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Abstract

Snapshot compressive imaging (SCI) is a new type
of compressive imaging system that compresses multiple
frames of images into a single snapshot measurement,
which enjoys low cost, low bandwidth, and high-speed sens-
ing rate. By applying the existing SCI methods to deal with
hyperspectral images, however, could not fully exploit the
underlying structures, and thereby demonstrate unsatisfac-
tory reconstruction performance. To remedy such issue, this
paper aims to propose a new effective method by taking ad-
vantage of two intrinsic priors of the hyperspectral images,
namely deep image denoising and total variation (TV) pri-
ors. Specifically, we propose an optimization objective to
utilize these two priors. By solving this optimization ob-
jective, our method is equivalent to incorporate a weighted
FFDNet and a 2DTV or 3DTV denoiser into the plug-and-
play framework. Extensive numerical experiments demon-
strate the outperformance of the proposed method over sev-
eral state-of-the-art alternatives. Additionally, we provide
a detailed convergence analysis of the resulting plug-and-
play algorithm under relatively weak conditions such as
without using diminishing step sizes. The code is avail-
able at https://github.com/ucker/SCI-TV-
FFDNet.

1. Introduction
Compressive sensing [5, 1] is a popular imaging technol-

ogy that can be employed to capture video [8, 19, 15, 32,
22, 23] and hyperspectral images [6, 24, 25, 30, 2]. One of
the most important compressive sensing systems is the so-
called snapshot compressive imaging (SCI)[15, 24]. Pre-
cisely, SCI uses 2D sensors to obtain higher dimensional
image data and exploit corresponding algorithms to recon-
struct the desired data. As compared with traditional com-

*Corresponding author.

pressive sensing technology, SCI possesses of low memory,
low power consumption, low bandwidth and low cost, and
as such, can be used to efficient capture the hyperspectral
images. Among the existing SCI systems, coded aperture
snapshot spectral imaging (CASSI)[25] is a representative
hyperspectral SCI system, which combines hyperspectral
images of different wavelengths into a single 2D one.

Along with the development of hardware, various re-
construction algorithms have been proposed for SCI. GAP-
TV [28] applied total variation minimization under the gen-
eralized alternating projection (GAP) [13] framework. Re-
cently, DeSCI [14] demonstrates the-state-of-art results in
reconstructing both video and hyperspectral image data. As
further shown in [31], DeSCI can be regarded as a plug-and-
play (PnP) algorithm that employs rank minimization as an
intermediate step during reconstruction. However, the low
computational speed of DeSCI precludes its applications.
For example, DeSCI costs more than six hours to recon-
struct a hyperspectral image of size 1021 × 703 × 24 from
its snapshot measurement. While GAP-TV is a faster algo-
rithm, it cannot reconstruct high-quality images that can be
fitted for real applications. Therefore, [31] incorporated a
deep denoiser network such as FFDNet [34] into PnP algo-
rithm [3]. Because FFDNet can be performed on GPU, it
runs very fast compared with DeSCI. However, [31] mainly
focused on video SCI reconstruction, and as we shall show
later, its reconstruction performance on hyperspectral im-
ages are not satisfactory.

Basically, applying DeSCI for hyperspectral image re-
construction requires to perform GAP-TV to get its initial
value. Numerical experiments revealed that this initial value
is crucial for the performance of DeSCI. If the initializa-
tion is slightly worse, the performance of DeSCI could be
largely poor. As such, it is highly demanding to develop
newly effective method to address the aforementioned is-
sues.

We regard this initialization as a primitive method us-
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Figure 1. Sensing process of CASSI.

ing different priors. Considering that different intrinsic pri-
ors could promote each other, we propose a new method
by combining the deep image denoising and TV priors to
enhance hyperspectral image reconstruction. Although us-
ing a denoising network such as FFDNet or TV regular-
ization alone can not obtain satisfactory results, the priors
combined by our method can take advantage of denoising
network and TV at the same time and make the two priors
promote each other, and thereby obtain more much better
reconstruction results.

Our paper makes the following contributions:

1. We propose a general framework that can combine
deep denoising and total variation priors for SCI re-
construction of hyperspectral images. In the recon-
struction process, these two priors can promote each
other to boost the quality of reconstructed images.

2. We conduct extensive experiments on both simulated
and real datasets. The numerical results have verified
the efficiency and effectiveness of our algorithm.

3. We prove the convergence of our algorithm for SCI
reconstruction without using diminishing step sizes.
What’s more, we are the first ones that prove the con-
vergence of accelerated PnP-GAP for SCI, which is
used in our simulated experiments.

The rest of this paper is organized as follows. We intro-
duce the SCI model and the corresponding reconstruction
algorithms in Section 2. Our proposed method and the con-
vergence analysis of the resulting algorithm are developed
in Section 3. Extensive experiments are presented in Sec-
tion 4.

Related work Different priors need to be employed if we
want to reconstruct images from SCI system. A variety of
algorithms have been proposed for SCI reconstruction, such
as sparsity-based algorithm [29, 33], GMM [26, 30], GAP-
TV [28] and DeSCI [14]. Among them, DeSCI has led to
state-of-the-art results. In addition to explicit modeling of
the priors of SCI problem, implicit priors are also employed

for reconstruction. [31] integrates various denoisers such
as FFDNet [34] into PnP algorithm for video SCI recon-
struction and obtain excellent reconsctruction results. Most
recently, some deep learning methods also achieves good
results for SCI problem [11, 12, 17, 18, 21, 16]. Differ-
ent from these methods, we combine deep denoising and
total variation priors into PnP framework to boost SCI re-
construction of hyperspectral images.

[31] proves the convergence of PnP-GAP for SCI re-
construction using diminishing step sizes. Recently, [20]
proves the convergence of PnP-ADMM without using di-
minishing step sizes. Inspired by these two works, we prove
the fixed point convergence of PnP-GAP and accelerated
PnP-GAP without using diminishing step sizes.

2. Review of Snapshot Compressive-spectral
Imaging

2.1. SCI model

CASSI is a representative SCI system for capturing hy-
perspectral image. Figure 1 shows the sensing process of
CASSI. The fixed mask spatially encodes the spectral scene.
The encoded scene is spectrally dispersed by the prism. Fi-
nally, a grayscale camera detects the spatial spectrum en-
coding scene. Therefore, the snapshot on the camera could
encode dozens of spectral bands of the scene.

So we consider that a B sensing masks C ∈ Rnx×ny×B

compresses and modulates a B-bands spectral image X ∈
Rnx×ny×B into the measurements Y ∈ Rnx×ny . This pro-
cess can be mathematically expressed as

Y =

B∑
b=1

Cb �Xb + Z, (1)

where Cb = C(:, :, b) and Xb = X(:, :, b) ∈ Rnx×ny rep-
resent the b-th sensing mask and the image of the corre-
sponding hyperspectral band, respectively; Z ∈ Rnx×ny

denotes the noise term; � denotes the Hadamard (element-
wise) product.



We can rewrite Eq. (1) in matrix-vector product form

asy = Hx + z, (2)

where y = Vec(Y) ∈ Rnxny and z = Vec(Z) ∈ Rnxny .
The hyperspectral image vector x ∈ RnxnyB is expressed
as

x = Vec(X) = [Vec(X1)T , ...,Vec(XB)T ]T . (3)

Unlike traditional compressive sensing [5], the sensing ma-
trix H ∈ Rnxny×nxnyB in hyperspectral image SCI is not a
dense matrix. The special structure of H can be denoted as

H = [D1, ...,DB ]. (4)

where Db = diag(Vec(Cb)) ∈ Rn×n with n = nxny
, for b = 1, . . . B. Because x ∈ RnxnyB and H ∈
Rnxny×nxnyB , the sampling rate of SCI is equal to 1/B.
[9, 10] have theoretically proved that the recovery of x from
y is possible when B > 1.

2.2. Plug-and-Play Algorithms for SCI reconstruc-
tion

The mathematical model of SCI can be expressed as the
following inverse problem:

x̂ = arg min
x

1

2
‖y −Hx‖22 + λg(x), (5)

where g(x) is the regularization, λ is the tuning parame-
ter of regularization. We shall introduce two algorithms for
image reconstruction, i.e., PnP-GAP and PnP-ADMM [31].
They are equivalent in the noiseless conditions[14]. In this
section, we simply give the concrete step of these algo-
rithms. If one want to know how to derive these steps,
please refer to [14].
PnP-ADMM for SCI PnP-ADMM has the following form:

x(k+1) = (HTH + γI)−1[HTy + γ(v(k) + u(k))], (6)

v(k+1) = Dσ(x(k+1) − u(k)) (7)

u(k+1) = u(k) + (v(k+1) − x(k+1)), (8)

where the superscript (k) denotes the iteration number.
PnP-GAP for SCI PnP-GAP has the following form:

x(k+1) =v(k) + HT (HHT )−1(y −Hv(k)), (9)

v(k+1) = Dσ(x(k+1)). (10)

PnP-GAP first projects data on linear manifold y = Hx,
then denoises the projected data. In the noiseless condition,
accelerated PnP-GAP is proposed as follows:

y(k+1) =y(k) + y −Hv(k+1),

x̃(k+2) =v(k+1) + H(HHT )−1
(
y(k+1) −Hv(k+1)

)
,

v(k+2) =Dσ(x̃(k+2)).

And accelerated PnP-GAP performs much better than PnP-
GAP in the noiseless condition. The relationship be-
tween PnP-GAP and accelerated PnP-GAP is discussed in
[14]. [31] further introduced the relationship between PnP-
ADMM and PnP-GAP.

3. Combining Deep Denoising and Total Varia-
tion Priors

As mentioned before, DeSCI for hyperspectral image re-
construction employs the GAP-TV result as its initial value,
which is critical to its performance. However, this way of
combining different priors is relatively primitive. We will
introduce our way of utilizing different priors in this section.
We shall first introduce the basic idea behind our method.
Assume that there exists a best prior in each step of SCI re-
construction algorithm. If the optimization algorithms with
different priors have similar reconstruction processes1, their
best priors for each iteration should be similar in the recon-
struction processes. Assume that there have two priors we
want to combine, our method chooses the prior closest to
these two priors, then such a prior is likely to be close to
the best prior. Intuitively, the closeness of different priors to
each other gives them a chance to possess the advantages of
each other. Motivated by this, we propose a general frame-
work based on PnP algorithm to combine two different pri-
ors namely FFDNet and TV. The basic idea of this method
is shown in Figure 2.

FFDNet & TV

Ours

Best

Figure 2. Our method would like to combine the two posteriors
p(v|x) and q(v|x) corresponding to FFDNet (gray line) and TV
(gray dash-dot line). These posteriors are determined by the dis-
tribution of hyperparameter p(σ|x) and q(t|x). FFDNet and TV
with random distributions p(σ|x) and q(t|x) are away from the
best posterior (red line). Our method (blue line) finds the closest
posterior between FFDNet and TV posterior which is closer to the
best posterior.

1The reconstructed images are similar in each iteration.



In the following Section 3.1, we shall treat the denoising
step in the PnP algorithm as MAP estimation, derive the
posterior2 for denoiser, and put forward the optimization
objective of our method.

3.1. Denoiser into Posterior

The denoising step v(k+1) = Dσ(x(k+1)) is equivalent
to solve the following problem:

v(k+1) = arg min
v

λ

γ
g(v) +

1

2
‖x(k+1) − v‖22, (11)

where g(v) is the regularization term. The proximal oper-
ator of g(v) can be employed as FFDNet and TV denoiser.
From the probability perspective, Eq. (11) can be regarded
as maximum a posterior (MAP) estimation

v(k+1) = arg max
v

p(v|x(k+1), σ) (12)

= Dσ(x(k+1)). (13)

Now we assume there exists a distribution about the de-
noiser hyperparameter σ and denote it as p(σ|x(k+1)). With
the distribution of hyperparameter, we integrate σ to elimi-
nate the hyperparameter as

p(v|x(k+1)) =

∫
p(v|x(k+1), σ)p(σ|x(k+1))dσ. (14)

It is easy to see that Eq. (14) is the posterior we get from the
denoiser Dσ .

Since our method is proposed to combine two denoisers,
we denote another denoiser as Dt. Doing the same to Dt as
above, we have

q(v|x(k+1)) =

∫
q(v|x(k+1), t)q(t|x(k+1))dt. (15)

Then our goal is to minimize the distance between
p(v|x(k+1)) and q(v|x(k+1)), that is,

min
p(σ|x(k+1)),q(t|x(k+1))

dist
(
p(v|x(k+1)), q(v|x(k+1))

)
,

(16)
where dist(·, ·) is the distance function. To minimize such
distance, we list two challenges and their corresponding so-
lutions:

• p(v|x(k+1), σ) and q(v|x(k+1), t) are unknown distri-
butions, so we have to model them;

• p(v|x(k+1)) and q(v|x(k+1)) are difficult to calculate
and we will discretize the integral in Eq. (14) and
Eq. (15).

Next we will resolve these challenges and make prob-
lem (16) solvable.

2We do some clarification on words posterior and prior here. Pos-
terior has a one-to-one correspondence to denoiser. And denoiser is an
implicit prior in our method. Therefore, posterior and prior is the same
thing to some extend here.

3.2. Minimizing Distance between Posteriors

We will resolve the two challenges mentioned above to
minimize the distance between posteriors in this section.
The denoisers corresponding to the two posteriors p(v|x)
and q(v|x)3 are FFDNet and TV. First we will model the
distribution p(v|x, σ) and q(v|x, t).

It is reasonable to model the posterior p(v|x, σ) of FFD-
Net as Gaussian distribution, since the training data of FFD-
Net is a pair of clean and noisy image and the noise distri-
bution is Gaussian. We model the posterior corresponding
to FFDNet as

p(v|x, σ) = N(FFDσ(x), σI), (17)

where I is the identity matrix, FFDσ(x) is FFDNet which
takes x as its input. In Eq. (17), FFDσ(x) is the mean,
σI is the covariance matrix of the Gaussian distribution.
FFDσ(x) is in Rnx×ny×B if we aggregate the denoising re-
sults of all spectral bands.

We also use Gaussian distribution to model the posterior
for TV denoiser for convenient. And we have

q(v|x, t) = N(TVt(x),Σt), (18)

where TVt(x) ∈ Rnx×ny×B is the mean, Σt is the covari-
ance matrix. The mean of q(v|x, t) is the TV denoising
result of x. For simplicity, we assume Σt is a constant ma-
trix. As you will see in the latter part of this section, the
actual value of Σt doesn’t matter in our algorithm, so we
don’t spend more effort on modeling the specific variance
of q(v|x, t).

Next we are going to resolve the second challenge. In
essence, the difficulty of calculating p(v|x) and q(v|x)
comes from the continuity of σ and t. Therefore, a very
straightforward method is to discretize σ and t. To dis-
cretize σ, we have σ ∈ A where A is a set with finite ele-
ments and p(σ|x) is a discrete distribution. Doing the same
to t, we have t ∈ B where B is also a set with finite ele-
ments. Now we have two discrete distributions p(σ|x) and
q(t|x). Then Eq. (14) and Eq. (15) can be rewritten as

p(v|x) =
∑
σ∈A

p(v|x, σ)p(σ|x),

q(v|x) =
∑
t∈B

p(v|x, t)p(t|x).

Now we need to specify the distance function dist(·, ·) in
problem (16). We have tried various metrics as the dis-
tance in experiments, such as KL divergence, L2 distance,
and MMD[7]. But in this paper, we choose to use the L2

distance between the first moments of p(v|x) and q(v|x)
because of computational efficiency and good experimental

3We omit the superscript (k + 1) for simplicity.



results. In other words, we want the mean of p(v|x) and
q(v|x) to be close. Therefore, we come to the following
optimization problem

min
p(σ|x),q(t|x)

‖Ep(v|x)[v]− Eq(v|x)[v]‖22

We rearrange the above optimization problem and denote
wffdσ = p(σ|x), σ ∈ A and wtvt = q(t|x), t ∈ B to get the
following optimization problem

min
wffd,wt

‖
∑
σ∈A

wffdσ FFDσ(x)−
∑
t∈B

wtvt TVt(x)‖22 (19)

subject to
∑
σ∈A

wffdσ = 1,
∑
t∈B

wtvt = 1,

wffdσ ≥ 0, wtvt ≥ 0, σ ∈ A, t ∈ B.

where wffd = {wffdσ : σ ∈ A} and wtv = {wtvt : t ∈ B}.
The optimization problem (19) can be rewritten as

min
W

WTPW (20)

subject to
|A|+|B|∑
i=|A|+1

Wi = 1

|A|∑
i=1

Wi = 1,W ≥ 0.

where W = [wffdσ1
, · · · , wffdσ|A|

, wtvt1 , · · · , w
tv
t|B|

]T . We
further let Xf = [FFDσ1(x), · · · ,FFDσ|A|(x)], Xt =
[TVt1(x), · · · ,TVt|B|(x)], then the semi-positive definite
matrix P is denoted as

P =

[
XT
f Xf −XT

f Xt

−XT
t Xf XT

t Xt

]
(21)

The optimization problem (20) is quadratic program-
ming. Since |A|+ |B| is relatively small in our experiment,
the problem (20) can be quickly solved.

By solving problem (20), we have two similar posteriors
that may have the advantages of each other. Then we sim-
ply combine these posteriors on average and get a weighted
denoiser from the mean of the combined posterior4. And
this weighted denoiser is employed in plug-and-play algo-
rithms. We combine two posteriors p(v|x) and q(v|x) on
average for fairness because we can not tell which one is
better than the other without extra information.

4In fact, we should perform maximum a posterior estimation for the
combined posterior. However, the combined posterior is Gaussian Mix-
ture distribution and MAP for Gaussian mixture distribution is non-convex
problem which is hard to optimize. We find that the mean of Gaussian mix-
ture distribution is equivalent to weighted denoisers which is reasonable in
common sense and has good experimental results.

3.3. Algorithm

We can apply our method to any plug-and-play algo-
rithm. We take PnP-GAP as an example in this section. Our
algorithm has four steps:

1. Euclidean projection. This procedure is the same as
Eq.(9);

2. Obtain denoising image based on the hyperparameters
in the sets A and B. Denote them as {vσ : σ ∈ A}
and {vt : t ∈ B};

3. Solve problem (20). Get the best weighting coefficient
ŵffd and ŵtv;

4. Obtain the denoising result

v(k+1) =
1

2
(
∑
σ∈A

ŵffdσ vσ +
∑
t∈B

ŵtvt vt). (22)

Compared with the classic PnP-GAP, our algorithm needs to
perform |A|+ |B| steps for denoising and solve a quadratic
programming problem. The pseudo-code of our method is
illustrated in Algorithm 1.

Algorithm 1 our proposed Plug-and-Play GAP
Require: H, y.

1: Initial v(0), A, B
2: while Not Converge do
3: Update x by Eq. (9).
4: Obtain denoising image set {vσ : σ ∈ A} by

v
(k+1)
σ = FFDσ(x(k+1)).

5: Obtain denoising image set {vt : σ ∈ B} by
v
(k+1)
t = TVt(x(k+1)).

6: Solve optimization problem (20)
7: Update v by Eq. (22)
8: end while

3.4. Fixed-point Convergence

Motivated by [20] and [31], we can prove our proposed
PnP-GAP converges to a fixed point. Different from [31],
we prove the convergence without using diminishing step
sizes. What’s more, we also prove the convergence of ac-
celerated PnP-GAP which is employed in our simulated
experiments. First, we make Assumption 1 about the de-
noiser. Because our proposed algorithm is equivalent to
employ weighted denoiser in plug-and-play algorithm, we
prove that the weighted denoiser also meets Assumption 1
in Lemma 1. Then we convert proposed PnP-GAP and ac-
celerated PnP-GAP into two operators respectively. Theo-
rem 1 and Theorem 2 state that their operators are contrac-
tions in some conditions.

We first introduce the assumption of the denoisers used
in our paper.



Assumption 1 (Assumption (A) in [20]). We assume that
all denoisers Dσ : Rd 7→ Rd used in our method satisfy

‖(Dσ − I)(x)− (Dσ − I)(y)‖2 ≤ ε‖x− y‖2 (23)

for all x, y ∈ Rd for some ε > 0.

We can choose small σ such that Dσ is close to iden-
tity mapping. Therefore, Assumption 1 is reasonable. If
all denoisers meet Assumption 1, it can be proved that the
weighted denoiser also meets Assumption 1.

Lemma 1. S = {Dσ : σ ∈ S} is a set of denoiser satisfy-
ing Assumption 1 and |S| <∞. Then the weighted denoiser
of S:

Dw(x) =
∑
σ∈S

wσDσ(x)

also satisfies Assumption 1, where
∑
σ∈S wσ = 1, wσ ≥

0,∀σ ∈ S.

See the proof in the supplementary material.
In order to prove the convergence, we need the following

assumption.

Assumption 2 (Assumption 1 in [31]). Assume that
{Rj}nj=1 > 0 which means for each spatial location j, the
B-frame modulation masks at this location have at least one
non-zero entries. We further assume Rmax > Rmin

In Assumption 2, R = HHT = diag(R1, · · · , Rn) and
we define

Rmax := max(R1, · · · , Rn) = λmax(HHT )

Rmin := min(R1, · · · , Rn) = λmin(HHT )

where λmax(HHT ) and λmin(HHT ) represent maximum
and minimum eigenvalues of HHT respectively.

3.4.1 Convergence of PnP-GAP

We denote P as the Euclidean projection and Dσ as de-
noiser. Next theorem states the convergence of PnP-GAP.

Theorem 1. Assume H satisfies Assumption 2. Then the
following operator

G = Dσ ◦ P

is a contraction if Dσ satisfies Assumption 1 and

0 < ε <

√
Rmax

Rmax −Rmin
− 1.

Remark 1. In Theorem 1,G first projects data and then de-
noises the projected data which is equivalent to PnP-GAP.
G being a contraction means PnP-GAP converges to a fixed
point.

See the proof of Theorem 1 in the supplementary mate-
rial.

3.4.2 Convergence of accelerated PnP-GAP

To prove the convergence of accelerated PnP-GAP, we need
to prove the following operator is a contraction.

T =
1

2
I +

1

2
(2P − I)(2Dσ − I) (24)

where P is the Euclidean projection onto the linear man-
ifold y = Hx and Dσ is a denoiser. z(k+1) = T (z(k))
is the PnP-DRS(plug-and-play Douglas–Rachford splitting)
whose convergence is equivalent to the convergence of
PnP-ADMM5. And the convergence of PnP-ADMM is
equivalent to the convergence of accelerated PnP-GAP
(these equivalences are presented in supplementary mate-
rial). Now, the following theorem says that T is a contrac-
tion.

Theorem 2. Assume H satisfies Assumption 2. Let P be a
Euclidean projection on linear manifold y = Hx. Then

T =
1

2
I +

1

2
(2P − I)(2Dσ − I)

is a contraction if Dσ satisfies Assumption 1 and

0 < ε < 1−
√

1− Rmin

Rmax
.

Remark 2. From the supplementary material, we know that
there are the following relationships between different algo-
rithms:

Convergence of PnP-DRS

⇒ Convergence of PnP-ADMM

⇒ Convergence of accelerated PnP-GAP.

Theorem 2 has proved the convergence of PnP-DRS, which
means accelerated PnP-GAP converges to a fixed point.

See the proof of Theorem 2 in the supplementary mate-
rial.

4. Experiments
In this section, we compare our proposed method with

several methods such as GAP-TV and DeSCI. Because
our algorithm combines TV and FFDNet, we also com-
pare PnP-FFDNet-TV (denoted as FFDNet-TV in tables
and FFD TV in figures) which first performs 50 iteration
FFDNet and then 50 iteration TV6. PnP-FFDNet-TV is a
primitive way of combining different priors. The perfor-
mance of different algorithms is evaluated by two indi-
cators: peak signal-to-noise ratio (PSNR) and structural

5PnP-ADMM here is different as it updates x(k+1) with Eq. (9) in-
stead of Eq. (6).

6The results of first performing TV denoising are worse.



Table 1. The results of PSNR in dB (left entry in each cell) and SSIM (right entry in each cell) by different algorithms on Bird and Toy.
Data 2DTV 3DTV FFDNet DeSCI FFDNet-TV Ours (2DTV) Ours (3DTV)
Toy 25.26, 0.8630 28.46, 0.9102 24.28, 0.8298 26.62, 0.9116 25.49, 0.8748 29.35, 0.9249 28.86, 0.9225
Bird 37.58, 0.9361 25.84, 0.7919 36.60, 0.9171 38.25, 0.9520 38.21, 0.9383 39.73, 0.9559 31.30, 0.9069

* In FFDNet, Bird performs 100 iterations, Toy performs 100 iterations. Our methods perform 100 iterations.

Table 2. The average results of PSNR in dB (left entry in each cell) and SSIM (right entry in each cell) by different algorithms on CAVE.
2DTV 3DTV FFDNet DeSCI FFDNet-TV Ours (2DTV) Ours (3DTV)

Average 30.70, 0.8812 30.15, 0.8906 28.65, 0.8339 31.71, 0.9153 31.26, 0.8867 34.46, 0.9318 34.79, 0.9347

Truth

Ours

DeSCI

3DTV

FFD_TV

FFDNet

TV

Figure 3. Simulated data: Bird. The three frames are at wave-
lengths 591.02nm, 630.13nm, and 674.83nm. Our results here are
reconstructed by 2DTV+FFDNet.

similarity (SSIM)7. The supplementary material introduces
the comparison between deep learning[17] and learned
prior[4] methods. Our task used the deep network FFD-
Net, but it was trained on other tasks, and we directly
used the network model and parameters from https:
//github.com/cszn/KAIR. Also, DeSCI requires
GAP-TV as its initialization while ours not. We reconstruct
Bird and Toy image based on the code released by [14].

7We use python library scikit-image to calculate these metrics.
We first clip the image into the interval [0, 1]. Then images are converted
into unsigned integers in 0-255. Finally, performance is evaluated based
on the converted images.

While in the CAVE [27] experiment, we set the iteration
of GAP-TV to 250 so that the algorithm can fully converge.
Handcrafted GAP-TV iteration numbers for each data in the
CAVE can obtain better results, but this process could be
time-consuming. The iteration number of DeSCI is 60. We
consider that the comparison between various methods is
fair because we don’t intentionally set the iteration number
of any algorithm. In simulated data, our proposed method
outperforms the previous sate-of-the-art non-deep learning
method DeSCI. The performance of our method is compa-
rable to DeSCI on real data, and more details can be recov-
ered while saving a lot of time. Besides, we use PyTorch
to implement TV denoiser so that the use of GPU can in-
crease the speed of our algorithm.

4.1. Simulated Data

The shifting random binary mask [15] is used in our sim-
ulation. Bird and Toy data are provided by [14]. We gen-
erate a random mask for each data in CAVE.
Bird and Toy Bird[6] and Toy data are selected in
the hyperspectral image reconstruction experiment of [14].
This paper also chooses these two data for the experiment.
Bird consists of 24 spectral bands, and the size of each
spectral band is 1021 × 703. Toy data comes from [27],
which consists of 31 bands and the size of each band is
512 × 512. We use exactly the same data as [14] for the
experiment. The results of Bird and Toy are tabulated in
Table 1. In the table, the results of our method are presented
with gray background. And ‘Ours (2DTV)’ in the table
means that the experiment combines FFDNet and 2DTV de-
noiser, and ‘Ours (3DTV)’ means that FFDNet and 3DTV
denoiser are combined. As we can see in Figure 3 and Fig-
ure 48, our method can recover images with more details
than other methods.
CAVE To verify the effectiveness of our method, we con-
duct experiments on the entire CAVE dataset. CAVE in-
cludes 32 hyperspectral images, and each image contains 31
spectral bands. The image size of each band is 512 × 512.
The average results of different methods applied to CAVE
are in Table 2 (the results of our method are presented with

8In all figures of this paper, the results generated by our method com-
bine FFDNet and TV priors.

https://github.com/cszn/KAIR
https://github.com/cszn/KAIR
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Figure 4. Simulated data: Toy. The four frames are at wavelengths
580nm, 620nm, 660nm, and 700nm. Our results here are recon-
structed by 2DTV+FFDNet.

gray background). Our average result is higher than DeSCI
about 3dB. The results of all images in CAVE is tabulated in
the supplementary material. Our method can preserve more
details in the reconstructed image while there are more ar-
tifacts in the reconstructed image of DeSCI (some results
shown in the supplementary material).

The intensity of some simulated data is shown in the sup-
plementary material. We randomly pick the green box area
in these images to calculate the intensity.

4.2. Real Data

We obtained real data Bird from [14]9. Compared with
DeSCI, the image reconstructed by our method has more
details, and the result of DeSCI is a bit blurry (shown in the
supplementary material). In addition, our method can save

9This paper also provides another real data object. The result of
object is reported in the supplementary material.

a lot of time. In the experiment, our method takes about
20 minutes to reconstruct these images, while DeSCI takes
about 6 hours and 20 minutes. Figure 5 shows the inten-
sity of Bird. We select the same areas as [14]. The image
reconstructed by our method has a larger correlation coeffi-
cient than others.

RGB Image Snapshot Measurement

Figure 5. Real data: Spectral curves of real Bird hyperspectral
image. The areas selected are the same as [14].

5. Conclusion

In this work, we propose a newly effective method to
combine the FFDNet and TV priors to improve the existing
PnP SCI algorithm for hyperspectral image reconstruction.
Extensive experiments on both simulated and real datasets
demonstrate that our method can take advantages of both
two priors and make them mutually promote. That is to
say, our method obtains better results than using FFDNet
or TV alone. Also, our method is a general framework for
any PnP algorithm, and thus could be extended to deal with
other imaging applications.

Acknowledgments. This research was supported
in part by National Key R&D Program of China
(2018YFB1402600, 2020YFA0713900), the China NSFC
projects (11971374, 11690011, 61721002, U1811461) and
the Key Research Program of Hunan Province of China
(2017GK2273).

References
[1] Emmanuel J Candès, Justin Romberg, and Terence Tao. Ro-

bust uncertainty principles: Exact signal reconstruction from



highly incomplete frequency information. IEEE Transac-
tions on information theory, 52(2):489–509, 2006. 1

[2] Xun Cao, Tao Yue, Xing Lin, Stephen Lin, Xin Yuan, Qiong-
hai Dai, Lawrence Carin, and David J Brady. Computational
snapshot multispectral cameras: Toward dynamic capture
of the spectral world. IEEE Signal Processing Magazine,
33(5):95–108, 2016. 1

[3] Stanley H Chan, Xiran Wang, and Omar A Elgendy. Plug-
and-play admm for image restoration: Fixed-point conver-
gence and applications. IEEE Transactions on Computa-
tional Imaging, 3(1):84–98, 2016. 1

[4] Inchang Choi, Daniel S. Jeon, Giljoo Nam, Diego Gutierrez,
and Min H. Kim. High-quality hyperspectral reconstruction
using a spectral prior. ACM Transactions on Graphics (Proc.
SIGGRAPH Asia 2017), 36(6):218:1–13, 2017. 7

[5] David L Donoho. Compressed sensing. IEEE Transactions
on information theory, 52(4):1289–1306, 2006. 1, 3

[6] Michael E Gehm, Renu John, David J Brady, Rebecca M
Willett, and Timothy J Schulz. Single-shot compressive
spectral imaging with a dual-disperser architecture. Optics
express, 15(21):14013–14027, 2007. 1, 7

[7] Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bern-
hard Schölkopf, and Alexander Smola. A kernel two-sample
test. The Journal of Machine Learning Research, 13(1):723–
773, 2012. 4

[8] Yasunobu Hitomi, Jinwei Gu, Mohit Gupta, Tomoo Mit-
sunaga, and Shree K Nayar. Video from a single coded ex-
posure photograph using a learned over-complete dictionary.
In 2011 International Conference on Computer Vision, pages
287–294. IEEE, 2011. 1

[9] Shirin Jalali and Xin Yuan. Compressive imaging via one-
shot measurements. In 2018 IEEE International Symposium
on Information Theory (ISIT), pages 416–420. IEEE, 2018.
3

[10] Shirin Jalali and Xin Yuan. Snapshot compressed sensing:
performance bounds and algorithms. IEEE Transactions on
Information Theory, 65(12):8005–8024, 2019. 3

[11] Kyong Hwan Jin, Michael T McCann, Emmanuel Froustey,
and Michael Unser. Deep convolutional neural network for
inverse problems in imaging. IEEE Transactions on Image
Processing, 26(9):4509–4522, 2017. 2

[12] Kuldeep Kulkarni, Suhas Lohit, Pavan Turaga, Ronan Ker-
viche, and Amit Ashok. Reconnet: Non-iterative reconstruc-
tion of images from compressively sensed measurements. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 449–458, 2016. 2

[13] Xuejun Liao, Hui Li, and Lawrence Carin. Generalized alter-
nating projection for weighted-2,1 minimization with appli-
cations to model-based compressive sensing. SIAM Journal
on Imaging Sciences, 7(2):797–823, 2014. 1

[14] Yang Liu, Xin Yuan, Jinli Suo, David J Brady, and Qionghai
Dai. Rank minimization for snapshot compressive imaging.
IEEE transactions on pattern analysis and machine intelli-
gence, 41(12):2990–3006, 2018. 1, 2, 3, 7, 8

[15] Patrick Llull, Xuejun Liao, Xin Yuan, Jianbo Yang, David
Kittle, Lawrence Carin, Guillermo Sapiro, and David J
Brady. Coded aperture compressive temporal imaging. Op-
tics express, 21(9):10526–10545, 2013. 1, 7

[16] Jiawei Ma, Xiao-Yang Liu, Zheng Shou, and Xin Yuan. Deep
tensor admm-net for snapshot compressive imaging. In Pro-
ceedings of the IEEE International Conference on Computer
Vision, pages 10223–10232, 2019. 2

[17] Xin Miao, Xin Yuan, Yunchen Pu, and Vassilis Athitsos.
lambda-net: Reconstruct hyperspectral images from a snap-
shot measurement. In 2019 IEEE/CVF International Confer-
ence on Computer Vision (ICCV), pages 4058–4068. IEEE,
2019. 2, 7

[18] Ali Mousavi and Richard G Baraniuk. Learning to invert:
Signal recovery via deep convolutional networks. In 2017
IEEE international conference on acoustics, speech and sig-
nal processing (ICASSP), pages 2272–2276. IEEE, 2017. 2

[19] Dikpal Reddy, Ashok Veeraraghavan, and Rama Chellappa.
P2c2: Programmable pixel compressive camera for high
speed imaging. In CVPR 2011, pages 329–336. IEEE, 2011.
1

[20] Ernest K Ryu, Jialin Liu, Sicheng Wang, Xiaohan Chen,
Zhangyang Wang, and Wotao Yin. Plug-and-play methods
provably converge with properly trained denoisers. arXiv
preprint arXiv:1905.05406, 2019. 2, 5, 6

[21] Ayan Sinha, Justin Lee, Shuai Li, and George Barbastathis.
Lensless computational imaging through deep learning. Op-
tica, 4(9):1117–1125, 2017. 2

[22] Yangyang Sun, Xin Yuan, and Shuo Pang. High-speed com-
pressive range imaging based on active illumination. Optics
express, 24(20):22836–22846, 2016. 1

[23] Yangyang Sun, Xin Yuan, and Shuo Pang. Compressive
high-speed stereo imaging. Optics express, 25(15):18182–
18190, 2017. 1

[24] Ashwin Wagadarikar, Renu John, Rebecca Willett, and
David Brady. Single disperser design for coded aperture
snapshot spectral imaging. Applied optics, 47(10):B44–B51,
2008. 1

[25] Ashwin A Wagadarikar, Nikos P Pitsianis, Xiaobai Sun,
and David J Brady. Video rate spectral imaging using a
coded aperture snapshot spectral imager. Optics express,
17(8):6368–6388, 2009. 1

[26] Jianbo Yang, Xuejun Liao, Xin Yuan, Patrick Llull, David J
Brady, Guillermo Sapiro, and Lawrence Carin. Compressive
sensing by learning a gaussian mixture model from measure-
ments. IEEE Transactions on Image Processing, 24(1):106–
119, 2014. 2

[27] F. Yasuma, T. Mitsunaga, D. Iso, and S.K. Nayar. General-
ized Assorted Pixel Camera: Post-Capture Control of Reso-
lution, Dynamic Range and Spectrum. Technical report, Nov
2008. 7

[28] Xin Yuan. Generalized alternating projection based total
variation minimization for compressive sensing. In 2016
IEEE International Conference on Image Processing (ICIP),
pages 2539–2543. IEEE, 2016. 1, 2

[29] Xin Yuan and Raziel Haimi-Cohen. Image compression
based on compressive sensing: End-to-end comparison with
jpeg. IEEE Transactions on Multimedia, 2020. 2

[30] Xin Yuan, Hong Jiang, Gang Huang, and Paul A Wilford.
Compressive sensing via low-rank gaussian mixture models.
arXiv preprint arXiv:1508.06901, 2015. 1, 2



[31] Xin Yuan, Yang Liu, Jinli Suo, and Qionghai Dai. Plug-and-
play algorithms for large-scale snapshot compressive imag-
ing. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 1447–1457,
2020. 1, 2, 3, 5, 6

[32] Xin Yuan, Patrick Llull, Xuejun Liao, Jianbo Yang, David J
Brady, Guillermo Sapiro, and Lawrence Carin. Low-cost
compressive sensing for color video and depth. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 3318–3325, 2014. 1

[33] Zhiyuan Zha, Xin Yuan, Bihan Wen, Jiantao Zhou, Jiachao
Zhang, and Ce Zhu. From rank estimation to rank approxi-
mation: Rank residual constraint for image restoration. IEEE
Transactions on Image Processing, 29:3254–3269, 2019. 2

[34] Kai Zhang, Wangmeng Zuo, and Lei Zhang. Ffdnet: Toward
a fast and flexible solution for cnn-based image denoising.
IEEE Transactions on Image Processing, 27(9):4608–4622,
2018. 1, 2


