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Localization of Near-Field Sources Based on Linear
Prediction and Oblique Projection Operator

Weiliang Zuo, Jingmin Xin , Senior Member, IEEE, Wenyi Liu, Nanning Zheng, Fellow, IEEE,
Hiromitsu Ohmori, Member, IEEE, and Akira Sano, Member, IEEE

Abstract—This paper investigates the localization of multiple
near-field narrowband sources with a symmetric uniform linear
array, and a new linear prediction approach based on the trun-
cated singular value decomposition (LPATS) is proposed by taking
an advantage of the anti-diagonal elements of the noiseless array
covariance matrix. However, when the number of array snapshots
is not sufficiently large enough, the “saturation behavior” is usu-
ally encountered in most of the existing localization methods for
the near-field sources, where the estimation errors of the estimated
directions-of-arrival (DOAs) and ranges cannot decrease with the
signal-to-noise ratio. In this paper, an oblique projection based al-
ternating iterative scheme is presented to improve the accuracy
of the estimated location parameters. Furthermore, the statisti-
cal analysis of the proposed LPATS is studied, and the asymptotic
mean-square-error expressions of the estimation errors are derived
for the DOAs and ranges. The effectiveness and the theoretical
analysis of the proposed LPATS are verified through numerical
examples, and the simulation results show that the LPATS pro-
vides good estimation performance for both the DOAs and ranges
compared to some existing methods.

Index Terms—Linear prediction, near-field, oblique projection,
source localization, uniform linear array.

I. INTRODUCTION

F INDING directions or localizing places of multiple narrow-
band sources plays important role in many fields of sensor

array processing (see, e.g. [1]–[4] and references therein), and
much effort has been made to the far-field situation for decades
(e.g. [5]–[16]), where the distance of signal source to the ar-
ray is sufficiently large compared with the array aperture (i.e.,
in the Fraunhofer region), and hence the wave emanated from
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the signal source can be considered as the plane-wave at the
array, which is characterized by the direction-of-arrival (DOA)
only, and the range (i.e., the distance) becomes irrelevant. When
the signal source is close to the array and lies in the near-field
(i.e., in the Fresnel region), the wave impinging on the array
has the spherical wavefront characterized by two independent
location parameters (i.e., the range and the DOA), and the near-
field situation usually occurs in many practical applications such
as sonar, collision avoidance radar, electronic surveillance, seis-
mology, speech enhancement, and biomedical imaging (e.g., [3],
[17]–[21], [103]). As a result, the estimation methods with the
far-field assumption generally are no longer applicable in this
situation, and the pair-matching (i.e., the association or align-
ment) of the estimated DOAs and ranges is usually required.
Numerous methods were proposed for localizing the near-field
sources based on the spherical wavefront model (e.g., [22]–[27],
[104], [105]), for examples, the modified two-dimensional (2D)
MUSIC [22], the polynomial rooting approach [23], the neu-
ral network based method [24], the maximum-likelihood (ML)
location estimator [25], the MUSIC curved wavefront (MCW)
algorithm [26], and the spherical harmonics domain method
[27]. However, most of these methods involve multidimensional
searching or high-order Taylor series expansion and have high
computational load.

In fact, by approximating the nonlinear propagation time de-
lay of the spherical wavefront model into a quadratic wavefront
model with its second-order Taylor expansion (i.e., the Fres-
nel approximation), the estimation of location parameters can
be facilitated [28]. Consequently many localization methods
were proposed for the near-field narrowband sources [29]–[37],
[106]–[108], for instance, the path-following methods [29], [30],
the high-order statistics (HOS) based methods [31]–[34], the
approximated nonlinear optimization method [35], and the 3D
ML estimation [36]. In contrast to the aforementioned methods
based on the traditional spherical wavefront model [22]–[27],
these localization methods based on the quadratic wavefront
approximation model usually require low computational effort,
but they suffer some systematic errors introduced by the Fres-
nel approximation [38], while some correction methods were
considered to mitigate the systematic error [37].

More recently, by utilizing the geometric configuration of
centro-symmetric linear arrays [39] and the quadratic wave-
front approximation model, lots of localization methods were
developed to reduce the computational complexity and im-
prove the estimation performance [40]–[56], [109], [110].
Among them, the HOS-based methods [40], [42]–[44] and the
cyclostationarity-based method [41] were presented for the near-
field sources with specifically temporal properties but often in-
volve multidimensional searching or are suitable only for the
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source signals with specifically temporal properties, and they
require many array snapshots and have high computational load,
while the second-order statistic (SOS) based methods [45]–[56]
are more computationally efficient compared to the former. The
reduced-dimension MUSIC algorithm [110] estimates the DOA
estimates by 1D peak-searching procedure, but which is really
time-consuming. However, the generalized ESPRIT and MU-
SIC based method (GEMM) [48] performs worse for finite array
snapshots, because the generalized ESPRIT [57] encounters am-
biguity in some scenarios owing to the selection of weighting
matrix [58], while the rank reduction based method (RARE)
[53] generally performs better than the GEMM with more com-
putational load [59]. The weighted linear prediction method
(WLPM) [47] has a rather simple way to implement. Unfortu-
nately, the structure property of the array covariance matrix of
the incident signals is required in these methods [45], [47], [49],
[50], [54], where this structure property is only valid for large
number of snapshots. Furthermore, when the number of snap-
shots is not sufficiently large enough, the erroneous estimated
correlations cause a “saturation behavior” in the estimation of
location parameters regardless of the signal-to-noise ratio (SNR)
(cf. [60]), where the estimated DOAs and/or ranges have high
elevated error floors, which do not decrease monotonically with
the increasing SNR. Additionally, the sparse recovery methods
have difficulty in determining the regularization parameter that
balances the tradeoff between the Frobenius norm term and
�1-norm term in the objective function [55], [56], [107].

In this paper, we investigate the problem of localizing multiple
near-field narrowband sources impinging on a symmetric uni-
form linear array (ULA) with the SOS of the received array data,
and we propose a new linear prediction (LP) approach based on
the truncated singular value decomposition (SVD) (LPATS) by
utilizing the anti-diagonal elements of the noiseless array co-
variance matrix. By using the advantage of oblique projection
(see, e.g., [61], [89], [91], [94] and references therein), which
is an extended orthogonal projection and projects the measure-
ment onto a low-rank subspace along a non-orthogonal sub-
space, an oblique projection operator based alternating iterative
scheme is presented to improve the accuracy of the estimated
location parameters, when the number of array snapshots is not
sufficiently large enough, where the aforementioned “saturation
behavior” encountered in most of the existing localization meth-
ods is mitigated. The statistical property of the proposed LPATS
is analyzed, and asymptotic mean-square-error (MSE) expres-
sions of the estimation errors are derived for both the estimated
DOAs and ranges. The effectiveness of the proposed LPATS and
the theoretical analysis are demonstrated through numerical ex-
amples. The simulation results show that the LPATS generally
performs well at relatively low SNR and/or with small number
of snapshots, while the aforementioned saturation problem is
alleviated effectively.

Notation: In the paper, Om×n , Im , 0m×1 , and δn,t stand
for an m× n null matrix, an m×m identity matrix, an m× 1
null vector, and the Kronecker delta, and E{·}, {·}∗, (·)T , and
(·)H represent the statistical expectation, the complex conjugate,
the transposition, and the Hermitian transposition. Additionally,
(·)†, R(·), and N (·) indicate the Moore-Penrose pseudoinverse,
the range space, and the null space of the bracketed matrix, and
diag(·) denotes the diagonal matrix operator. Furthermore, �,
⊗, ⊕, and tr{·} signify the Hadamard-Schur product, the Kro-
necker matrix product, the direct sum operator, and the trace
operator, and Im{ · } and Re{ · } denote the imaginary or real

Fig. 1. The localization of near-field sources with a symmetric ULA.

part of the bracketed quantity, while ei and ēi is a L× 1 or
(2M + 1) × 1 unit vector with a unity element at the i-th loca-
tion and zeros elsewhere, x̂ means the estimate of x, and ( · )ik
and O[ · ] denote the ik-th element of the the bracketed matrix
and the order of magnitude.

II. DATA MODEL

As depicted in Fig. 1, there are K sources located in the
Fresnel region of the array, and sk (n) is the narrowband
noncoherent signal from the k-th source and impinges on
the symmetric ULA with the DOA θk and range rk , where
rk ∈ (0.62(D3/λ)1/2 , 2D2/λ)), the ULA consists of 2M + 1
sensors with spacing d, and D is the aperture of the array given
by D = 2Md herein (cf. [3]). Here we assume that the ULA is
fully calibrated and the center of the array is the phase reference
point, and then the noisy signal xi(n) received at the i-th sensor
can be expressed as

xi(n) =
K∑

k=1

sk (n)ejτi k + wi(n) (1)

for i = −M, . . . ,−1, 0, 1, . . . ,M , where wi(n) is the additive
noise, and τik is the phase delay due to the time delay between
the reference sensor and the i-th sensor for the signal sk (n)
from the k-th near-field source, which is given by (cf. [28])

τik =
2π
λ

(√
r2
k + (id)2 − 2idrk sin θk − rk

)
(2)

where λ is the wavelength. Further, τik in (2) can be approxi-
mated with the second-order Taylor expansion as [47], [62]

τik ≈ iψk + i2φk (3)

where ψk and φk are the electric angles defined by

ψk � −2πd
λ

sin θk (4)

φk � πd2

λrk
cos2 θk . (5)

Then the received signals {xi(n)} can be rewritten compactly

x(n) = As(n) + w(n) (6)

where x(n) � [x−M (n), . . . , x−1(n), x0(n), x1(n), . . . ,
xM (n)]T , s(n) � [s1(n), s2(n), . . . , sK (n)]T , and
w(n) � [w−M (n), . . . , w−1(n), w0(n), w1(n), . . . ,
wM (n)]T , while A is the array response matrix de-
fined by A � [a(θ1 , r1), a(θ2 , r2), . . . , a(θK , rK )], and
a(θk , rk ) � [e−jM ψk ejM

2 φk , . . . , e−jψk ejφk , 1, ejψk ejφk , . . . ,

ejM ψk ejM
2 φk ]T .
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Here we make the basic assumptions as follows.
A1) The array is calibrated and the array response matrix A

has full rank and is unambiguous.
A2) The incident signals {sk (n)} from the K near-field

sources are temporally complex white Gaussian ran-
dom processes with zero-mean and the variance given
by E{sk (n)s∗k (t)} = rsk δn,t and E{sk (n)sk (t)} =
0,∀n, t.

A3) The additive noises {wi(n)} are temporally and
spatially complex white Gaussian random pro-
cesses with zero-mean and the covariance matri-
ces E{w(n)wH (t)} = σ2I2M+1δn,t , and E{w(n)
·wT (t)} = O(2M+1)×(2M+1) , ∀n, t. Additionally the
additive noises {wi(n)} are independent to the
incident signals {sk (n)}, i.e., E{s(n)wH (n)} =
E{s(n)wT (n)} = OK×(2M+1) .

A4) The number of near-field sources K is known, and K
satisfies the relation K < M + 1 (cf. Remark B for de-
tails).

A5) The sensor spacing d satisfies the relation d ≤ λ/4 for
avoiding the estimation ambiguity.

In the following, we concentrate on the estimation of location
parameters {θk}Kk=1 and {rk}Kk=1 of multiple near-field sources
from the finite noisy array data {x(n)}Nn=1 , where the basic
idea is firstly to estimate the LP coefficients fitting the noise-
less correlations of array data and then to estimate the location
parameters from the zeros of the estimated LP polynomial.

Remark A: The random matrix theory (RMT) (i.e., the general
statistical analysis or G-estimation) [84], [85] is used to analyze
the asymptotic behavior of the eigenvalues and eigenvectors
of different random matrix models including the sample covari-
ance matrix for solving the “threshold effect” of subspace-based
direction estimation in the asymptotic situation, where both the
numbers of snapshots and sensors are large and of the same or-
der of magnitude (see, e.g., [85]–[88]). However, in the problem
considered in this paper, the number of sensors is not compa-
rable in the same order of magnitude to that of snapshots, and
hence the RMT cannot be adopted to study the estimation per-
formance. �

III. LINEAR PREDICTION WITH TRUNCATED

SVD FOR LOCALIZATION

A. Linear Prediction Modeling With Noiseless Correlations

Under the basic assumptions, from (6), we can obtain the
(2M + 1) × (2M + 1) array covariance matrix R

R � E{x(n)xH (n)} = ARsA
H + σ2I2M+1 (7)

where Rs � E{s(n)sH (n)} = diag(rs1 , rs2 , . . . , rsK ), and
its pq-th element (R)pq is given by

(R)pq � E{xp(n)x∗q (n)}

=
K∑

k=1

rsk e
j((p−q)ψk +(p2 −q 2 )φk ) + σ2δpq (8)

where p, q = −M, . . . ,−1, 0, 1, . . . ,M . In order to eliminate
the quadratic term (p2 − q2)φk in (8) and to reduce the com-
putational complexity of parameter estimation, we can choose

q = −p−m [47], i.e.,

(p− q)ψk + (p2 − q2)φk

= (2p+m)ψk −m(2p+m)φk = (2p+m)γmk (9)

where γmk � ψk −mφk , and consequently the pq-th elements
(R)pq along the major cross-diagonal (for m = 0) and that
along them-th (1 ≤ |m| < 2M ) upper (form > 0) or lower (for
m < 0) diagonal off the major cross-diagonal can be expressed
as

(R)pq =
K∑

k=1

rsk e
j (2p+m )γm k + σ2δp,−p−m � ρm (p) (10)

for p = −M +m2 , −M +m2 + 1, . . . , −1, 0, 1, . . . , M −
m1 − 1, M −m1 , where m1 = 0.5(|m| +m), and m2 =
0.5(|m| −m). Clearly we have the relations between the aux-
iliary parameter γmk and the electric phase angles ψk and
φk as

ψk = γ0k , for m = 0 (11)

φk =
1

2m
(γ−m,k − γmk ), for m 
= 0 (12)

ψk = 0.5(γ−m,k + γmk ), for m 
= 0. (13)

By partitioning the matrix R in (7) into four submatrices as

K 2M+1−K

R =
[

R11 , R12

R21 , R22

]
K

2M + 1 −K
(14)

we have the noise variance σ2 from R21 and R22 as [63]

σ2 =
tr{R22Π}

tr{Π} (15)

where R†
21 = (RH

21R21)−1RH
21 , and Π � I2M+1−K − R21

R†
21 . Hence from (10) and (15), we get the noiseless correlation

ρ̄m (p) of the received array data

ρ̄m (p) � ρm (p) − σ2δp,−p−m

=
K∑

k=1

rsk e
jmγm k ej2pγm k � r̄Tmsbm (p) (16)

where r̄ms � [rs1 e
jmγm 1 , rs2 e

jmγm 2 , . . . , rsK e
jmγm K ]T , and

bm (p)� [ej2pγm 1 , ej2pγm 2 , . . ., ej2pγm K ]T . Evidently, {ρ̄m (p)}
can be interpreted as the received “signals” for a virtual array
of 2M + 1 − |m| sensors illuminated by K “sources” {rsk },
and these “signals” {ρ̄m (p)} differ only by a phase factor γmk

(cf. [64]). Consequently the auxiliary parameter γik (i.e., the
electric angles ψk in (4) and φk in (5) and hence the location
parameters θk and rk in (2)) can be estimated by using the phase
delays of {ρ̄m (p)}. Furthermore, from Prony’s method [65], we
can find that {ρ̄m (p)} obey a linear difference equation (cf. [7],
[47], [64]–[69]).

Thus by dividing the virtual array into L overlapping
subarrays with K̄ sensors in the forward direction, where
K̄ − 1 > K, and L = 2M + 2 − |m| − K̄ > K, i.e., |m| <
2M + 1 − 2K, the l-th forward subarray comprises the vir-
tual sensors {−M +m2 + l − 1,−M +m2 + l, . . . ,−M +
m2 + l + K̄ − 2} for l = 1, 2, . . . , L, we obtain the forward
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LP model in terms of the received “signals” {ρ̄m (p)} for the
l-th subarray as

ρ̄m (−M +m2 + l + K̄ − 2) = ζTmlβm (17)

where

ζml � [ρ̄m (−M +m2 + l − 1), ρ̄m (−M +m2 + l),

. . . , ρ̄m (−M +m2 + l + K̄ − 3)]T

= [bm (−M +m2 + l − 1), bm (−M +m2 + l),

. . . , bm (−M +m2 + l + K̄ − 3)]T r̄ms

= ĀmD−M+m 2 + l−1
m r̄ms (18)

in which Ām � [bm (0), bm (1), . . . , bm (K̄ − 2)]T , and Dm �
diag(ej2γm 1 , ej2γm 2 , . . . , ej2γm K ), while βm � [βm,K̄−1 ,
βm,K̄−2 , . . . , βm1 ]T . Herein {βmk} are the LP coefficients,
and the order of LP model is K̄ − 1. By concatenating (17) for
l = 1, 2, . . . , L and performing some simple manipulations, we
obtain the LP model in a matrix-vector form as

ym = Zmβm (19)

where ym � [ρ̄m (−M +m2 + K̄ − 1), ρ̄m (−M +m2 +
K̄), . . . , ρ̄m (M −m1)]T , and

Zm � [ζm1 , ζm2 , . . . , ζmL ]T

= Ãm R̄msD
−M+m 2
m Ā

T
m (20)

in which Ãm � [bm (0), bm (1), . . . , bm (L− 1)]T , and R̄ms �
diag(rs1 e

jmγm 1 , rs2 e
jmγm 2 , . . . , rsK e

jmγm K ).
Under the assumptions, the ranks of two Vandermonde ma-

trices Ãm and Ām and two diagonal matrices R̄ms and
Dm are given by rank(Ãm ) = min(L,K) = K, rank(Ām ) =
min(K̄ − 1,K) = K, and rank(R̄ms) = rank(Dm ) = K.
Hence the rank of the L× (K̄ − 1) matrix Zm in (19) and
(20) is obtained as rank(Zm ) = K, i.e., the dimension of sig-
nal subspace of Zm equals the number of near-field sources K.
Hence we get the SVD on Zm in (20) as (cf. [70]–[72])

Zm = UmλmV H
m (21)

where Um and V m are the L× L or (K̄ − 1) × (K̄ − 1) uni-
tary matrices given by Um � [um1 ,um2 , . . . ,umL ], V m �
[vm1 ,vm2 , . . . ,vm,K̄−1 ], and umk and vmk are the correspond-
ing left or right singular vectors, while Λm is the L× (K̄ − 1)
rectangular diagonal matrix given by

Λm =
[
Λ̄m ,OL×(K̄−L−1)

]
, for L ≤ K̄ − 1 (22)

Λm =
[

Λ̄m

O(L−K̄+1)×(K̄−1)

]
, for L > K̄ − 1 (23)

in which Λ̄m is a diagonal matrix given by Λ̄m �
diag(λm1 , λm2 , . . . , λm,min{L,K̄−1}) with λm1 ≥ · · · ≥
λmK >λm,K+1 = · · · = λm,min{L,K̄−1} = 0, and {λmk} are
the singular values.

Thus when the LP coefficients {βmk}K̄−1
k=1 are available, by

forming the prediction polynomial Pm (z) (e.g., [7], [47], [64]–
[69])

Pm (z) = 1 − βm1z
−1 − βm2z

−2 · · · − βm,K̄−1z
−(K̄−1) (24)

where z = ej2γm k , the parameters {γmk} (i.e., the DOAs {θk}
and the ranges {rk}) can be obtained from theK signal zeros of
Pm (z) in the z-plane. Then the localization problem is reduced
to that of estimating the LP coefficients {βmk}K̄−1

k=1 from the
finite noisy array data.

Remark B: The 2M + 1 − |m| correlations along the anti-
diagonal of R are used to form the LP model with the order
K̄ − 1 for each virtual subarray with the size K̄, and the rank
of the L× (K̄ − 1) matrix Zm for all L overlapping subarrays
should satisfy the conditions L ≥ K and K̄ − 1 ≥ K, where
L = 2M + 2 − |m| − K̄. Hence we easily find that the max-
imum resolvable sources is given by K ≤M − 0.5|m| + 0.5,
i.e., K < M + 1. This is roughly the same as the WLPM [47]
and other subspace-based localization methods (e.g., [48], [100],
[101]), where the geometric symmetry of the ULA is exploited
to facilitate the parameter estimation (cf. [102]). �

B. Parameter Estimation With Truncated SVD

Obviously the reliable estimation of the LP coefficients is
the crux of the localization of near-field sources. Although the
ordinary least-square (LS) estimation is simple, the LS esti-
mate of the LP coefficients with (19) becomes biased or un-
stable due to the small singular values λm,K+1 , λm,K+2 , , . . . ,
λm,min{L,K̄−1} (cf. [69], [71], [73], [74]), and it will result in an
inaccurate estimation of location parameters. The weighted LP
method was studied for the localization of near-field sources
[47], but the optimal weighting matrix is a function of the
unknown location parameters, and its determination is rather
complicated. Herein we consider the estimation of the LP coef-
ficients in the sense of LS method by using the truncated SVD
to reduce the noise effect and to mitigate the ill-conditioned
problem [69], [75].

When the finite array data {x(n)}Nn=1 are available, we have
the sample array covariance matrix R̂ as

R̂ =
1
N

N∑

n=1

x(n)xH (n). (25)

Then by using the elements { ˆ̄ρm (p)} of R̂ to construct the LP
model in (19), from (21), the SVD of the estimated matrix Ẑm

is given by

Ẑm = Ûm Λ̂m V̂
H

m (26)

where Ûm = [ûm1 , ûm2 , . . . , ûmL ], V̂ m = [v̂m1 ,
v̂m2 , . . . , v̂m,K̄−1 ], and λ̂m1 ≥ · · · ≥ λ̂mK ≥ λ̂m,K+1 ≥
· · · ≥λ̂m,min{L,K̄−1}. From (26) and (19), by using the prin-

cipal singular values λ̂m1 , λ̂m2 , . . . , λ̂mK and discarding the
smaller ones λ̂m,K+1 , λ̂m,K+2 , . . . , λ̂m,min{L,K̄−1}, we can
obtain the truncated SVD based minimum-norm LS estimate of
βm as (cf. [7], [69], [71], [72], [75], [78], [79], [98])

β̂m = Ẑ
†
m ŷm =

K∑

k=1

ûH
mk ŷm

λ̂mk

v̂mk . (27)

Hence the parameter γmk (i.e., ψk −mφk ) can be estimated by
finding the phases of the K zeros of the estimated prediction
polynomial P̂m (z) closest to the unit circle in the z-plane [7],
[8], [65], [69], where

P̂m (z) = 1 − β̂m1z
−1 − β̂m2z

−2 · · · − β̂m,K̄−1z
−(K̄−1) (28)
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in which z = e2jγm k .
Thus by setting m = 0, m̄, and −m̄ to form three different

LP models with (17)–(19), and from (25)–(28), we can obtain
three sets of the estimates {γ̂mk}, where 0 < m̄ ≤ 2M − 2K.
Then with the aid of the relations in (11)–(13), for each esti-
mated electric angle ψ̂k with k = 1, 2, . . . ,K, its corresponding
another electric angle φ̂k is pair-matched as [47]

φ̂k =
1

2m̄
(γ̂−m̄ ,lo − γ̂m̄ qo ) (29)

where the index (lo , qo) is determined by

(lo , qo) = arg min
(l,q)

∣∣∣∣ψ̂k −
1

2m̄
(γ̂−m̄ ,l + γ̂m̄ q )

∣∣∣∣ (30)

in which l, q = 1, 2, . . . ,K, and ψ̂k = γ̂0k . Finally the estimated
location parameters (i.e., the DOA θ̂k and the range r̂k ) of each
near-field source can be obtained as

θ̂k = arcsin(α1 ψ̂k ) (31)

r̂k =
α2

φ̂k
cos2(θ̂k ) =

α2

φ̂k
cos2(arcsin(α1 ψ̂k )) (32)

where α1 = −λ/(2πd), and α2 = πd2/λ.
Remark C: The cross-diagonal index m dominates the num-

ber of the accessible correlations (i.e., the number of “received
signals” of virtual array) in (10) and hence affects the number
of overlapping subarrays in (17), where the number of these
accessible correlations becomes small for large |m|. Further as
shown in (8), the cross-diagonal index m also governs the ex-
istence of noise variance item in these accessible correlations,
where the noise variance item is absent if m is odd. Thus the
cross-diagonal index m will affect the estimation performance
of location parameters in a rather complicated way. Although
the indexm is usually chosen asm = 0,±m̄ for facilitating the
derivation of localization methods with m̄ = 1 (cf. [47]), in fact,
m̄ can be set as m̄ = 1, 2, . . . , 2M − 2K. Unfortunately, it is
rather difficult to determine the optimal value of m̄, which will
be examined empirically in Section VI. �

IV. OBLIQUE OPERATION BASED ALTERNATING ITERATION

FOR PERFORMANCE IMPROVEMENT

A. Saturation Behavior in Localization

As discussed above, the noiseless correlations {ρ̄m (p)} in the
cross-diagonals of the array covariance matrix R are employed
to estimate the DOAs and ranges of the near-field sources, and
the matrix R should be estimated from finite received array data.
In practice, when the number of snapshots N is not sufficiently
large enough, the sample array covariance matrix R̂ in (25) can
be expressed as

R̂ =
1
N

N∑

n=1

x(n)xH (n)

= AR̂sA
H + AR̂sw + R̂

H

swAH + R̂w (33)

where R̂s = (1/N)
∑N

n=1 s(n)sH (n), R̂sw = (1/N)∑N
n=1 s(n)wH (n), and R̂w = (1/N)

∑N
n=1 w(n)wH (n),

while further R̂s and R̂w will not be strictly diagonal even

the SNR is high. Evidently we have the estimated noiseless
correlation ˆ̄ρm (p) of R̂ as

ˆ̄ρm (p) =
K∑

k=1

r̂sk e
j (2p+m )γm k

+
K∑

k=1

K∑

l=1,l 
=k
r̂sk l

(
ej(pψk +p2 φk ) · ej((p+m )ψl−(p+m )2 φl )

)
+ε

(34)

where r̂sk l = (1/N)
∑N

n=1 sk (n)s∗l (n), r̂sk k = r̂sk , and ε de-
notes the error caused by the last three terms in (33). Conse-
quently, the non-zero residual cross-correlations between the
incident signals and the other error will cause that the er-
roneous correlations { ˆ̄ρm (p)} contain other information than
ψk −mφk . Hence the “saturation behavior” will be encoun-
tered in most of the existing methods for localizing near-field
sources regardless of the SNR, where the estimated DOA and
range (i.e, θ̂k and r̂k ) may have high elevated error floors, which
do not decrease monotonically with the increasing SNR. In or-
der to cope with this problem, we suggest an alternating iterative
scheme by exploiting the oblique projection operator (cf. [61]
for details).

Remark D: The relation between the “saturation effect” and
a particular threshold is much complicated, and an elaborately
theoretical explanation for this relation is currently under inves-
tigation. �

B. Oblique Projection Based Alternating Iteration

Since the range space of each incident signal is nonover-
lapping and not orthogonal to that of another signal, here we
consider the utilization of the oblique projection operator to iso-
late one incident signal from the others and to eliminate their
mutual interference of the multiple sources (cf. [61], [76], [89]–
[95]). Since the array response matrix A has full rank, we can
divide the range space of A as

R(A) = R(ak ) ⊕R(Ak ) (35)

where ak � a(θk , rk ), and Ak denotes the array response ma-
trix without column ak . Then the oblique projection operator
EAk |ak

which projects onto the space R(Ak ) along a direction
parallel to the space R(ak ) is given by (cf. [61], [76])

EAk |ak
� Ak (AH

k Π⊥
ak

Ak )−1AH
k Π⊥

ak
(36)

where Π⊥
ak

� I2M+1 − ak (aHk ak )−1aHk , and we have

EAk |ak
Ak = Ak (37)

EAk |ak
ak = O(2M+1)×1 . (38)

By reexpressing the estimated signal covariance matrix as

R̂s =

[
r̂sk , η̂T

η̂∗, R̂Ak

]
(39)

where η̂ = (1/N)
∑N

n=1 sk (n)sAk
(n), sAk

(n) denotes the
(K − 1) × 1 signal vector without signal sk (n), and R̂Ak

in-
dicates the (K − 1) × (K − 1) signal covariance matrix cor-
responding to Ak , the estimated array covariance matrix R̂ in
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(33) can be rewritten as

R̂ = r̂sk aka
H
k + ak η̂

T AH
k + Ak η̂

∗aHk + AkR̂Ak
AH
k + R̂e

(40)

where R̂e = AR̂sw + R̂
H

swAH + R̂w . By using the properties
of oblique projection in (37) and (38), from (36) and (40), we
can obtain the projected array covariance matrix as

R̂k � (I2M+1 − EAk |ak
)R̂(I2M+1 − EAk |ak

)H

= r̂sk aka
H
k + ΔR̂e (41)

where

ΔR̂e � (I2M+1 − EAk |ak
)R̂e(I2M+1 − EAk |ak

)H . (42)

When the SNR is sufficiently high, the matrix ΔR̂e is rea-
sonably small, from (41), and hence we can get the following
approximation

R̂k ≈ r̂sk aka
H
k . (43)

Clearly by using the oblique projection, the estimated array
covariance matrix corresponding to the incident signal sk (n) is
well separated from the other sources and the additive noise.

However, the oblique projection operator EAk |ak
in (36) con-

tains the unknown location parameters of near-field sources.
Herein we consider an alternating iterative scheme to improve
the performance of parameter estimation with the oblique pro-
jection. Firstly, we estimate the electric angles of the near-field
sources from R̂ in (25) as studied in Section III-B and denote
them as {ψ̂(t)

k }Kk=1 and {φ̂(t)
k }Kk=1 . Secondly, we calculate the

oblique projector with the accessible data as (cf. [61], [76])

ÊAk |ak
= Âk

(
Â
H

k Π̂
⊥
âk

Âk

)−1
Â
H

k Π̂
⊥
âk

(44)

for k = 1, 2, . . . ,K. Thirdly, from (41) and (44), we calculate
the projected noiseless array covariance matrix as

R̂
(t)
k =

(
I2M+1 − Ê

(t)
Ak |ak

)
(R̂ − σ̂2I2M+1)

·
(
I2M+1 − Ê

(t)
Ak |ak

)H
. (45)

Finally, we estimate the electric angles from R̂
(t)
k and denote

them as {ψ̂(t+1)
k }Kk=1 and {φ̂(t+1)

k }Kk=1 , while the index is up-
dated as t = t+ 1. This procedure should be repeated several
times until the difference between two consecutive iterations
becomes smaller than a threshold, for example,

K∑

k=1

∣∣∣ψ̂(t+1)
k − ψ̂

(t)
k

∣∣∣ ≤ ε̄ (46)

where ε̄ is an arbitrary and positive small constant (e.g.,
ε̄ = 10−6), then we denote ψ̂k = ψ̂

(t+1)
k and φ̂k = φ̂

(t+1)
k , and

consequently we can obtain the refined estimates of the DOAs
and ranges from these estimated electric angles.

Therefore when the finite array data {x(n)}Nn=1 are avail-
able, the implementation of the proposed LPATS for near-field
localization is summarized as follows:

1) Calculate the sample array covariance matrix R̂ with (25)
and the noise variance σ̂2 from R̂ with (14) and (15).

. . . . . . . . . 8(2M + 1)2N + 16K2(2M + 1 −K)
+ 2(2M + 1 −K) + O[K3 ] flops

2) By setting m = 0 and ±m̄, estimate the auxiliary param-
eters {γ0k}Kk=1 , {γm̄k}Kk=1 and {γ−m̄ ,k}Kk=1 from R̂ with
(19) and (26)–(28), respectively, and estimate the electric
angles {ψk}Kk=1 and {φk}Kk=1 from these estimates with
(29) and (30), where these estimated electric angles are
denoted as {ψ̂(t)

k }Kk=1 and {φ̂(t)
k }Kk=1 , and t = 0.

. . . 2(2M + 1)2 + O[L2(K̄ − 1) + (K̄ − 1)2] flops

3) Calculate the oblique projection operators Ê
(t)
Ak |ak

from the estimated electric angles with (44) for k =
1, 2, . . . ,K.

. . . . . . . . . 8(2M + 1)3 + 16(2M + 1)2(K̄ − 1)
+ 16(2M + 1)(K̄ − 1)2 + 10(2M + 1)2

+O[(K̄ − 1)3] flops

4) By calculating the projected matrix R̂
(t)
k with (45) for k =

1, 2, . . . ,K and by setting m = 0 and ±m̄, estimate the

auxiliary parameters γ0k , γm̄k and γ−m̄k from R̂
(t)
k with

(19), (26)–(28); and then by finding the phase of the zero
of the polynomial P̂m (z) closest to the unit circle in the z-
plane, estimate the electric angles {ψk}Kk=1 and {φk}Kk=1
from γ̂0k , γ̂m̄k and γ̂−m̄k with (11) and (12), where the
estimated electric angles are denoted as {ψ̂(t+1)

k }Kk=1 and

{φ̂(t+1)
k }Kk=1 .

. . . . . . . . . 16(2M + 1)3 + 4(2M + 1)2

+O[L2(K̄ − 1) + (K̄ − 1)2] flops

5) If the condition in (46) is not satisfied, repeat Steps 3 and
4 by setting t = t+ 1; otherwise reexpress the estimates
{ψ̂(t+1)

k }Kk=1 and {φ̂(t+1)
k }Kk=1 as {ψ̂k}Kk=1 and {φ̂k}Kk=1 ,

and estimate the corresponding DOAs {θ̂k}Kk=1 and ranges
{r̂k}Kk=1 with (31) and (32).

The number of flops is usually taken as a measure of the al-
gorithm complexity in the literature of array processing (e.g.,
[79]). The computational complexity of each step is roughly in-
dicated in terms of the number of MATLAB flops, where a flop
is defined as a floating-point additional or multiplication oper-
ation, and hence the computational complexity of the LPATS
is approximately O[8(2M + 1)2N + 24(2M + 1)3Ni ] flops if
2M + 1  K, which occurs often in applications of array pro-
cessing, where Ni denotes the times of iteration.

Remark E: In the above iteration procedure, the estimated
electric angles {ψ̂k}Kk=1 and {φ̂k}Kk=1 are automatically paired
without any additional processing. �

Remark F: Some existing SOS-based localization meth-
ods such as the GEMM [48] and the WLPM [47] were pro-
posed. The GEMM [48] involves one EVD and two 1-D
spectrum peak searching, and its computational complexity is
roughly O[(2M + 1)2N + (2M + 1)3 + (2M + 1)2(180/Δθ
+ (2D2/λ− 0.62(D3/λ)1/2)/Δr)] MATLAB flops, where Δθ
and Δr are the angular and range grid intervals (for example,
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Δθ = 0.002◦ and Δr = 0.002), and the precise peak searching
necessitates fine grid interval but is a rather time-consuming task
with heavy computational load. On the contrary, the WLPM is
based on the Fresnel approximation of the spherical wavefront
model, and its computational complexity is reduced roughly
to O[10(2M + 1)2N + (2M + 1 −K)3 ] flops. Obviously the
proposed LPATS is computationally more efficient than the
GEMM, but is slightly larger than the WLPM. �

V. STATISTICAL ANALYSIS

Now we study the asymptotic properties of the proposed
LPATS for sufficiently large number of snapshots.

A. Asymptotic Properties of LPATS

In order to facilitate the theoretical derivations, firstly we
define the estimation error of auxiliary parameter γmk as
Δγmk � γ̂mk − γmk , while the estimation vector γ̄m of the
same parameter errors for all sources is defined by

γ̄m � [Δγm1 ,Δγm2 , . . . ,ΔγmK ]T . (47)

From (19), we get the model error ξm as (cf., [77]–[79])

ξm � ŷm − Ẑmβm = Υ̂m β̄m (48)

where its g-th element is denoted by (ξm )g , β̄m � [−βT
m , 1]T ,

and Υ̂m � [Ẑm , ŷm ]. Then we have the following lemma on
the consistency of the estimated DOAs and ranges.

Lemma: As the number of snapshots N tends to infinity, the
estimates {θ̂k , r̂k}Kk=1 of the near-field sources approach the
true parameters {θk , rk}Kk=1 with probability one (w.p.1).

Proof: This lemma can be readily established by adopting
the analysis on the asymptotic properties of the high-order Yule-
Walker estimation of sinusoidal frequencies (e.g., [78], [79],
[98]). From the ergodicity property of the sample array covari-
ance matrix and the standard convergence results (cf., [96], [97],
[78]), it follows that

β̂m = Ẑ
†
m ŷm → βm = Z†

mym as N → ∞ (49)

both with probability one (w.p.1) and in the mean-square sense.
Clearly the estimated prediction polynomial P̂m (z) in (28) con-
verges to the true prediction polynomial Pm (z) in (24) w.p.1
as N → ∞. Thus it follows that the estimates {γ̂mk} and
hence {θ̂k , r̂k}Kk=1 approach the true parameters {γmk} and
{θk , rk}Kk=1 w.p.1 when N → ∞. �

From this lemma, we can obtain the asymptotic MSE expres-
sions of the estimated DOAs {θ̂k}Kk=1 and ranges {r̂k}Kk=1 of
the near-field sources as follows.

Theorem 1: The large-sample MSEs of the estimation er-
rors Δθk � θ̂k − θk and Δrk � r̂k − rk of the near-field signal
sk (n) are given by

MSE(θk ) = E{(Δθk )2} =
α2

1

cos2(θk )
E{(Δγ0k )2} (50)

MSE(rk ) = E{(Δrk )2}

=
m̄2α2

2 cos4(θk )
4ψ4

k

(
E{(Δγ−m̄ ,k )2}+E{(Δγm̄k )2}

− 2E{Δγ−m̄ ,kΔγm̄k})

+
α1m̄

2α2
2

ψ3
k

cos(θk ) sin(2θk )

· (E{Δγ0kΔγ−m̄ ,k} − E{Δγ0kΔγm̄k})

+
4(α1m̄α2)4

ψ2
k

E{(Δγ0k )2} (51)

where m̄ 
= 0, E{ΔγmkΔγlk} = (Γml)kk with

Γml � E{γ̄m γ̄T
l }

= 0.5Re{HmFmlH
H
l − Hm F̃mlH

T
l } (52)

Hm � D̄mQ−1
m G−1

m (Ã
T

m Ã
∗
m )−1Ã

T

m (53)

while Fml � E{ξmξHl }, F̃ml � E{ξmξTl }, the gt-th ele-
ments of matrices Fml and F̃ml are given by

(Fml)gt = E{ξmg ξ
∗
lt} =

σ4

N
tr{MmgM

H
lt }

+
σ4

2N(2M + 1 − 2K)
tr{Mmg}tr{MH

lt }

+
σ4

N
tr{MmgR̄MH

lt + MmgM
H
lt R̄} (54)

(F̃ml)gt = E{ξmg ξlt} =
σ4

N
tr{MmgM

T
lt}

+
σ4

2N(2M + 1 − 2K)
tr{Mmg}tr{MT

lt}

+
σ4

N
tr{MmgR̄MT

lt + MmgM
T
ltR̄} (55)

Gm = ejmγm k RsD
M−K̄−m 2 +1
m (56)

D̄m = 0.5 diag(e−j2γm 1 , e−j2γm 2 , . . . , e−j2γm K ) (57)

Qm = diag(qm1 , qm2 , . . . , qmK ) (58)

qmk = (K̄ − 1)zK̄−2
mk − (K̄ − 2)βi1zK̄−3

mk −
· · · − βi,K̄−1 (59)

Mmg � (eTg ⊗ I2M+1)Cm (β̄m ⊗ I2M+1) (60)

with R̄ = R − σ2I2M+1 , Cm is (61) given at the bottom
of the next page, k = 1, 2, . . . ,K, m, l = 0,±m̄, and g, t =
1, 2, . . . , L.

Proof: See Appendix. �

B. An Analytic Study of Performance

As the general expressions of asymptotic MSEs derived in
above are much complicated, here we specialize in the case
of one signal s1(n) impinging from a near-field source with
(θ1 , r1) for gaining insights into the proposed LPATS method.

In this case (i.e.,K = 1), by lettingm = 0, we readily obtain

R = rs1 a(θ1 , r1)aH (θ1 , r1) + σ2I2M+1 (62)

Ā0 = [1, ej2γ0 1 , . . . , ej2(K̄−2)γ0 1 ]T = ā0 (63)

Ã0 = [1, ej2γ0 1 , . . . , ej2(L−1)γ0 1 ]T = ã0 (64)

R̄0s = Rs = rs1 = rs = r̄0s (65)
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y0 = rs1 [e
j2M γ0 1 , ej2(M−1)γ0 1 , . . . , ej2(M−L+1)γ0 1 ]T (66)

Z0 = rs1 e
j2(M−K̄−1)γ0 1 ã∗

0 ā
T
0 (67)

D0 = ej2γ0 (68)

γ01 = ψ1 = −2πd
λ

sin θ1 (69)

From (19), (52)–(60), by performing some manipulations, we
have

β0 =
1

K̄ − 1

[
ej2(K̄−1)γ0 1 , ej2(K̄−2)γ0 1 , . . . , ej2γ0 1

]T

(70)

G0 = rs1 e
j2(M−K̄+1)γ0 1 (71)

D̄0 = 0.5e−j2γ0 1 (72)

Q0 = 0.5K̄ej2(K̄−2)γ0 1 (73)

H0 =
1

K̄Lrs1

ej2M γ0 1 ãT0 (74)

M 0g = diag(

g−1︷ ︸︸ ︷
0, . . . , 0, 1,−β01 , . . . ,−β0,K̄−1 , 0, . . . , 0︸ ︷︷ ︸

2M+1

) (75)

Furthermore, after some tedious calculations, we can get

F 00 =
1
N
σ2(σ2 + 2rs1 )B1B

H
1 (76)

F̃ 00 =
1
N
σ2(σ2 + 2rs1 )B1B

T
2 (77)

Γ00 =
1

2K̄2L2r2
s1

Re{ãT0 F 00 ã
∗
0 − ej4M γ0 ãT0 F̃ 00 ã0} = Γ00

(78)

where B1 and B2 are L× (2M + 1) matrices given by

B1 �

⎡

⎢⎢⎣

1, −β01 , . . . , −β0,K̄−1 , . . . , O

. . .
. . .

. . .

O . . . , 1, −β01 , . . . , −β0,K̄−1

⎤

⎥⎥⎦

(79)

B2 �

⎡

⎢⎣

O −β0,K̄−1 , . . . , −β01 , 1

··· ··· ···
−β0,K̄−1 , . . . , −β01 , 1 O

⎤

⎥⎦

(80)

andE{(Δγ01)2} = Γ00 . Then by substituting these results into
(50) and performing some manipulations, from Theorem 1, we

can obtain the asymptotic MSE of the estimated DOA θ̂1 for
large N as

MSE(θ̂1) =
1

NK̄2L2

1
SNR

α2
1κ

cos2 θ1

(
1 +

1
2SNR

)
(81)

where SNR � rs/σ
2 , and

κ � Re
{
ãT0 B1B

H
1 ã∗

0 − ej4Mψ1 ãT0 B1B
T
2 ã0

}
. (82)

Hence from (81), we can find that the asymptotic MSE MSE(θ̂1)
of the estimated DOA θ̂1 decreases monotonically with increas-
ing the number of snapshots N or SNR, which means that the
LPATS estimator is asymptotically efficient for sufficiently large
number of snapshots N .

Unfortunately, the analytic study of the asymptotic MSE
MSE(r̂1) of the estimated range r̂1 is much more complicated
and rather tedious to obtain herein, while the empirical exam-
inations in Section VI show that the asymptotic MSE of the
estimated range also decreases monotonically with the increas-
ing N or SNR.

Remark G: The source localization methods also exhibit the
“threshold effect” at low SNR region (e.g., [111]–[116]), where
the results of asymptotic analysis become invalid within the
threshold region and non-information region. A more accurate
characterization of the proposed LPATS in the threshold region
and non-information region should be studied by considering the
global estimation errors (i.e., the effect of outliers) to predict
the threshold performance (cf. [112]–[114]), but it is under a
tedious and complicated investigation and beyond the scope of
this paper. �

VI. NUMERICAL EXAMPLES

Now we evaluate the effectiveness of the proposed LPATS
and the theoretical analysis of statistical performance, where
two near-field noncoherent narrowband sources are located at
(θ1 , r1) and (θ2 , r2), i.e., K = 2, and the symmetric ULA con-
sists of 2M + 1 sensors, while the sensor spacing d is set
as d = λ/4. For examining the estimation performance, some
existing SOS-based localization methods such as the WLPM
[47], the covariance approximation method for direction-finding
(CAMDF) [45], and the GEMM [48] are carried out as well. In
addition, the Cramer-Rao lower bound (CRB) provides a lower
bound on the variance of any unbiased estimator and is useful as
a benchmark to test the efficiency of parameter estimation meth-
ods, where the closed-form expression of CRB for the near-field
source localization is given by [47]

CRB(ϑ) =
σ2

2N
{
Re
{
(DHΠ⊥

AD) � (J ⊗ QT )
}}−1

(83)

where ϑ � [θ1 , . . . , θK , r1 , . . . , rK ]T , D � [dθ (θ1 , r1), . . . ,
dθ (θK , rK ), dr (θ1 , r1), . . . , dr (θK , rK )], Π⊥

A � I2M+1−
A(AHA)−1AH , Q � RsA

HR−1ARs , and J � 11T

Cm =

⎡

⎢⎢⎢⎢⎢⎣

ē2M+2−K̄−m 1
ēT
K̄+m 2

, ē2M+3−K̄−m 1
ēT
K̄−1+m 2

, . . . , ē2M+1−m 1 ē
T
1+m 2

ē2M+1−K̄−m 1
ēT
K̄+1+m 2

, ē2M+2−K̄−m 1
ēT
K̄+m 2

, . . . , ē2M−m 1 ē
T
2+m 2

...
...

. . .
...

ē1−m 1 ē
T
2M+1+m 2

, ē2−m 1 ē
T
2M+m 2

, . . . , ēK̄−m 1
ēT2M+2+m 2

⎤

⎥⎥⎥⎥⎥⎦
(61)
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Fig. 2. Comparison of estimation performances for the DOAs in terms of the
SNR in Example 1 (N = 100, (12◦, 2.9λ), and (31◦, 3.3λ)).

Fig. 3. Comparison of estimation performances for the ranges in terms of the
SNR in Example 1 (N = 100, (12◦, 2.9λ), and (31◦, 3.3λ)).

with 1 � [1, 1]T , while dθ (θk , rk ) � ∂a(θk , rk )/∂θ and
dr (θk , rk ) � ∂a(θk , rk )/∂r for k = 1, 2, . . . ,K. In this paper,
CRB(ϑ) in (83) is also calculated, and the simulation results
shown below are all based on 1000 independent trails.

Example 1 (Performance versus SNR): Two near-field sour-
ces are located at (12◦, 2.9λ) and (31◦, 3.3λ), the number of
sensors in the ULA is 2M + 1 = 11, i.e.,M = 5, while the SNR
is varied from −10 dB to 40 dB, and the number of snapshots
is fixed at N = 100. The order of LP model is chosen as K̄ =
5 > K + 1 = 3, and the parameter values m corresponding to
the cross-diagonals are set at m = 0,±1, i.e., m̄ = 1.

The averaged root mean-squared-errors (RMSEs) of the esti-
mated DOAs θ̂1 and θ̂2 and that of the estimated ranges r̂1 and r̂2
of two sources in terms of the SNR are shown and compared with
that of the WLPM [47], the CAMDF [45], the GEMM [48] in
Figs. 2 and 3, respectively. Obviously the proposed LPATS with
the alternating iterative scheme performs well than the WLPM,
the CAMDF, and the GEMM at moderate to high SNRs, where
the “saturation” problem encountered in these existing methods
[47], [45], [48] is mitigated effectively. From Figs. 2 and 3, we
can observe that the theoretical MSE of the estimated DOA (or

Fig. 4. Comparison of estimation performances for the DOAs against the num-
ber of snapshots in Example 2 (SNR = 5 dB, (12◦, 2.9λ), and (31◦, 3.3λ)).

Fig. 5. Comparison of estimation performances for the ranges against
the number of snapshots in Example 2 (SNR = 5 dB, (12◦, 2.9λ), and
(31◦, 3.3λ)).

range) derived in (50) (or (51)) coincides with the CRB shown
in (83), where the theoretical RMSEs of the DOAs estimated by
the proposed LPATS is very close to the CRB, and their differ-
ence is small for DOA estimation. Additionally the empirical
MSEs of the estimated DOA (or range) are in good agreement
with the theoretical one (except at low SNR), and they decrease
monotonically with the increasing SNR, where the SNR thresh-
old at which the empirical MSEs deviating from the CRB and
the theoretical MSEs behavior approximately 10 dB or 5 dB
in this scenario. Moreover, it is noteworthy that the empirical
MSE of the proposed LPATS deviates abruptly from the CRB
and the theoretical MSE, and the LPATS exhibits the so-called
“threshold effect” at low SNR region (e.g., [111]–[116]), be-
cause the results of asymptotic analysis become invalid within
the threshold region and non-information region.

Example 2 (Performance versus Number of Snapshots):
The simulation conditions are similar to those in Example 1,
except that the SNR is set at 5 dB, and the number of snapshots
is varied from 10 to 1000.

Figs. 4 and 5 display the estimation performances of the
proposed LPATS against the number of snapshots, where the
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Fig. 6. Comparison of estimation performances for the DOAs with respect to
the angular separation in Example 3 (SNR = 15 dB, N = 100, (12◦, 2.9λ),
and (12◦ + Δθ, 2.9λ+ Δλ)).

Fig. 7. Comparison of estimation performances for the ranges with respect to
the range separation in Example 3 (SNR = 15 dB, N = 100, (12◦, 2.9λ), and
(12◦ + Δθ, 2.9λ+ Δλ)).

empirical RMSEs of the DOAs and ranges are compared with
the WLPM [47], the CAMDF [45], the GEMM [48] and the
CRBs. In general, the proposed LPATS has better localization
performance than the existing localization methods such as the
WLPM and the GEMM (except with smaller number of snap-
shots for the DOA estimation). When the number of snapshots
becomes large, the empirical RMSEs of the estimated DOAs
and that of the estimated ranges agree well with the theoretical
RMSEs given in (50) and (51), and they decrease monoton-
ically with the increasing number of snapshots as analyzed in
Section V, while the differences between the theoretical RMSEs
and the CRBs are small.

Example 3 (Performance versus Angular and Range Sepa-
ration): The simulation conditions are similar to those in Ex-
ample 1, except that the SNR is fixed at 10 dB, and the number
of snapshots is set atN = 100, while two near-field sources are
localized at (12◦, 2.9λ) and (12◦ + Δθ, 2.9λ+ Δλ), where Δθ
is varied from 0.5◦ to 19.5◦ with Δλ = λ or Δλ is varied from
0λ to 1.5λ with Δθ = 19◦, respectively.

As shown in Figs. 6 and 7, we can find that the proposed
LPATS generally outperforms the existing methods [47], [45],

Fig. 8. (a) Comparison of estimation performances for the DOAs and
(b) comparison of estimation performances for the ranges versus the cross-
diagonal index m̄ with different array size 2M + 1 in Example 4 (SNR = 0 dB,
N = 50, K̄ = 5).

Fig. 9. (a) Comparison of estimation performances for the DOAs and
(b) comparison of estimation performances for the ranges versus the cross-
diagonal index m̄ with different array size 2M + 1 in Example 4 (SNR = 5 dB,
N = 100, K̄ = 5).

[48] for the closely-spaced sources, while the empirical RMSEs
of the estimated DOAs and that of the estimated ranges are close
to the theoretical RMSEs derived in Section V for relatively
large angular and range separations. Additionally the empirical
and theoretical RMSEs do not decrease monotonically with the
increasing angular and range separations.

Example 4 (Performance versus Cross-Diagonal Index):
Two near-field sources are located at (12◦, r1) and (31◦, r2),
where the ranges are chosen as r1 = 0.62(D3/λ)1/2 +Δr1 and
r2 = 0.62(D3/λ)1/2 + Δr2 , and the array aperture D is given
byD = 2Md, while the number of sensors in the ULA 2M + 1
is varied to 9 to 19, i.e., M = 4, 5, 6, 7, 8, 9, and Δr1 = 0.5λ
and Δr2 = 0.9λ.

As clarified in Remark C, the cross-diagonal index m can
be chosen as m = 0,±m̄, where the reasonable values of m̄
is given by 1 ≤ m̄ ≤ 2M − 2K, and m̄ is fixed at m̄ = 1 in
the previous examples for the proposed LPATS and the WLPM
[47]. The estimation performances of the DOAs and ranges
versus the cross-diagonal index m̄ for different SNR and the
number of snapshots are plotted in Figs. 8 and 9. Evidently the



ZUO et al.: LOCALIZATION OF NEAR-FIELD SOURCES BASED ON LINEAR PREDICTION AND OBLIQUE PROJECTION OPERATOR 425

choice of m̄ can significantly improve the estimation perfor-
mance of the location parameters at relatively low SNR or with
small number of snapshots, though the estimation performance
of location parameters is affected by the parameter m̄ in a com-
plicated way, and it is rather difficult to determine the optimal
value of m̄. In general, we can find that the proposed LPATS
can attain better localization performance with a experimentally
compromise value of m̄, i.e., m̄ = round{0.6(M + 1)}, where
round denotes the round-off operation.

VII. CONCLUSION

In this paper, a new LP approach was proposed for the local-
ization of multiple near-field sources impinging on a symmetric
ULA by utilizing the truncated SVD, and an oblique projection
operator alternating iterative scheme was also presented as a
measure against the impact of finite array data to improve the
estimation accuracy of the location parameters and to overcome
the “saturation behaviour”. The explicit asymptotic MSE ex-
pressions of the estimated DOAs and ranges were clarified for
the proposed LPATS, and the effectiveness and the theoretical
analysis were substantiated through numerical examples.

APPENDIX

PROOF OF THEOREM 1

Firstly we consider the relations between the asymptotic co-
variance of estimation errors of the desired location parameters
(i.e., θk and rk ) and that of the electric phase angles (i.e., φk
and ψk ). By defining the vector of three auxiliary parameters as
γk � [γ0k , γ−m̄ ,k , γm̄k ]T = [φk , φk + m̄ψk , φk − m̄ψk ]T , the
vector of their estimation errors can be expressed as Δγk =
[Δγ0k ,Δγ−m̄ ,k ,Δγm̄k ]T . From (4), (5) and the definition of
γmk , we easily get [47]

θk = arcsin(α1γ0k ) � f1k (γ) (A1)

rk =
2α2 cos2(arcsin(α1γ0k ))

γ−m̄ ,k − γm̄k
� f2k (γ). (A2)

By using the so-called “continuity theorem” [80], [81], the
asymptotic covariance of estimation errors Δθk and Δrk is
obtained as

E

{[
Δθk
Δrk

]
[Δθk ,Δrk ]

}
= Γ̄k Γ̃k Γ̄

T
k (A3)

where

Γ̄k �

⎡

⎣
∂f1 k (γ )
∂γ0 k

, ∂f1 k (γ )
∂γ−m̄ , k

, ∂ f1 k (γ )
∂γm̄ k

∂f2 k (γ )
∂γ0 k

, ∂f2 k (γ )
∂γ−m̄ , k

, ∂ f2 k (γ )
∂γm̄ k

⎤

⎦

=

⎡

⎣
α1

cos θk
, 0, 0

− 2α1 α2 sin θk
φk

, −α2 cos2 θk
2φ2

k
, α2 cos2 θk

2φ2
k

⎤

⎦ (A4)

Γ̃k � E{(Δγk )(Δγk )
T } (A5)

while we can easily see that

E{ΔγmkΔγlk} = (E{γ̄m γ̄T
l })kk (A6)

where γ̄m is defined in (47).
Next, we derive the asymptotic covariance matrix of the error

vector γ̄m (i.e., E{γ̄m γ̄T
l }). By letting zmk be the signal zero

of the prediction polynomial Pm (z) in (24), we easily find that
zmk should satisfy the following equation

zK̄−1 − βm1z
K̄−2 − · · · − βm,K̄−1 = 0. (A7)

Then by using the first-order approximation (cf., [82]), from
(A7), we have

zTmkΔβm + qmkΔzmk ≈ 0 (A8)

where zmk = [−1,−zmk , . . . , −zK̄−2
mk ]T , and Δβm =

[Δβm,K̄−1 , Δβm,K̄−2 , . . . ,Δβm1 ]T . For k = 1, 2, . . . ,K, (A8)
can be reexpressed in a matrix-vector form as

Δzm = −Q−1
m Ā

T
mΔβm (A9)

where Δzm = [Δzm1 ,Δzm2 , . . . ,ΔzmK ]T . As described in
Section III-A, the signal zero of the prediction polynomial
Pm (z) in (24) is given by zmk = ej2γm k , and then its first-order
Taylor series expansion can be expressed as

Δzmk ≈ j2ej2γm k Δγmk . (A10)

For k = 1, 2, . . . ,K, from (A10), we get a compact expression
as

γ̄m ≈ Im{D̄mΔzm}. (A11)

When the number of snapshots is finite, from (21) and (26), by
discarding the min{L, K̄ − 1} −K smallest estimated singular
values of Ẑm , we can obtain its rank-reducing approximation
with the effective rank K [71], [72]

Ẑ
(T )
m = Ûm Λ̂

(T )
m V̂

H

m (A12)

where

Λ̂
(T )
m =

[
ˆ̄Λm ,OL×(K̄−L−1)

]
, for L ≤ K̄ − 1 (A13)

Λ̂
(T )
m =

[
ˆ̄Λm

O(L−K̄+1)×(K̄−1)

]
, for L > K̄ − 1 (A14)

in which ˆ̄Λm is a P̄ × P̄ diagonal matrix given by ˆ̄Λm =
diag(λ̂m1 , λ̂m2 , . . . , λ̂mK , 0, . . . , 0), and P̄ = min{L, K̄ −
1}. Then we can easily verify the fact that [77], [78]

(
Ẑ

(T )
m

)†
Ẑm =

(
Ẑ

(T )
m

)†
Ẑ

(T )
m . (A15)

Note that

Δβm =
(
Λ̂

(T )
m

)†
ŷm − βm

=
(
Ẑm

)†
K

ξm +
((

Ẑ
(T )
m

)†
Ẑm − I2M+1

)
βm .

(A16)

From (A15) and (A16), we have

Ẑ
(T )
m Δβm = Ẑ

(T )
m

(
Ẑ

(T )
m

)†
ξm

+
(

Ẑ
(T )
m

(
Ẑ

(T )
m

)†
Ẑm − Ẑ

(T )
m

)
βm

= Ẑm

(
Ẑ

(T )
m

)†
ξm . (A17)
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Consequently, we get the following approximation (cf., [79])

ZmΔβm ≈ Zm

(
Z(T )
m

)†
ξm (A18)

and then by substituting (20) into (A18), we have

Ā
T
mΔβm ≈ Ā

T
m

(
Z(T )
m

)†
ξm . (A19)

From (A9), (A11), (A19), and (20), we get

γ̄m ≈ −Im{D̄mQ−1
m Ā

T
mΔβm}

≈ −Im{D̄mQ−1
m Ā

T
mZ†

mξm}

≈ −Im{D̄mQ−1
m G−1

m (Ã
T

m Ã
∗
m )−1Ã

T

mξm}
= −Im{Hmξm}. (A20)

By using the fact that Im{u}Im{v} = 0.5(Re{uv∗} −
Re{uv}) and from (A20), we can obtain E{γ̄m γ̄T

l } in (A6)
(i.e., Γml in (52)) as

E{γ̄m γ̄T
l } = Γml

= 0.5Re{HmE{ξmξHl }HH
l − HmE{ξmξTl }HT

l }
= 0.5Re{HmFml − Hm F̃mlH

T
l }. (A21)

Now we derive the asymptotic covariance matrices Fml (i.e.,
(54)) and F̃ml (i.e., (55)) of the vector ξm in above. By noting
that

ˆ̄ρm (p) = ēTM+p+1(R̂ − σ̂2I2M+1)ēM−p+1 (A22)

and by substituting (33) into (A22), from (48), we have

Υ̂m =
1
N

N∑

n=1

(IL ⊗ xH (n))Cm (IK̄ ⊗ x(n)) − σ̂2B̄m

(A23)

where B̄m is (A24) given at the bottom of this page. Conse-
quently, from (48) and (A23), the g-th element (ξm )g of vector
ξm can be expressed as

(ξm )g =
1
N

N∑

n=1

eTg (IL ⊗ xH (n))Cm (IK̄ ⊗ x(n))β̄m

− σ̂2eTg B̄m β̄m

=
1
N

N∑

n=1

xH (n)(eTg ⊗I2M+1)Cm (β̄m⊗I2M+1)x(n)

− σ̂2eTg B̄m β̄m

=
1
N

N∑

n=1

xH (n)Mmgx(n) − σ̂2eTg B̄m β̄m

=
1
N

N∑

n=1

(
x̄H (n)Mmg x̄(n) + x̄H (n)Mmgw(n)

+ wH (n)Mmg x̄(n) + wH (n)Mmgw(n)
)

− σ̂2eTg B̄m β̄m (A25)

where the relation x̄(n) � As(n) is used implicitly in (A25),
and

1
N

N∑

n=1

x̄H (n)Mmg x̄(n)

=
1
N

N∑

n=1

eTg (IL ⊗ x̄H (n))Cm (IK̄ ⊗ x̄(n))β̄m

= eTg Υ̂β̄m ≈ 0. (A26)

in which, we neglect the order O(1/N) for N → ∞ (see [78]
and the references therein). Additionally, from (60), we can
obtain

tr{Mmg} =
2M+1∑

q=1

ēTq Mmg ēq

= eTg (IL ⊗ ēHq )Cm (IK̄ ⊗ ēq )β̄m

= eTg Bm β̄m (A27)

tr{Mmg R̄} = tr{MmgE{x̄(n)x̄H (n)}}
= E{x̄H (n)Mmg x̄(n)}
= eTg E{(IL ⊗ x̄H (n))Cm (IK̄ ⊗ x̄(n))β̄m}
= eTg Φm β̄m = 0 (A28)

where R̄ = R − σ2I2M+1 . Under the basic assumptions of the
data model and the well-known formula for the expectation of
four Gaussian random variables with zero-mean (e.g., [83])

E{AbcT D} = E{Ab}E{cT D} + E{cT ⊗ A}
· E{D ⊗ b} +E{AE{bcT }D} (A29)

from (A25)–(A28), we can get

E{ξmg ξ
∗
lt} = T1 + T2 − T3 − T4 (A30)

where

T1 =
1
N 2

N∑

n=1

N∑

t=1

{E{wH (n)Mmg x̄(n)wT (t)M ∗
lt x̄

∗(t)}

+ E{wH (n)Mmg x̄(n)x̄T (t)M ∗
ltw

∗(t)}

B̄m =

⎡

⎢⎢⎢⎢⎢⎣

ēT
K̄+m 2

ē2M+2−K̄−m 1
, ēT

K̄−1+m 2
ē2M+3−K̄−m 1

, · · · ēT1+i2 ē2M+1−m 1

ēT
K̄+1+m 2

ē2M+1−K̄−m 1
, ēT

K̄+m 2
ē2M+2−K̄−m 1

, · · · ēT2+m 2
ē2M−m 1

...
...

. . .
...

ēT2M+1+m 2
ē1−m 1 , ēT2M+m 2

ē2−m 1 · · · ēT2M+2+m 2
ēK̄−m 1

⎤

⎥⎥⎥⎥⎥⎦
(A24)
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+ E{x̄H (n)Mmgw(n)wT (t)M ∗
lt x̄

∗(t)}
+ E{x̄H (n)Mmgw(n)x̄T (t)M ∗

ltw
∗(t)}

+ E{wH (n)Mmg x̄(n)wT (t)M ∗
ltw

∗(t)}
+ E{x̄H (n)Mmgw(n)wT (t)M ∗

ltw
∗(t)}

+ E{wH (n)Mmgw(n)wT (t)M ∗
ltw

∗(t)}
+ E{wH (n)Mmgw(n)wT (t)M ∗

lt x̄
∗(t)}

+ E{wH (n)Mmgw(n)x̄T (t)M ∗
ltw

∗(t)}}

=
σ2

N
tr{MmgR̄MH

lt } + 0 + 0 +
σ2

N
tr{MmgM

H
lt R̄}

+ 0 + 0 + σ4(tr{Mmg}tr{MH
lt }

+
1
N

tr{MmgM
H
lt }) + 0 + 0

=
σ2

N
tr{MmgR̄MH

lt } +
σ2

N
tr{MmgM

H
lt R̄}

+ σ4(tr{Mmg}tr{MH
lt } +

1
N

tr{MmgM
H
lt }). (A31)

Further, in order to calculate the terms T2 , T3 , and T4 in (A30),
from (15), the estimated noise variance σ̂2 can be formulated as

σ̂2 =
1

2M + 1 − 2K
Re

{
1
N

N∑

t=1

xH (t)Mx(t)

}
(A32)

where M � blkdiag(OK×K ,Π). Then by using the fact that
Re{u}Re{v} = 0.5(Re{uv} + Re{uv∗}) and (A32), we can
obtain T2 in (A30) as

T2 = E{σ̂4eTg B̄m β̄m β̄
H
l B̄

H
l et}

=
1

2N 2(2M + 1 − 2K)2 eTg B̄m β̄m β̄
H
l B̄

H
l et

·
N∑

n=1

N∑

t=1

Re{E{xH (n)Mx(n)xH (t)Mx(t)}

+ E{xH (n)Mx(n)xT (t)M ∗x∗(t)}}
= σ4tr{Mmg}tr{MH

lt }

+
σ4

2N(2M + 1 − 2K)
tr{Mmg}tr{MH

lt } (A33)

where the facts that tr{MR} = (2M + 1 − 2K)σ2 and
tr{(MR)2} = (2M + 1 − 2K)σ4 are used implicitly, while
we get T3 and T4 in (A30) as

T3 =
1
N

N∑

n=1

E
{
σ̂2(x̄H (n)Mmgw(n) + wH (n)Mmg x̄(n)

+ wH (n)Mmgw(n))β̄H
l B̄

H
l et

}

=
1

2N 2(2M + 1 − 2K)
β̄
H
l B̄

H
l et

·
N∑

n=1

N∑

t=1

{E{wH (n)Mmg x̄(n)xH (t)Mx(t)}

+ E{wH (n)Mmg x̄(n)xT (t)M ∗x∗(t)}
+ E{wH (n)Mmgw(n)xH (t)Mx(t)}
+ E{wH (n)Mmgw(n)xT (t)M ∗x∗(t)}
+ E{x̄H (n)Mmgw(n)xH (t)Mx(t)}
+ E{x̄H (n)Mmgw(n)xT (t)M ∗x∗(t)}}

=
1

2N 2(2M + 1 − 2K)
β̄
H
l B̄

H
l et

· (0 + 0 + σ2tr{Mmg}tr{MR}
+ σ2tr{Mmg}tr{MHR} + 0 + 0)

= σ4tr{Mmg}tr{MH
lt } (A34)

T4 =
1
N

N∑

n=1

E
{
σ̂2eTg B̄m β̄m (x̄H (n)M ltw(n)

+ wH (n)M lt x̄(n) + wH (n)M ltw(n))∗
}

= T ∗
3 .

(A35)

Hence by substituting (A31) and (A33)–(A35) into (A30) and
performing some straightforward manipulations, the matrix
Fml = E{ξmξHl } in (54) can be established immediately. In a
similar way,E{ξmg ξlt} (i.e., F̃ml = E{ξmξTl } in (55)) can be
derived.

Finally, based on the results (A6) and (A21), by substituting
(A4) and (A5) into (A3), the MSE(θ̂k ) and MSE(r̂k ) of the esti-
mated θ̂k in (50) and r̂k in (51) can be established immediately.�
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[98] P. Stoica and T. Söderström, “High-order Yule-Walker equations for
estimating sinusoidal frequencies: The complete set of solutions,” Signal
Process., vol. 20, pp. 257–263, 1990.

[99] G. Wang, J. Xin, N. Zheng, and A. Sano, “Computationally efficient
subspace-based method for two-dimensional direction estimation with
L-shaped array,” IEEE Trans. Signal Process., vol. 59, no. 7, pp. 3197–
3212, Jul. 2011.

[100] W. Zuo, J. Xin, N. Zheng, and A. Sano, “Subspace-based localization
of near-field signals in unknown nonuniform noise,” in Proc. IEEE 10th
Sensor Array Multichannel Signal Process. Workshop, Sheffield, U.K.,
Jul. 2018, pp. 247–251.

[101] W. Zuo, J. Xin, N. Zheng, and A. Sano, “New subspace-based method
for localization of multiple near-field signals and statistical analysis,” in
Proc. IEEE 52nd Asilomar Conf. Signals, Syst. Comput., Pacific Grove,
CA, USA, Oct. 2018, pp. 247–251.

[102] J. Xie, H. Tao, X. Rao, and J. Su, “Comments on “Near-field source
localizaton via symmetric subarrays,” IEEE Signal Process. Lett., vol. 22,
no. 5, pp. 643–644, May 2015.

[103] X. Su, Z. Liu, X. Chen, and X. Wei, “Closed-form algorithm for 3-D near-
field OFDM signal localization under uniform circular array,” Sensors,
vol. 18, no. 1, 2018, Art. no. 226.

[104] I. Podkurkov, L. Hamidullina, E. Traikov, M. Haardt, and A. Nadeev,
“Tensor-based near-field localization in bistatic MIMO radar systems,”
in Proc. 22nd Int. ITG Workshop Smart Antennas, Bochum, Germany,
Mar. 2018, pp. 1–8.

[105] L. Zuo, J. Pan, and B. Ma, “Analytic and unambiguous phase-based
algorithm for 3-D localization of a single source with uniform circular
array,” Sensors, vol. 18, no. 2, 2018, Art. no. 484.

[106] P. Behmandpoor and F. Haddadi, “Near-field coherent source localiza-
tion by planar array design,” Multidimensional Syst. Signal Process.,
pp. 1–19, 2018. [Online]. Available: https://doi.org/10.1007/s11045-
018-0552-x

https://doi.org/10.1007/s11045-018-0552-x
https://doi.org/10.1007/s11045-018-0552-x


430 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 67, NO. 2, JANUARY 15, 2019

[107] S. Li, B. Li, B. Li, X. Tang, and R. He, “Sparse reconstruction based
robust near-field source localization algorithm,” Sensors, vol. 18, no. 4,
2018, Art. no. 1066.

[108] J. C. Liu, Y. T. Cheng, and H. S. Hung, “Joint bearing and range estimation
of multiple objects from time-frequency analysis,” Sensors, vol. 18, no. 1,
2018, Art. no. 291.

[109] J. Xu, B. Wang, and F. Hu, “Near-field sources localization in partly
calibrated sensor arrays with unknown gains and phases,” IEEE Wireless
Commun. Lett., 2018, preprint, doi: 10.1109/LWC.2018.2859417.

[110] X. Zhang, W. Chen, W. Zheng, Z. Xia, and Y. Wang, “Localization
of near-field sources: A reduced-dimension MUSIC algorithm,” IEEE
Commun. Lett., vol. 22, no. 7, pp. 1422–1425, Jul. 2018.

[111] A. B. Gershman, “Pseudo-randomly generated estimator banks: A new
tool for improving the threshold performance of direction finding,” IEEE
Trans. Signal Process., vol. 46, no. 5, pp. 1351–1364, Jun. 1998.

[112] P. Forster, P. Larzabal and E. Boyer, “Threshold performance analysis
of maximum likelihood DOA estimation,” IEEE Trans. Signal Process.,
vol. 52, no. 11, pp. 3183–3191, Nov. 2004.

[113] F. Athley, “Threshold region performance of maximum likelihood direc-
tion of arrival estimators,” IEEE Trans. Signal Process., vol. 53, no. 4,
pp. 1359–1373, Apr. 2005.

[114] C. D. Richmond, “Mean-squared error and threshold SNR prediction of
maximum-likelihood signal parameter estimation with estimated colored
noise covariances,” IEEE Trans. Inf. Theory, vol. 52, no. 5, pp. 2146–
2164, May 2006.

[115] Y. I. Abramovich and B. A. Johnson, “Detection-estimation of very
close emitters: Performance breakdown, ambiguity, and general statis-
tical analysis of maximum-likelihood estimation,” IEEE Trans. Signal
Process., vol. 58, no. 7, pp. 3647–3660, Jul. 2010.

[116] M. Shaghaghi and S. A. Vorobyov, “Subspace leakage analysis and
improved DOA estimation with small sample size,” IEEE Trans. Signal
Process., vol. 63, no. 12, pp. 3251–3265, Jun. 2015.

Weiliang Zuo received the B.E. degree in electri-
cal engineering and the Ph.D. degree in control sci-
ence and engineering from Xi’an Jiaotong Univer-
sity, Xi’an, China, in 2010 and 2018, respectively.
From 2016 to 2017, he was a visiting student with
the School of Electrical and Computer Engineering,
Georgia Institute of Technology (Georgia Tech). His
current research interests include array and statistical
signal processing and pattern recognition.

Jingmin Xin (S’92–M’96–SM’06) received the B.E.
degree in information and control engineering from
Xi’an Jiaotong University, Xi’an, China, in 1988, and
the M.S. and Ph.D. degrees in electrical engineering
from Keio University, Yokohama, Japan, in 1993 and
1996, respectively.

From 1988 to 1990, he was with the Tenth In-
stitute of Ministry of Posts and Telecommunications
of China, Xi’an, China. He was with the Commu-
nications Research Laboratory, Tokyo, Japan, as an
Invited Research Fellow of the Telecommunications

Advancement Organization of Japan from 1996 to 1997 and as a Postdoctoral
Fellow of the Japan Science and Technology Corporation from 1997 to 1999. He
was also a Guest (Senior) Researcher with YRP Mobile Telecommunications
Key Technology Research Laboratories Company, Limited, Yokosuka, Japan,
from 1999 to 2001. From 2002 to 2007, he was with Fujitsu Laboratories Lim-
ited, Yokosuka, Japan. Since 2007, he has been a Professor with Xi’an Jiaotong
University. His research interests are in the areas of adaptive filtering, statistical
and array signal processing, system identification, and pattern recognition.

Wenyi Liu received the B.E. degree and B.A. degree
in automation and english from Xi’an Jiaotong Uni-
versity, Xi’an, China, in 2017. She is working toward
the Master degree at the Department of Control Sci-
ence and Engineering, Xi’an Jiaotong University. She
is currently a visiting student with RWTH Aachen
University, Aachen, Germany. Her research interests
include array signal processing and artificial intelli-
gence.

Nanning Zheng (SM’93–F’06) received the Gradu-
ate degree from the Department of Electrical Engi-
neering, Xi’an Jiaotong University, Xi’an, China, in
1975, and the M.S. degree in information and control
engineering from Xi’an Jiaotong University, in 1981,
and the Ph.D. degree in electrical engineering from
Keio University, Yokohama, Japan, in 1985.

He joined Xi’an Jiaotong University in 1975, and
is currently a Professor and the Director of the In-
stitute of Artificial Intelligence and Robotics, Xi’an
Jiaotong University. His research interests include

computer vision, pattern recognition and image processing, and hardware im-
plementation of intelligent systems.

Dr. Zheng became a member of the Chinese Academy of Engineering in
1999, and he is the Chinese Representative on the governing board of the Inter-
national Association for Pattern Recognition. He is also an Executive Deputy
Editor for the Chinese Science Bulletin.

Hiromitsu Ohmori (M’88) received the Bachelor
of Electrical Engineering, Master of Electrical En-
gineering, and Ph.D. degrees from Keio University,
Tokyo, Japan, in 1983, 1985, and 1988, respectively.

In April 1988, he became an Instructor with the
Department of Electrical Engineering, Keio Univer-
sity, where he became an Assistant Professor in April
1991. In April 1996, he became an Associate Pro-
fessor with the Department of System Design En-
gineering, Keio University, where he is currently a
Professor. His research interests are in the field of

adaptive control, robust control, nonlinear control, and their applications. He is
a member of the SICE, ISCIE, IEE, IEICE, and EICA.

Akira Sano (M’89) received the B.E., M.S., and
Ph.D. degrees in mathematical engineering and infor-
mation physics from the University of Tokyo, Tokyo,
Japan, in 1966, 1968, and 1971, respectively.

In 1971, he joined the Department of Electrical En-
gineering, Keio University, Yokohama, Japan, where
he was a Professor with the Department of System
Design Engineering till 2009. He is currently a Pro-
fessor Emeritus of Keio University. He has been a
member of Science Council of Japan since 2005. He
was a Visiting Research Fellow with the University

of Salford, Salford, U.K., from 1977 to 1978. He is the coauthor of the text-
book State Variable Methods in Automatic Control (Wiley, 1988). His current
research interests are in adaptive modeling and design theory in control, signal
processing and communication, and applications to control of sounds and vi-
brations, mechanical systems, and mobile communication systems.

Dr. Sano is a Fellow of the Society of Instrument and Control Engineers and
is a Member of the Institute of Electrical Engineering of Japan and the Institute
of Electronics, Information and Communications Engineers of Japan. He was
the General Co-Chair for the 1999 IEEE Conference of Control Applications
and the IPC Chair for the 2004 IFACWorkshop on Adaptation and Learning in
Control and Signal Processing. He was the Chair for the IFAC Technical Com-
mittee on Modeling and Control of Environmental Systems from 1996 to 2001.
He has been the Vice-Chair for the IFAC Technical Committee on Adaptive
Control and Learning since 1999 and the Chair for the IFAC Technical Commit-
tee on Adaptive and Learning Systems since 2002. He was also on the Editorial
Board of Signal Processing. He was the recipient of the Kelvin Premium from
the Institute of Electrical Engineering in 1986.

http://dx.doi.org/10.1109/LWC.2018.2859417


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


