from R in (7) as

Rn =
(
I2M+1 − EAf |An

)
R̄
(
I2M+1 − EAf |An

)H

= AnRsnAH
n

=
K∑

k=K 1 +1

rsk an (θk , rk )aHn (θk , rk ) (26)

where its pqth element (Rn )pq is given by

(Rn )pq

=
K∑

k=K 1 +1

rsk e
j(−(p−q)ψk +((p−M−1)2 −(q−M−1)2 )φk ) (27)

for p, q = 1, 2, . . . , 2M + 1. Clearly when p− q = 0 and (p−
M − 1)2 − (q −M − 1)2 = 0 [19], the quadratic term with φk
in (27) is eliminated, i.e., we have

(Rn )p,2M+2−p =
K∑

k=K 1 +1

rsk e
−j2(M+1−p)ψk � rn (p) (28)

with q = 2M + 2 − p for p = 1, 2, . . . , 2M + 1. Clearly
{rn (p)} can be interpreted as the received “signals” for a virtual
array of 2M + 1 sensors illuminated byK2 “signals” {rsk }with
the angles {ψk}, which are parameterized by the DOA θk of the

NF signals sk (n). Inspired by the Vandermonde factorization
of Toeplitz matrix [61], [62], from (28) and after some simple
algebraic manipulations, we can form the (M + 1) × (M + 1)
Toeplitz correlation matrix T n as (cf. [63])

T n �

⎡

⎢⎢⎢⎣

rn (M + 1), rn (M), . . . , rn (1)
rn (M + 2), rn (M + 1), . . . , rn (2)

...
...

. . .
...

rn (2M + 1), rn (2M), . . . , rn (M + 1)

⎤

⎥⎥⎥⎦

=
K∑

k=K 1 +1

rsk ān (θk )āHn (θk ) = ĀnRsnĀ
H
n (29)

where ān (θk ) � [1, ej2ψk , ej4ψk , . . . , ej2Mψk ]T , and Ān �
[ān (θK 1 +1), ān (θK 1 +2), . . . , ān (θK )]. Evidently the (M +
1) ×K2 matrix Ān is a Vandermonde matrix with full rank.

Similarly by dividing T n as T n = [T T
n1 ,T

T
n2 ]

T , where T n1
and T n2 are two submatrices consisting of its first K2 or the
last M + 1 −K2 rows, when the number of snapshots is fi-
nite, the DOAs {θk}Kk=K 1 +1 of NF signals can be estimated by
minimizing the following cost function

fn (θ) = āHn (θ)Π ˆ̄Q ān (θ) (30)

where

Π ˆ̄Q = ˆ̄Q( ˆ̄QH ˆ̄Q)−1 ˆ̄QH

= ˆ̄Q(IM+1−K 2 − ˆ̄PH ( ˆ̄P ˆ̄PH + IK 2 )
−1 ˆ̄P ) ˆ̄QH (31)

ˆ̄P = (T̂ n1 T̂
H

n1)
−1 T̂ n1 T̂

H

n2 (32)

and ˆ̄Q = [ ˆ̄P T ,−IM+1−K 2 ]
T .

D. Range Estimation of NF Signals

Here we consider the range estimation of NF signals and the
association between the estimated ranges and DOAs. Firstly the
array response vector an (θk , rk ) in (6) corresponding to the NF
signals can be reexpressed as

an (θk , rk ) = Ψ(θk )ān (θk , rk ) (33)

where ān (θk , rk ) � [ejM
2 φk , ej (M−1)2 φk , . . . , ejφk , 1]T , Ψ

(θk ) = [DT (θk ), (J̄M D∗(θk ))T ]T , J̄M � [JM ,0M×1 ], and
D(θk ) �diag(e−jM ψk , e−j (M−1)ψk , . . . , e−jψk , 1). Clearly the
parameters ψk (i.e., θk ) and φk (i.e., θk and rk ) are decoupled
in (33), and the dimension of ān (θk , rk ) is smaller than that of
an (θk , rk ).

Hence as discussed above, in the case of finite number of
snapshots, by using the estimated DOAs {θ̂k}Kk=K 1 +1 of NF
signals, from (15) and (33), the ranges {rk}Kk=K 1 +1 of NF sig-
nals can be easily estimated by minimizing the following cost
function

fn (θ̂k , r) = āHn (θ̂k , r)ΨH (θ̂k )ΠQ̂Ψ(θ̂k )ān (θ̂k , r) (34)

where ΠQ̂ is given by (18). Obviously the estimated ranges

{r̂k}Kk=K 1 +1 and DOAs {θ̂k}Kk=K 1 +1 are automatically paired
without any additional processing, and the ranges are estimated
more computationally efficient by employing ān (θk , rk ) in (33)
than an (θk , rk ) in (6).
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E. Measure Against Impact of Finite Data

In practice, the array covariance matrix R should be esti-
mated from finite array data. When the number of snapshots
N is not sufficiently large enough, the nonzero residual cross-
correlations between the incident signals and that between the
incident signals and the additive noises result in the inaccurate
estimate R̂ in (16) give by

R̂ = AR̂sA
H + AR̂sw + R̂

H

swAH + R̂w (35)

where R̂sw = (1/N)
∑N

n=1 s(n)wH (n). As a result, from (13)
and (22), the estimate of R̃ in (22) can be expressed

ˆ̃R = AnR̂snAH
n Π⊥

Af
+ Af R̂sf nAH

n Π⊥
Af

+ ΔwΠ⊥
Af

(36)

where R̂sf n = (1/N)
∑N

n=1 sf (n)sHn (n), and

Δw � AR̂sw + R̂
H

swAH + R̂w − σ̂2I2M+1 . (37)

Clearly when the number of snapshots is finite even though the
SNR is high, the estimated signal covariance matrix R̂s is not
strictly block diagonal, and the estimated cross-correlation ma-

trix R̂sf n = OK 1 ×K 2 . Hence the range space of ˆ̃R is not strictly
equal to the range space of An , and the estimated anti-diagonal
elements {r̂n (p)} in (28) also contain the information of FF
signals. Consequently the residual cross-correlations R̂sf n will
degrade the estimation accuracy of the oblique projection opera-
tor and hence the performance of DOA estimation of NF signals
with (22), and the “saturation behavior” in the localization of NF
signals will be encountered, where the estimation error doesn’t
decrease with the increasing SNR. Similarly, when there are
more than two NF signals present, the estimated anti-diagonal
elements {r̂n (p)} contain not only the DOA information but
also the range information under the finite data case, and hence
we will encounter another saturation problem.

Here we propose an alternating iterative scheme as a measure
against the impact of finite array data. Firstly, we estimate
the DOAs and ranges of NF signals with (30) and (34) and
denote them as {θ̂(i)

k }Kk=K 1 +1 and {r̂(i)
k }Kk=K 1 +1 . Secondly, we

divide the range space of the estimated array response matrix
Â as

R(Â
(i)

) = R(ânk ) ⊕R(Â
(i)
k ) (38)

where ânk is the array response vector corresponding to the kth

NF signal given by ânk = an (θ̂(i)
k , r̂

(i)
k ), and Â

(i)
k denotes the

array steering matrix without column ânk given by Â
(i)
k = [af

(θ̂1),af θ̂2), . . . ,af (θ̂K 1),an(θ̂
(i)
K 1+1 , r̂

(i)
K 1 +1), . . . ,an(θ̂

(i)
K 1 +k−1 ,

r̂
(i)
K 1 +k−1),an (θ̂(i)

K 1 +k+1 , r̂
(i)
K 1 +k+1),. . . ,an (θ̂(i)

K , r̂
(i)
K )]. Then

from (13), the estimated covariance matrix ˆ̄R can be reexpressed
as

ˆ̄R = [ânk , Â
(i)
k ]

[
r̂sk ρ̂T

ρ̂∗ R̂Ak

][
âHnk

(Â
(i)
k )H

]

= r̂sk ânk â
H
nk + ânk ρ̂

T (Â
(i)
k )H

+ Â
(i)
k ρ̂∗aHnk + Â

(i)
k R̂Ak (Â

(i)
k )H (39)

where ρ̂ = (1/N)
∑N

n=1 sk (n)sAk (n) = 0(K−1)×1 , while

sAk (n) and R̂Ak denote the signal vector without signal sk (n)

and the sample signal covariance of sAk (n), respectively. Then
in order to eliminate the second and third items in (39), we
define a new oblique projection operator as

Ê
(i)
Ak |an k � Â

(i)
k

((
Â

(i)
k

)HΠ⊥
ân k

Â
(i)
k

)−1 (
Â

(i)
k

)HΠ⊥
ân k

(40)

where Π⊥
ân k

= I2M+1 − ânk (âHnk ânk )
−1 âHnk for k = K1 +

1,K1 + 2, . . . ,K. Thirdly, from (39) and (40), we get a new
correlation matrix

R̂
(i)
nk � (I2M+1 − Ê

(i)
Ak |an k )

ˆ̄R(I2M+1 − Ê
(i)
Ak |an k )

H

≈ r̂sk ânk â
H
nk (41)

where R̂nk only contains the information of the kth NF signal.
Hence the estimate of Rn in (26) can be obtained as

R̂
(i)
n =

K∑

k=K 1 +1

R̂
(i)
nk . (42)

Finally, the DOAs and ranges of NF signals are estimated

with (29), (30), and (34) from R̂
(i)
n in (42) and denoted as

{θ̂(i+1)
k }Kk=K 1 +1 and {r̂(i+1)

k }Kk=K 1 +1 , while the index is
updated as i = i+ 1. We can repeat this procedure several
times until the difference between two consecutive iterations
becomes smaller than a threshold, i.e.,

K∑

k=K 1 +1

∣∣∣θ̂(i+1)
k − θ̂

(i)
k

∣∣∣ ≤ ε (43)

where ε is an arbitrary and positive small constant (e.g.,
ε = 10−6), then we denote θ̂k = θ̂

(i+1)
k .

F. Implementation of Proposed Method

As shown in Fig. 2, when the finite array data {x(n)}Nn=1 are
available, the implementation of the proposed LOFNS method
is summarized as follows:

1) Estimate the matrix R̂ from {x(n)}Nn=1 with (16).
O[(2M + 1)2N ] flops

2) Estimate the matrix ˆ̄R from R̂ with (11)–(13).
O[(2M + 1)3 + (2M + 1)2K + (2M + 1)K2 ] flops

3) Estimate the DOAs {θk}K 1
k=1 of FF signals from the phases

of theK1 zeros of the polynomial pf (z) closest to the unit
circle in the z-plane with (18) and (19)

pf (z) � z2M gHf (z)ΠQ̂gf (z) (44)

where gf (z) � [zM , . . . , z, 1, z−1 , . . . , z−M ]T , and z �
ej2πd sin θ/λ.

O[(2M + 1)3 + (2M + 1)2K + (2M + 1)K2 ] flops

4) Estimate the oblique projection operator ÊAf |An
from ˆ̄R

and {θ̂k}K 1
k=1 with (22)–(25).

O[(2M + 1)3 + (2M + 1)2K1 + (2M + 1)K2
1 ] flops

5) Estimate the matrix R̂n from ˆ̄R and ÊAf |An
with (26),

and form the matrix T̂ n from the anti-diagonal elements
{r̂n (p)} of R̂n with (29).

O[(2M + 1)3] flops
6) Estimate the DOAs {θk}Kk=K 1 +1 of NF signals from the

phases of theK2 zeros of the polynomial pn (z) closest to
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the unit circle in the z-plane with (31) and (32)

pn (z) � zM+1gHn (z)Π ˆ̄Qgn (z) (45)

where gn (z) � [1, z−1 , . . . , z−M ]T and z � ej4πd sin θ/λ,
and denote these estimates as {θ̂(i)

k }Kk=K 1 +1 , where i = 0.
O[(M + 1)3 + (M + 1)2K2 + (M + 1)K2

2 ] flops
7) Estimate the ranges {rk}Kk=K 1 +1 of NF signals from the

phases of theK2 zeros of the polynomial p̄n (z) closest to
the unit circle in the z-plane with {θ̂k}Kk=K 1 +1 and (18),
(19), and (34)

p̄n (z) � zM
2
ḡHn (z)ΨH (θ̂k )ΠQ̂Ψ(θ̂k )ḡn (z) (46)

where ḡn (z) � [1, z, . . . , z(M−1)2
, zM

2
]T , and z �

ejπd
2 cos2 θ/(λr) .

O[K2((M + 1)3 + (M + 1)2M
+(M + 1)M 2)] flops

8) Estimate the matrix R̂
(i)
n from {θ̂k}K 1

k=1 , {θ̂(i)
k }Kk=K 1 +1

and {r̂(i)
k }Kk=K 1 +1 with (40)–(42), and repeat Steps 6 and

7 to estimate the DOAs and ranges of NF signals again and
denote them as {θ̂(i+1)

k }Kk=K 1 +1 and {r̂(i+1)
k }Kk=K 1 +1 .

O[K2((2M + 1)3 + (2M + 1)2K
+(2M + 1)K2)] flops

9) If the condition in (43) is not satisfied, repeat Step 8 by
setting i = i+ 1; otherwise, reexpress {θ̂(i+1)

k }Kk=K 1 +1

and {r̂(i+1)
k }Kk=K 1 +1 as the final estimates {θ̂k}Kk=K 1 +1

and {r̂k}Kk=K 1 +1 .
The computational complexity of each step is roughly indi-

cated in terms of the number of flops, where one flop is defined as
a floating-point addition or multiplication operation as adopted
by MATLAB software, and the computational complexity of
LOFNS is nearly in order of O[(2M + 1)2N + (2M + 1)3]
flops, when 2M + 1 � K, which occurs often in practical ap-
plications of localization, and a few times of the alternating
iterations is required and set at 3 through the empirical exam-
ples.

Remark D: The implementation of the GESPR [39] in-
volves the computation of array covariance matrix and its
eigendecomposition, and the rooting of two MUSIC-like poly-
nomials for DOA and range estimation, while that of the
OPMUSIC [41] involves the computations of array covari-
ance matrix and the projected array covariance matrix and
their eigendecompositions, and three peak picking procedures
of the MUSIC-like spectra. Hence the major computational
complexities of the GESPR and the OPMUSIC are approx-
imately in order of O[(2M + 1)2N + (2M + 1)2 + (2M +
1)K2 ] and O[(2M + 1)2N + (2M + 1)3 + (180/Δθ)(2M +
1)2 + ((2D2/λ) − 0.62(D3/λ)1/2/Δr)(2M + 1)2] [39], re-
spectively, where Δθ and Δr denote the angular grid of spec-
trum searching and the range grid of spectrum searching.
Fig. 3 shows the quantitative comparisons between the proposed
LOFNS with the GESPR and the OPMUSIC in MATLAB flops
versus the number of snapshots and the number of sensors. It
is clear that the LOFNS is computationally more efficient than
these existing methods [39], [41], since the computationally bur-
densome eigendecomposition procedure and peak searching are
avoided. �

Remark E: We previously proposed a subspace-based
method (i.e., SUMWE) for the coherent narrowband FF signals

Fig. 3. Comparison of computational complexities in MATLAB flops versus
(a) the number of the snapshots (2M + 1 = 13) and (b) the number of the
sensors (N = 200) (dashed line: GESPR; dash-dotted line: OPMUSIC; solid
line: the proposed LOFNS w/o iteration; Δθ = 0.02◦ and Δr = 0.02λ).

impinging on the ULA [11], where the coherency of incident
signals is decorrelated through subarray averaging, and the null
space can be obtained through a linear operation from a Hankel
matrix formed from the cross-correlations between some sensor
data. Although the basic idea of linear operator (cf. [10]) is also
utilized to avoid computationally burdensome eigendecompo-
sition, the SUMWE is only suitable for the coherent FF signals
owing to the reduced effective aperture of array/subarray. �

IV. STATISTICAL ANALYSIS

When the number of snapshots is sufficiently large, herein we
analyze the asymptotic properties of the estimated DOAs of FF
signals and the estimated DOAs and ranges of NF signals by
using the proposed LOFNS, where the analytical expressions of
the asymptotic MSEs are clarified.

A. Asymptotic Properties for FF Signals

Firstly we consider the consistency of the DOA estimates for
the FF signals, and we easily have the following lemma.

Lemma 1: As the number of snapshots N tends to infinity,
the estimates {θ̂}K 1

k=1 of FF signals obtained by minimizing the
cost function f(θ) in (17) approach the true parameters {θ}K 1

k=1
with probability one (w.p.1).

Proof: This lemma can be readily established by adopting
the proof of similar Lemma in [11], [64], [65]. �

From this lemma, we have the asymptotic MSE expression
of the estimated DOAs {θ̂}K 1

k=1 of FF signals as follows.
Theorem 1: The large-sample MSE of the estimation error

θ̂k − θk of FF signals obtained by (17) is given by

MSE(θ̂k ) = var{θ̂k}

=
1

2NH2
f kk

Re{vec(R)H (M ∗
k ⊗ M k )vec(R)} (47)

where M k � hf (θk )gHf (θk ), gf (θk ) � ΠQdf (θk ), hf (θk )�
R̄
H
1 (R̄1R̄

H
1 )−1af 1(θk ), Hfkk � dHf (θk )ΠQdf (θk ), df (θk )
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� d(af (θ))/dθ|θ=θk , and af 1(θk ) denotes the kth column of
A1 .

Proof: See Appendix A. �

B. Asymptotic Properties for NF Signals

Since the localization of NF signals requires the oblique pro-
tection operator with the knowledge of the FF signals, the sta-
tistical analysis of the estimation performance of NF signals is
more difficult and complicated. Herein for facilitating the statis-
tical analysis, we study the large-sample MSEs of the estimated
DOAs and ranges of NF signals with true values of the oblique
protection operators in (40).

Lemma 2: As the number of snapshots N tends to infinity,
the estimates {θ̂}Kk=K 1 +1 of NF signals obtained by minimizing
the cost function fn (θ) in (30) approach the true parameters
{θ}Kk=K 1 +1 w.p.1.

Proof: This lemma can be readily established by adopting
the proof of Lemma in [65]. �

Then from this lemma, we get the asymptotic MSE expression
of the estimates {θ̂k}Kk=K 1 +1 of NF signals as follows.

Theorem 2: The large-sample MSE of the estimates
{θ̂k}Kk=K 1 +1 of NF signals obtained by (30) is given by

MSE(θ̂k ) = var{θ̂k}

=
1

2NH2
nkk

Re
{

tr{(M̄ kR)2} + ξ2
k tr{(MR)2}

+ vec(R)H (M̄ ∗
k ⊗ M̄ k )vec(R)

+ ξ2
kvec(R)H (M ∗ ⊗ M)vec(R)

− 2ξk
(
vec(R)H (M ∗ ⊗ M̄ k )vec(R)

+ vecH (R)(M̄T
k ⊗ M)vec(R)

)}
(48)

where M̄ k �(gHn (θk) ⊗ I2M+1)C(hn (θk ) ⊗ I2M+1), M �
blkdiag(OK×K ,Π), gn (θk ) � ΠQ̄dn (θk ), hn (θk ) � TH

n1

·(T n1T
H
n1)

−1 ān1(θk ), Hnkk � dHn (θk )ΠQ̄dn (θk ), dn (θk ) �
dān (θ)/(dθ)|θ=θk , ξk � Re{gHn (θk )B̃hn (θk )}/(2M + 1 −
2K), and

B̃ =
K∑

k=K 1 +1

B̃k , C =
K∑

k=K 1 +1

Ck (49)

Bk � I − EAk |an k = [b(k)
−M , . . . , b

(k)
0 , . . . , b

(k)
M ]T (50)

B̃k �

⎡

⎢⎢⎢⎢⎢⎣

b
(k)T
0 b

(k)∗
0 , b

(k)T
−1 b

(k)∗
1 , . . . , b

(k)T
−M b

(k)∗
M

b
(k)T
1 b

(k)∗
−1 , b

(k)T
0 b

(k)∗
0 , . . . , b

(k)T
−M+1b

(k)∗
M−1

...
...

. . .
...

b
(k)T
M b

(k)∗
−M , b

(k)T
M−1b

(k)∗
−M+1 , . . . , b

(k)T
0 b

(k)∗
0

⎤

⎥⎥⎥⎥⎥⎦
(51)

Ck �

⎡

⎢⎢⎢⎢⎢⎣

b
(k)∗
0 b

(k)T
0 , b

(k)∗
1 b

(k)T
−1 , . . . , b

(k)∗
M b

(k)T
−M

b
(k)∗
−1 b

(k)T
1 , b

(k)∗
0 b

(k)T
0 , . . . , b

(k)∗
M−1b

(k)T
−M+1

...
...

. . .
...

b
(k)∗
−M b

(k)T
M , b

(k)∗
−M+1b

(k)T
M−1 , . . . , b

(k)∗
0 b

(k)T
0

⎤

⎥⎥⎥⎥⎥⎦
(52)

while ān1 denotes the (k −K1)th column of Ān1 , which con-
sists of the first K2 rows of Ān in (29).

Proof: See Appendix B. �
Similarly as studied in Section IV-A, we easily obtain the

large-sample MSE of estimated ranges of NF signals.
Theorem 3: The large-sample MSE of the estimates

{r̂k}Kk=K 1 +1 of NF signals obtained by (34) is given by

MSE(r̂k ) = var{r̂k}

=
1

2NH2
rkk

Re{vec(R)H (M̃
∗
k ⊗ M̃ k )vec(R)} (53)

where M̃ k � hn (rk )gHn (rk ), gn (rk ) � ΠQdn (rk ), hn (rk )�
R̄
H
1 (R̄1R̄

H
1 )−1an1(rk ), Hrkk � dHn (rk )ΠQdn (rk ), dn (rk )

� d(an (θk , r))/dr|r=rk , and an1(θk ) denotes the kth column
of A1 .

Proof: The proof of this Theorem is same to that of the
Theorem 1 (see Appendix A for details). �

C. Analytic Study of Performance

As the general expressions of asymptotic MSEs derived above
are much complicated, now we specialize in the case of two
signal with equal power (i.e., one FF signal and one NF signal)
for gaining insights into the proposed LOFNS.

In this case ( i.e., K1 = K2 = 1 ), we readily obtain

Af = af (θ1), An = an (θ2 , r2), Ān = ān (θ2) (54)

Rs = rsI2 , T n1 = rs ān (θ2) (55)

where aHf (θ1)af (θ1) = 2M + 1, aHn (θ2 , r2)an (θ2 , r2) = 2M
+ 1, āHn (θ2)ān (θ2) = M + 1, and hn (θ2)= ān (θ2) /(M+1)
rs , and by performing some manipulations, we get tr{MR} =
σ2(2M + 1 − 2K), tr{(MR)2} = σ4(2M + 1 − 2K), AH

M̄ kA = OK×K , MR̄ = O(2M+1)×(2M+1) , and

tr{M̄ k} =
2M+1∑

i=1

gHn (θk )(IM+1 ⊗ eTi )C(IM+1 ⊗ ei)hn (θk )

= gHn (θk )B̃hn (θk ). (56)

Further by using the fact that

vecH (C)(AT ⊗ B)vec(C) = tr{ACBC} (57)

from (47), we have

vec(R)H (M ∗
1 ⊗ M 1)vec(R)

= tr{MH
1 RM 1R}

= tr{(MH
1 R̄ + σ2MH

1 )(M 1R̄ + σ2M 1)}
= σ4tr{MH

1 M 1}
= σ4tr{gf (θ1)hH

f (θ1)Rhf (θ1)gHf (θ1)R}
= σ4hH

f (θ1)Rhf (θ1)gHf (θ1)Rgf (θ1) (58)
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where

gHf (θ1)Rgf (θ1) = dHf (θ1)ΠQRΠQdf (θ1)

= dHf (θ1)ΠQ (R̄ + σ2I2M+1)ΠQdf (θ1)

= 0 + σ2Hf 11 (59)

and

hH
f (θ1)Rhf (θ1)

= aHf 1(R̄1R̄
H
1 )−1R̄1(ARsA

H + σ2I2M+1)

· R̄1(R̄1R̄
H
1 )−1af 1

= aHf 1(A1RsA
HARsA

H
1 )−1A1RsA

H (ARsA
H

+ σ2I2M+1)A1RsA
H (A1RsA

HARsA
H
1 )−1af 1

= aHf 1A
−H
1 R−1

s (AHA)−1AH (ARsA
H

+ σ2I2M+1)A(AHA)−1R−1
s A−1

1 af 1

= aHf 1A
−H
1 (R−1

s + σ2R−1
s (AHA)−1R−1

s )A−1
1 af 1

=
2M + 1

(2M + 1)2 − |aHf (θ1)an (θ2 , r2)|2 � α (60)

where R̄1 = A1RsA
H is used. Then by substituting (58)–(60)

into (47), from Theorems 1, we can obtain the asymptotic MSE
of the estimated DOA of the FF signal

MSE(θ̂1) =
1

2N
1

SNR
1

Hf 11

(
1 +

α

SNR

)
(61)

Additionally by performing some similar manipulations, from
Theorems 2 and 3, we can obtain the asymptotic MSEs of the
estimated location parameters of the NF signal

MSE(θ̂2) =
1

2N
1

(M + 1)2

1
SNR

1
H2
n22

(
β +

γ

SNR

)
(62)

MSE(r̂2) =
1

2N
1

SNR
1

Hr22

(
1 +

α

SNR

)
(63)

where SNR � rs/σ
2 , and

β � Re
{
2tr{FUF } + tr{FHUF } + tr{FUFH }} (64)

γ � Re
{

tr{FF } + tr{FHF } +
2Re{tr{F }}
2M + 1 − 2K

· (Re{tr{F }} − 2tr{FM})
}

(65)

F � (gHn (θ2) ⊗ I2M+1)C(ā(θ2) ⊗ I2M+1) (66)

while U = (2M + 1)AAH , and A = [af (θ1),an (θ2 , r2)].
Hence from (61)–(63), we can find that the asymptotic MSEs

of the estimated DOAs and range decrease monotonically with
increasing the number of snapshots N or SNR, which means
the LOFNS estimator is asymptotically efficient (for large N ).
Further, we can see that the estimated DOA of the NF signal
has smaller estimation error than that of the FF signals, i.e.,
MSE(θ̂2) < MSE(θ̂1) for large number of sensors and SNR,
when the number of snapshots N is finite.

V. NUMERICAL EXAMPLES

Now we evaluate the estimation performance of the proposed
LOFNS through several numerical examples, where some ex-
isting localization methods of the mixed FF and NF signals
with eigendecomposition such as the method of passive local-
ization (MPL) [36], the spatial differencing method (SDM) [38],
the GESPR [39], the OPMUSIC [41], and the OPMUGE [43]
are carried out for performance comparison, and the stochas-
tic Cramer-Rao lower bound (CRB) [41] is also calculated.
Additionally one RMT-based direction method (i.e., the G-
MUSIC) [55] is also modified and implemented for estimat-
ing the location parameters of the FF and NF signals, where
the cost function is replaced by the MUSIC-like cost func-
tions used in the OPMUSIC [41], because the existing RMT-
based methods were developed for the DOA estimation of
the FF signals. The results are all based on 1000 independent
trails.

Example 1–Performance versus SNR: There are four FF and
NF signals with equal power arriving from the locations
(−43◦,∞), (−20◦,∞), (17◦, 3.0λ), and (54◦, 4.4λ), and the
symmetrical ULA has 13-sensors (i.e., M = 6) with element
spacing d = λ/4. The SNR is varied from −10 dB to 40 dB,
and the number of snapshots is fixed at N = 200.

The averaged root-MSEs (RMSEs) of the estimated DOA
θ̂1 of one FF signal, the estimated DOA θ̂3 of one NF signal
and the estimated ranges r̂3 , r̂4 of NF signals in terms of the
SNR are plotted in Figs. 4 and 5, individually. Obviously the
LOFNS performs well as the existing methods with eigende-
composition such as the methods [36], [38], [41], and [43] and
outperforms [39] for the DOA estimation of FF signal. Unfor-
tunately, the nonzero residual cross-correlations between the
incident signals and that between the incident signals and the
additive noises due to the finite array data result in the inaccu-
rate structure of sample covariance matrix of incident signals
or oblique projection operator. As a result, the MPL [36], the
SDM [38], the OPMUSIC [41], and the OPMUGE [43] and the
LOFNS without alternating iterative scheme suffer from serious
“saturation behaviors” in the localization of NF signals even at
high SNRs, where the estimated DOAs and ranges have high
elevated error floors, and they do not decrease monotonically
with the increasing SNR. Meanwhile the GESPR [39] also has
rather large errors in the parameter estimation of NF signals
due to the GESPRIT as mentioned in Section I. In addition, the
G-MUSIC [55] performs similarly as the OPMUSIC [41], and
it suffers from “saturation behaviors” in the DOA and range es-
timation of the NF signals, too. However, by using the LOFNS
with alternating iterative scheme, the localization performance
of NF signals is improved dramatically in the high SNR region,
though the number of snapshots is finite. Furthermore, we can
find that the empirical RMSEs of the LOFNS are very close
to the theoretical ones (except at low SNR) and the difference
between the theoretical RMSEs and the CRBs [41] is small, and
the theoretical and empirical RMSEs of the LOFNS decrease
monotonically with the increasing SNR, while the theoretical
RMSE of the estimated DOA of the NF signal is slightly smaller
than that of the FF signal at medium to higher SNRs as clarified
in Section IV.

Example 2–Performance versus Number of Snapshots: The
simulation conditions are similar to those in Example 1, except
that the number of snapshots is varied from 16 to 10000, and the
SNR is fixed at 10 dB. The averaged RMSEs of the estimates
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Fig. 4. The RMSEs of the estimated DOAs for (a) the FF signal and (b)
the NF signal versus the SNR (dashed line: MPL; “×”: SDM; dash-dotted line:
GESPR; “�”: OPMUSIC; “�”: OPMUGE; “+”: G-MUSIC; solid line: LOFNS
w/o iteration; solid line with “◦”: LOFNS; “∗”: theoretical RMSE of LOFNS;
and dotted line: CRB) for Example 1.

Fig. 5. The RMSEs of the estimated ranges of two NF signals versus the SNR
(dashed line: MPL; “×”: SDM; dash-dotted line: GESPR; “�”: OPMUSIC;
“�”: OPMUGE; “+”: G-MUSIC; solid line: LOFNS w/o iteration; solid line
with “◦”: LOFNS; “∗”: theoretical RMSE of LOFNS; and dotted line: CRB) for
Example 1.

θ̂1 , θ̂3 and {r̂k}4
k=3 with respect to the number of snapshots are

shown in Figs. 6 and 7, respectively.
From Fig. 6(a), we readily find that the proposed LOFNS has

the similar estimation performance as the MPL [36], the SDM
[38], the OPMUSIC [41], the G-MUSIC [55], and the OPMUGE
[43] and is superior to the GESPR [39] for the DOA estimation
of FF signals, though the eigendecomposition is used in these
existing methods. However, as discussed in Section III-E, when
the number of snapshotsN is not sufficiently large enough even
though the SNR is high, the nonzero residual correlations in

Fig. 6. The RMSEs of the estimated DOAs of (a) FF and (b) NF signals
versus the number of snapshots (dashed line: MPL; “×”: SDM; dash-dotted
line: GESPR; “�”: OPMUSIC; “�”: OPMUGE; “+”: G-MUSIC; solid line:
LOFNS w/o iteration; solid line with “◦”: LOFNS; “∗”: theoretical RMSE of
LOFNS; and dotted line: CRB) for Example 2.

Fig. 7. The RMSEs of the estimated ranges of two NF signals versus the
number of snapshots (dashed line: MPL; “×”: SDM; dash-dotted line: GESPR;
“�”: OPMUSIC; “�”: OPMUGE; “+”: G-MUSIC; solid line: LOFNS w/o
iteration; solid line with “◦”: LOFNS; “∗”: theoretical RMSE of LOFNS; and
dotted line: CRB) for Example 2.

R̂s and R̂sf n will degrade the DOA and range estimation of
NF signals. As shown in Figs. 6(b) and 7, we can see that the
averaged RMSEs of the estimated DOAs and ranges of NF sig-
nals obtained by the proposed LOFNS without iteration is rather
large, when the number of snapshots is small. By using the pre-
sented alternating iterative scheme with the accessible data, the
estimation accuracy of the oblique projection operator and the
NF location parameters are improved, and hence the aforemen-
tioned “saturation behavior” is overcome, where the difference
between the LOFNS with iteration and the LOFNS without
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Fig. 8. The RMSEs of the estimated DOAs of (a) FF and (b) NF signals
versus the SNR (dashed line: MPL; “×”: SDM; dash-dotted line: GESPR; “�”:
OPMUSIC; “�”: OPMUGE; “+”: G-MUSIC; solid line: LOFNS w/o iteration;
solid line with “◦”: LOFNS; “∗”: theoretical RMSE of LOFNS; and dotted line:
CRB) for Example 3.

iteration becomes less as the number of snapshots becomes suf-
ficiently large. Moreover, the LOFNS with iteration generally
outperforms the aforementioned methods [36], [38], [39], [41],
[43], [55]. Additionally, the derived theoretical RMSEs nearly
coincide with the empirical RMSEs for larger number of snap-
shots and generally are very close to the CRBs, while they de-
crease monotonically with the increasing number of snapshots
as analyzed in Section IV.

Example 3–Performance versus Signal Separation: The si-
mulation conditions are similar to those in Example 1, except
that two FF signals are located at (−43◦,∞) and (17◦,∞),
while two NF signals are located at (17◦, 3.0λ) and (54◦, 4.4λ),
respectively, i.e., one FF signal s2(n) and one NF signal s3(n)
have the same DOA θ2 = θ3 = 17◦.

The averaged RMSEs of the estimated DOA θ̂2 of one FF
signal and the estimated DOA θ̂3 of one NF signal in terms of
the SNR and the number of snapshots are displayed in Figs. 8
and 9, individually. Obviously for the DOA estimation of the
FF signal s2(n), the proposed LOFNS performs well as the
existing localization methods with eigendecomposition such as
the MPL [36], the SDM [38], the OPMUSIC [41], and the
OPMUGE [43] and outperforms the GESPR [39] and the G-
MUSIC [55]. Even though the NF signal s3(n) impinges the
array with the same DOA as the FF signal s2(n), the LOFNS
with alternating iterative scheme can estimate the DOA θ3 with
smaller RMSEs at relatively low SNRs or with relatively small
number of snapshots compared to the methods [36], [38], [41],
[39], [43], and [55] as observed in previous examples.

VI. CONCLUSION

A new subspace-based method called LOFNS was proposed
for localization of the mixed FF and NF signals impinging on a
symmetrical ULA, and it has two advantages: (1) the computa-
tionally burdensome eigendecomposition is avoided efficiently,
and (2) the impact of finite array data is alleviated effectively.

Fig. 9. The RMSEs of the estimated DOAs of (a) FF and (b) NF signals
versus the number of snapshots (dashed line: MPL; “×”: SDM; dash-dotted
line: GESPR; “�”: OPMUSIC; “�”: OPMUGE; “+”: G-MUSIC; solid line:
LOFNS w/o iteration; solid line with “◦”: LOFNS; “∗”: theoretical RMSE of
LOFNS; and dotted line: CRB) for Example 3.

The statistical performance of the LOFNS was studied, and the
effectiveness of the LOFNS and the theoretical analysis were
verified through numerical examples.

APPENDIX A
PROOF OF THEOREM 1

As studied in [64], [65], [49], [11], the first-order expression
for the estimation error Δθk � θ̂k − θk of FF signals can be
obtained as

Δθk ≈ − f ′(θk )
f ′′(θk )

≈ −
Re
{

dHf (θ)ΠQ̂af (θ)
}

dHf (θ)ΠQdf (θ)
(A1)

where a first-order approximation of the estimated orthogonal
projector ΠQ̂ in (A1) is given by [11], [64]

ΠQ̂ ≈ (Q̂ − Q)(QHQ)−1QH + Q(QHQ)−1

· (Q̂ − Q)H + (QH Q̂)−1QH . (A2)

By using the fact that QHaf (θk ) = 0(2M+1−K )×1 and substi-
tuting (A2) into (A1), the estimation error Δθk can be approxi-
mated as

Δθk ≈ −Re{dHf (θk )Q(QHQ)−1Q̂
H

af (θk )}
dHf (θ)ΠQdf (θ)

= −Re{μk}
Hfkk

(A3)

where

μk � dHf (θk )Q(QHQ)−1Q̂
H

af (θk )

= dHf (θk )Q(QHQ)−1P̃
H

af 1(θk ) (A4)
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where af 1(θk ) denotes the k column of A1 with k = 1, 2,
. . . ,K1 , and

P̃
H � P̂

H − PH

= ( ˆ̄R2
ˆ̄RH

1 − PH ˆ̄R1
ˆ̄RH

1 )( ˆ̄R1
ˆ̄RH

1 )−1

≈ −QH ˆ̄RR̄
H
1 (R̄1R̄

H
1 )−1 (A5)

where QH R̄ = QHARsA
H = O(2M+1−K )×(2M+1) is used.

By substituting (A5) into (A4) and noting that ˆ̄R = R̂ −
σ̂2I2M+1 , we have

μk = −dHf (θk )ΠQ
ˆ̄RR̄

H
1

(
R̄1R̄

H
1

)−1
af 1(θk )

= −gHf (θk )R̂hf (θk ) + σ̂2gHf (θk )hf (θk )

= − 1
N

N∑

n=1

xH (n)M kx(n) (A6)

where the fact that QH R̄
H
1 = O(2M+1−K )×K and gHf (θk )

·hf (θk ) = 0 are used.
Since the estimate θ̂k is consistent, from (A3), the MSE (or

variance) of the estimation error Δθk is given by

MSE(θ̂k ) � E{(Δθk )2} = var(θ̂k )

≈ 1
2H2

f kk

Re{E{μ2
k} + E{|μk |2}} (A7)

where we use the fact that Re{μi}Re{μk} = 0.5(Re{μiμk} +
Re{μiμk∗}) for implicity. Under the basic assumptions on the
data model and the well-known formula for the expectation of
four Gaussian random variables with zero-mean (e.g., [66])

E{AbcT D} = E{Ab}E{cT D} + E{cT ⊗ A}
· E{D ⊗ b} + E{AE{bcT }D} (A8)

by considering the fact that Q spans the null space of A (i.e.,
QHA = O(2M+1−K )×K ), from (A6), we can get

E{μ2
k}

=
1
N 2E

{
N∑

t=1

N∑

n=1

xH (t)M kx(t)xH (n)M kx(n)

}

=
1
N 2

N∑

t=1

N∑

n=1

(
E{xH (t)M kx(t)}E{xH (n)M kx(n)}

+ E{xH (t) ⊗ xH (t)M k}E{M kx(n) ⊗ x(t)}

+ E{xH (t)M kE{x(t)xH (n)}M kx(n)}
)

= tr{M kR}2 + 0 +
1
N

tr{(M kR)2} = 0 (A9)

E{|μk |2}

=
1
N 2E

{
N∑

t=1

N∑

n=1

xH (t)M kx(t)xT (n)M ∗
kx

∗(n)

}

=
1
N 2

N∑

t=1

N∑

n=1

(
E{xH (t)M kx(t)}E{xT (n)M ∗

kx
∗(n)}

+ E{xT (n) ⊗ xH (t)M k}E{M ∗
kx

∗(n) ⊗ x(t)}

+ E{xH (t)M kE{x(t)xT (n)}M ∗
kx

∗(n)}
)

=
1
N

vec(R)H (M ∗
k ⊗ M k )vec(R) (A10)

where the facts M kR = O(2M+1)×(2M+1) , (A ⊗ B)(C ⊗
D) = (AC) ⊗ (BD), and (A ⊗ B)T = AT ⊗ BT are used.

Therefore, by substituting (A9) and (A10) into (A7) and per-
forming some straightforward manipulations, the asymptotic
MSE expression MSE(θ̂k ) in (47) of the estimated DOAs of FF
signals can be readily obtained. �

APPENDIX B
PROOF OF THEOREM 2

Similar to the derivations for the FF signals in Appendix A,
the estimation error {Δθk}Kk=K 1 +1 for the NF signals is approx-
imately given by

Δθk ≈ −Re{dHn (θk )Q̄(Q̄H
Q̄)−1 ˆ̄QHan (θk )}

dHn (θ)ΠQ̄dn (θ)

= −Re{λk}
Hnkk

(B1)

where

λk � dHn (θk )Q̄(Q̄H
Q̄)−1 ˆ̄QHan (θk )

= −dHn (θk )ΠQ̄ (T n1T
H
n1)

−1an1(θk )

= −gHn (θk )T̂ nhn (θk ). (B2)

From (13), and (49)–(52), the estimated matrix R̂n of Rn in
(26) corresponding to the NF signals is given by

R̂n =
K∑

k=K 1 +1

Bk
ˆ̄RBH

k

=
K∑

k=K 1 +1

(
BkR̂BH

k − σ̂2BkB
H
k

)
(B3)

and the estimated anti-diagonal elements r̂n (p) of R̂n can be
obtained by

r̂n (p) =
K∑

k=K 1 +1

(
1
N

N∑

n=1

b
(k)T
p−M−1x(n)xH (n)b(k)∗

M+1−p

−σ̂2b
(k)T
p−M−1b

(k)∗
M+1−p

)
. (B4)
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Then we can obtain the estimated matrix T̂ n of the Toeplitz cor-
relation matrix T n in (29) as shown in (B5) shown at the bottom
of this page, and after some straightforward manipulations, we
can reexpress T̂ n in (B5) compactly as

T̂ n =
1
N

N∑

n=1

(IM+1 ⊗ xH (n))C(IM+1 ⊗ x(n)) − σ̂2B̃.

(B6)

Further from (12), the estimated noise variance σ̂2 can be for-
mulated as

σ̂2 =
1

2M + 1 − 2K
Re

{
N∑

n=1

xH (n)Mx(n)

}
. (B7)

Hence by inserting (B6) and (B7) into (B2), we have

λk = λk1 − λk2 (B8)

where

λk1 = − 1
N

N∑

t=1

gHn (θk )(IM+1 ⊗ xH (t))

· C(IM+1 ⊗ x(t))hn (θk )

= − 1
N

N∑

t=1

xH (t)(gHn (θk ) ⊗ I2M+1)

· C(hn (θk ) ⊗ I2M+1)x(t)

= − 1
N

N∑

t=1

xH (t)M̄ kx(t) (B9)

λk2 = − 1
2M + 1 − 2K

· gHn (θk)B̃hn (θk)Re

{
1
N

N∑

n=1

xH(n)Mx(n)

}
. (B10)

Additionally by using the fact that

Re{λk} = Re{λk1} − ξkRe{λ̄k2}
= Re{λk1 − ξk λ̄k2} (B11)

and by defining λ̄k � λk1 − ξk λ̄k2 , we have

Re{λ̄k} = Re{λk}. (B12)

where λ̄k2 is given by

λ̄k2 = − 1
N

N∑

t=1

xH (t)Mx(t). (B13)

Thus from (B1) and (B12), the MSE (or variance) of the
estimation error Δθk is given by

MSE(θ̂k ) � E{(Δθk )2} = var(θ̂k )

≈ 1
2H2

nkk

Re{E{λ̄2
k} + E{|λ̄k |2}}. (B14)

From (B12), the two terms of MSE(θ̂k ) in (B14) can be obtained
as

E{λ̄2
k} = E{λ2

k1 + ξ2
k λ̄

2
k2 − 2ξkλk1 λ̄k2} (B15)

E{|λ̄k |2} = E{|λk1 |2 − ξkλk1 λ̄
∗
k2 − ξk λ̄k2λ

∗
k1

+ ξ2
k |λ̄k2 |2} (B16)

where

E{λ2
k1}

=
1
N 2E

{
N∑

t=1

N∑

n=1

xH (t)M̄ kx(t)xH (n)M̄ kx(n)

}

=
1
N 2

N∑

t=1

N∑

n=1

(
E{xH (t)M̄ kx(t)}E{xH (n)M̄ kx(n)}

+ E{xH (t) ⊗ xH (t)M̄ k}E{M̄ kx(n) ⊗ x(t)}

+ E{xH (t)M̄ kE{x(t)xH (n)}M̄ kx(n)}
)

= tr{M̄ kR}2 + 0 +
1
N

tr{(M̄ kR)2} (B17)

E{λ̄2
k2}

=
1
N 2E

{
N∑

t=1

N∑

n=1

xH (t)Mx(t)xH (n)Mx(n)

}

=
1
N 2

N∑

t=1

N∑

n=1

(
E{xH (t)Mx(t)}E{xH (n)Mx(n)}

+ E{xH (t) ⊗ xH (t)M}E{Mx(n) ⊗ x(t)}

+ E{xH (t)ME{x(t)xH (n)}Mx(n)}
)

= tr{MR}2 + 0 +
1
N

tr{(MR)2} (B18)

E{λk1 λ̄k2}

=
1
N 2E

{
N∑

t=1

N∑

n=1

xH (t)M̄ kx(t)xH (n)Mx(n)

}

T̂ n =
1
N

N∑

t=1

K∑

k=K 1 +1

⎡

⎢⎢⎢⎢⎢⎣

b
(k)T
0 x(n)xH (n)b(k)∗

0 , b
(k)T
−1 x(n)xH (n)b(k)∗

1 , . . . b
(k)T
−M x(n)xH (n)b(k)∗

M

b
(k)T
1 x(n)xH (n)b(k)∗

−1 , b
(k)T
0 x(n)xH (n)b(k)∗

0 , . . . b
(k)T
−M+1x(n)xH (n)b(k)∗

M−1
...

...
. . .

...

b
(k)T
M x(n)xH (n)b(k)∗

−M , b
(k)T
M−1x(n)xH (n)b(k)∗

−M+1 , . . . b
(k)T
0 x(n)xH (n)b(k)∗

0

⎤

⎥⎥⎥⎥⎥⎦
− σ̂2B̃ (B5)
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=
1
N 2

N∑

t=1

N∑

n=1

(
E{xH (t)M̄ kx(t)}E{xH (n)Mx(n)}

+ E{xH (t) ⊗ xH (t)M̄ k}E{Mx(n) ⊗ x(t)}

+ E{xH (t)M̄ kE{x(t)xH (n)}Mx(n)}
)

= tr{M̄ kR}tr{MR} + 0

+
1
N

vec(R)H (M̄T
k ⊗ M)vec(R) (B19)

where the facts that tr(AT B) = vecT (A)vec(B) and vec
(AXB) = (BT ⊗ A)vec(X) are used, while

E{|λk1 |2}

=
1
N 2E

{
N∑

t=1

N∑

n=1

xH (t)M̄ kx(t)xT (n)M̄ ∗
kx

∗(n)

}

=
1
N 2

N∑

t=1

N∑

n=1

(
E{xH (t)M̄ kx(t)}E{xT (n)M̄ ∗

kx
∗(n)}

+ E{xT (n) ⊗ xH (t)M̄ k}E{M̄ ∗
kx

∗(n) ⊗ x(t)}

+ E{xH (t)M̄ kE{x(t)xT (n)}M̄ ∗
kx

∗(n)}
)

= tr{M̄ kR}tr{M̄ kR}∗

+
1
N

vec(R)H (M̄ ∗
k ⊗ M̄ k )vec(R) (B20)

E{|λ̄k2 |2}

=
1
N 2E

{
N∑

t=1

N∑

n=1

xH (t)Mx(t)xT (n)M ∗x∗(n)

}

=
1
N 2

N∑

t=1

N∑

n=1

(
E{xH (t)Mx(t)}E{xT (n)M ∗x∗(n)}

+ E{xT (n) ⊗ xH (t)M}E{M ∗x∗(n) ⊗ x(t)}

+ E{xH (t)ME{x(t)xT (n)}M ∗x∗(n)
)

= tr{MR}tr{MR}∗

+
1
N

vec(R)H (M ∗ ⊗ M)vec(R) (B21)

E{λk1 λ̄
∗
k2}

=
1
N 2E

{
N∑

t=1

N∑

n=1

xH (t)M̄ kx(t)xT (n)M ∗x∗(n)

}

=
1
N 2

N∑

t=1

N∑

n=1

(
E{xH (t)M̄ kx(t)}E{xT (n)M ∗x∗(n)}

+ E{xT (n) ⊗ xH (t)M̄ k}E{M ∗x∗(n) ⊗ x(t)}

+ E{xH (t)M̄ kE{x(t)xT (n)}M ∗x∗(n)}
)

= tr{M̄ kR}tr{MR}∗

+
1
N

vec(R)H (M ∗ ⊗ M̄ k )vec(R). (B22)

Moreover, we have

tr{M̄ kR} = E{xH (n)M̄ kx(n)}
= gHn (θk )T nhn (θk ) + σ2gHn (θk )B̃hn (θk )

= σ2gHn (θk )B̃hn (θk ). (B23)

Therefore, by inserting (B17)–(B23), (B15) and (B16) into
(B14), and performing some straightforward manipulations,
MSE(θ̂k ) in (48) of the estimated DOAs of NF signals can
be readily obtained. �
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