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Abstract

While deep learning (DL)-based video deraining meth-
ods have achieved significant success recently, they still ex-
ist two major drawbacks. Firstly, most of them do not suf-
ficiently model the characteristics of rain layers of rainy
videos. In fact, the rain layers exhibit strong physical prop-
erties (e.g., direction, scale and thickness) in spatial dimen-
sion and natural continuities in temporal dimension, and
thus can be generally modelled by the spatial-temporal pro-
cess in statistics. Secondly, current DL-based methods seri-
ously depend on the labeled synthetic training data, whose
rain types are always deviated from those in unlabeled real
data. Such gap between synthetic and real data sets leads
to poor performance when applying them in real scenar-
ios. Against these issues, this paper proposes a new semi-
supervised video deraining method, in which a dynamic
rain generator is employed to fit the rain layer, expecting
to better depict its insightful characteristics. Specifically,
such dynamic generator consists of one emission model and
one transition model to simultaneously encode the spatially
physical structure and temporally continuous changes of
rain streaks, respectively, which both are parameterized as
deep neural networks (DNNs). Further more, different prior
formats are designed for the labeled synthetic and unla-
beled real data, so as to fully exploit the common knowl-
edge underlying them. Last but not least, we also design a
Monte Carlo EM algorithm to solve this model. Extensive
experiments are conducted to verify the superiorities of the
proposed semi-supervised deraining model.

1. Introduction
Rain is a very common bad weather that exists in many

video data. The appearance of rain not only negatively af-
fects the visual quality of video, but also seriously deteri-
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orates the performance of subsequent video processing al-
gorithms, e.g., semantic segmentation [38], object detection
[9], and autonomous driving [7]. Therefore, as an necessary
video pre-processing step, video deraining has attracted in-
creasing attentions in computer vision community.

As an ill-posed inverse problem raised by Garg and Na-
yar [15], various methods have been proposed to handle the
video deraining task. Most of the traditional methods focus
on exploiting rational prior knowledge for the background
or rain layers so as to obtain a proper separation between
them. For example, low-rankness [23, 24, 52] is widely
used to encode the temporal correlations of background
video. As for rain streaks, many physical characteristics,
such as photometric appearance [16], geometrical features
[41], chromatic consistency [36], local structure correla-
tions [8] and multi-scale convolutional sparse coding [31],
are explored in past years. Different from such determin-
istic assumptions for rain streaks, Wei et al. [52] firstly re-
gard them as random variables, and model them using mix-
ture of Gaussian (MoG) distribution. Albeit substantiated to
be effective in some ideal scenarios, these traditional meth-
ods are mainly limited by the subjective manually-designed
prior knowledges and huge computation burden.

Recently, owning to the powerful nonlinear fitting ca-
pability of DNNs, DL-based methods facilitate significant
improvements for the video deraining task. The core idea
of this methodology is to directly train a derainer parame-
terized by DNNs based on synthetic rainy/clean video pairs
in an end-to-end manner. Most of these methods leverage
different technologies, e.g., superpixel alignment [6], dual-
level flow [54] and self-learning [56], to extract the clean
background from rainy video. In addition, Liu et al. [34,35]
design a recurrent network to jointly perform both the rain
degradation classification and rain removal tasks.

Even though these DL-based methods have achieved im-
pressive deraining results on some synthetic benchmarks,
there still exists large room to further increase their perfor-
mance and generalization capability in real applications. On
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Figure 1. The comparison of typical synthetic and real rainy im-
ages in NTURain data set. (a1)-(c1): synthetic rainy images, (a2)-
(c2): real rainy images.

one hand, most of these methods make efforts on depicting
the background, but ignore to model the intrinsic character-
istics of rain layer. In fact, the rain layers in video can be
understood as a dynamic sequence both in spatial and tem-
poral spaces. Specifically, along spatial dimension, the ran-
domly scattered rain streaks in each frame are with evident
physical structures (e.g, direction, scale and thickness), and
the rain layers in different frames along temporal dimension
correspond to a continuous time series. Therefore, elabo-
rately exploiting and encoding such insightful knowledges
underlying rain layers in video data is expected to facilitate
the rain removal task.

On the other hand, it is well known that the performance
of DL-based methods heavily relies on large amount of pre-
collected training data, i.e., rainy/clean video pairs. In fact,
due to the high labor cost to obtain such video pairs in real
scenes, most of current methods have to use synthetic ones,
which are manually simulated based on photo-realistic ren-
dering technique [17] or professional photography and hu-
man supervision [49]. Fig.1 lists several typical frames of
synthetic and real rainy images in NTURain [6] data set,
which is widely used as benchmark in current video derain-
ing methods. It can be easily seen that the rain patterns in
synthetic and real rainy images are with evident differences,
and the real ones obviously contain more complex and di-
verse rain types. Because of such gap between synthetic and
real data sets, these DL-based methods deteriorate seriously
in real cases. To deal with general video deraining task, it
is thus critical to build a rational semi-supervised learning
manner to sufficiently exploit the common knowledge in la-
beled synthetic and unlabeled real data.

To address these issues, in this paper we propose a semi-
supervised video deraining method, in which a dynamic
rain generator is adopted to mimic the generation process
of rain layers in video, hopefully better characterizing its
intrinsic knowledge simultaneously from spatial and tem-
poral dimensions. Besides, the real rainy videos are taken
into consideration in our model as unlabeled data, in order

to achieve more robust deraining results. In summary, the
contributions of this work are as follows:

Firstly, we propose a new probabilistic video deraining
method, in which a dynamic rain generator, consisting of a
transition model and a emission model, is employed to fit
the rain layer in videos. Specifically, the transition model
is used to encode the continuous changes of rains among
adjacent frames, while the emission model maps the state
space to the observed rain streaks. To increase the capacities
of such generator, both the transition and emission models
are parameterized as DNNs.

Secondly, a semi-supervised learning mechanism is de-
signed by constructing different prior formats for labeled
synthetic data and unlabeled real data. Specifically, for the
labeled synthetic data, the corresponding ground truth rain-
free videos are embedded into one elaborate prior distribu-
tion as a strong constraint. As for the unlabeled real data, we
introduce the 3-D Markov Random Field (MRF) to encode
the temporal consistencies and correlations of the underly-
ing background.

Thirdly, a Monte Carlo EM algorithm is designed to
solve our model. In the expectation step, the posterior of
latent variables are intractable because of the DNNs em-
ployed in generator and derainer, thus the Langevin dy-
namic is adopted to approximate the expectation.

2. Related work

In this section, we give a short recap for the develop-
ments on the video/image deraining methods.

2.1. Video Deraining Methods

To the best of our knowledge, Garg and Nayar [15] firstly
proposed the problem of video deraining, and developed a
rain detector based on the photometric appearance of rain.
Later, they further explored the relationships between rain
effects and some camera parameters [16–18].

Inspired by these seminal works, various video derain-
ing methods have beed proposed in past years, focusing on
seeking more rational prior knowledge for the rain or back-
ground. For example, both the chromatic property [36, 62]
and shape characteristics [2, 3] of rain in time domain have
been employed to identify and remove rain layers from the
captured rainy videos, while the regular visual effects of
rain in global frequency space were also exploited by [1].
Besides, Santhaseelan and Asari [43] employed local phase
congruency to detect rain based on chromatic constraints.
Notably, Wei et al. [52] firstly regarded rain streaks as ran-
dom variables and model them by patch-based MoG dis-
tribution. In addition, matrix/tensor factorization technolo-
gies were also very popular in the field of video deraining,
mainly used to encode the correlations of background video
along time dimension, including [8, 23, 24, 27, 41].
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In recent years, DL-based methods represent a new trend
along this research line. In [31], Li et al. employed the
multi-scale convolutional sparse coding to encode the repet-
itive local patterns under different scales of rain streaks.
Chen et al. [6] proposed to decompose the scene into su-
perpixels and then align the scene content at superpixel seg-
mentation level, and finally a CNN is used to compensate
the lost details and add normal textures to the deraining re-
sults. In [35], Liu et al. designed a recurrent neural network
to jointly implement both of the rain degradation classifi-
cation and rain removal tasks. And in [34], a hybrid rain
model is proposed to model both rain streaks and occlu-
sions. Besides, Yang et al. [54] also built a two-stage recur-
rent networks that utlize dual-level regularizations toward
video deraining. Very recently, Yang et al. [56] proposed a
self-learning manner for this task by taking both temporal
correlations and consistencies into consideration.

While DL-based methods have achieved impressive per-
formance on some synthetic benchmarks, they are still very
hard to be applied in real applications due to the large gap
between their used synthetic data and the real data. There-
fore, in order to increase the generalization capacities of
deraining model in real task, it is critical to design a semi-
supervised learning framework to fully mine the informa-
tions both in the labeled synthetic data and unlabeled real
data. This paper mainly focuses on this issue.

2.2. Single Image Deraining Methods

For literature comprehensiveness, we also briefly review
the single image deraining methods. The single image
deraining method can be roughly divided into two cate-
gories, i.e., model-based methods and DL-based methods.
Most of the model-based methods formulated the derain-
ing task as a decomposition problem between the rain and
background layers, and various technologies have been em-
ployed to deal with it, such as morphological components
analysis [25], non-local means filter [26], and sparse cod-
ing [5, 37]. Besides, some prior knowledges of rain and
background are also explored in this field, mainly including
sparsity and low-rankness [4, 19, 58], narrow directions of
rain and the similarities of rain patches [64], and Gaussian
mixture model (GMM) [33].

The earliest DL-based method was proposed by Fu et
al. [12, 13], in which CNNs are adopted to remove rains
from the high frequency part of rainy images. Led by these
two works, DL-based methods began to dominate the re-
search in this field. Many effective and advanced network
architectures [14, 21, 30, 32, 40, 49] were put forward in re-
cent years. And some works attempted to jointly handle
the rain removal task with other related tasks, like rain de-
tection [55], rain density estimation [59], so as to obtain
better deraining performance. Besides, some useful pri-
ors, e.g., multi-scale [22, 57, 63], convolutional sparse cod-

ing [47] and bilevel layer prior [39], were also embedded
into the DL-based methods to sufficiently mine the poten-
tials of DNNs. Different from the above methods, Zhang
et al. [60] and Wang et al. [46] both introduced adversar-
ial learning manner to enhance the realistic of the derained
images, and Wei et al. [51] proposed a semi-supervised de-
raining model that can be better generalized to real tasks.

Naturally, single image deraining method can be directly
used in the video deraining task by taking each video as
some independent single images. However, because of
ignoring the abundant temporal informations contained in
video, it is very hard to obtain satisfid performance using
such manner. Thus it is necessary to design rational derain-
ing model dedicated for video data.

3. Semi-Supervised Video Deraining Model
Given a labeled data set D = {Yi,X i}Nli=1 and a unla-

beled data set U = {Yi}Nui=1, where Yi and X i denote the
i-th rainy and clean videos, respectively, we aim to con-
struct a semi-supervised probabilistic model based on them
and then design an EM algorithm to solve it.

3.1. Model Formulation

Let Y = {Yt}nt=1 denote any rainy video in D or U ,
where Yt ∈ Rh×w is the t-th image frame. Similar to [31,
33], we decompose the rainy video Y into three parts, i.e.,

Y = f(Y;W ) +R+ E , Eijt ∼ N (0, σ2), (1)

where f(Y;W ), R and E are the recovered rain-free back-
ground, rain layer and residual term, respectively, and Eijt
is the element of E at location (i, j, t). The residual term is
assumed as zero-mean Gaussian distribution with variance
σ2. f(·;W ), which is parameterized by DNNs, denotes a
function that maps the observed rainy video to the underly-
ing rain-free background, and is called as “derainer” in this
paper. Next, we consider how to model the derainer param-
eter W and rain layerR:
Modelling background layer: As is well known, one
general prior knowledge for video data is that the rain-
free background is with strong correlations and similarities
along spatial and temporal dimensions. Therefore, for any
rainy video Y ∈ U , we encode such knowledge through the
following MRF prior distribution for W :

p(W ) ∝ exp

(
−ρ
∑
i,j,t

vTγ

)
, (2)

where v =

[ |fi+1,j,t−fijt|
|fi,j+1,t−fijt|
|fi,j,t+1−fijt|

]
, γ =

[ γ1
γ2
γ3

]
, fijt denotes the ele-

ment of f(Y;W ) at location (i, j, t). ρ and γ are both man-
ual hyper-paramerters, and the latter represents the strength
of smoothness constraint on the spatial and temporal dimen-
sions. As for the rainy video Y ∈ D, the known rain-free
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Figure 2. The network architecture for the derainer f(·;W ). In this figure, all “Conv”s denote the 3-D convolution layer.
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(a) Transition Model (b) Emission Model

Figure 3. The network architecture of the transition model and emission model in the dynamic rain generator. In this figure, “FC”, “Conv”
and “Tanh” denote fully connected, 2-D convolution and hyperbolic tangent layers, respectively. And “Pixel-Shuffle” is the sub-pixel
layer [45] with scale factor r.

background X can be further embedded into Eq. (2) as an-
other strong prior, i.e.,

p(W ) ∝ exp

(
−‖f(Y;W )−X‖2

ε20
− ρ

∑
i,j,t

vTγ

)
, (3)

where ε0 is a very small hyper-paramerter close to zero.
As for the derainer f(·;W ), we adopt a simple network

architecture as shown in Fig. 2. Without any special de-
signs, it only contains several 3-D convolution layers and
residual blocks [20]. To accelerate the computation, the
pixel-unshuffle [61] and pixel-shuffle [45] layers are added
to the head and the tail of it, respectively.
Modelling rain layer: Intuitively, the rain layer is a dy-
namic sequence both in spatial and temporal directions, thus
we naturally employ the spatial-temporal process [11,53] in
statistics to characterize it. Let’s denoteRt as the t-th frame
of rain layerR, and then our dynamic rain generator can be
formulated as follows,

st = F (st−1, zt;α), (4)
Rt = H(st;β), (5)

where
zt ∼ N (0, I), s0 ∼ N (0, I), (6)

st represents the hidden state variable in t-th frame, and zt
the noise vector. Specifically, Eq. (4) is the transition model
with parameters α expecting to depict the changes of rains
between two adjacent frames, and Eq. (5) is the emission

model with parametersβ that maps the hidden state space to
the observed rain layer. Note that the noise vectors {zt}nt=1

are independent of each other, encoding the random factors
that affect the rains (e.g., wind, camera motion) in the tran-
sition from st−1 to st.

Further more, we extend such generator to an advanced
version for multiple rain videos. Specifically, for the i-th
rain videoRi = {Rit}nt=1, another vectormi ∼ N (0, I) is
introduced to account for the variations of rain patterns, and
thus the transition model of Eq. (4) can be reformulated as:

sit = F (sit−1, z
i
t,m

i;α), (7)

where mi is fixed for the i-th rain video. For notation con-
venience, we simply write Eqs. (7) and (5) together as fol-
lows:

Ri = G(si0, z
i,mi;θ), (8)

where zi = {zit}nt=1, θ = {α,β}. In practice, we use the
extended version of Eq. (8) to simultaneously fit the rain
layers in each mini-batch data.

To increase the capacities of such dynamic generator,
both of the transition model and emission model are param-
eterized as DNNs. Following [53], we used a two-layers
mutli-layer perceptron (MLP) in Fig. 3 (a) as the transition
model. For the emission model, we elaborately design a
CNN architecture that takes the state variable st as input
and outputs the rain image as shown in Fig. 3 (b), which is
mainly inspired by a recent work [48] that uses CNN as a
latent variable model to generate rain streaks.
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Remark: The employment of such dynamic generator to
fit the rain layers is one of the main contributions of this
work, which directly affects the deraining performance of
the entire model. Therefore, it is necessary to validate the
capabilities of such dynamic generator on simulating the
rain layers. To prove this point, we pre-collected some rain
layer videos synthesized by commercial Adobe After Ef-
fects1 software from YouTube as source videos, and trained
such dynamic generator to recover them. Empirically, we
found that such dynamic generator is able to sufficiently
mimic the given rain layer videos. Due to page limitation,
these experiments are put into the supplementary materials.

3.2. Maximum A Posteriori Estimation
Combining Eqs. (1)-(6), a full probabilistic model is ob-

tained for video deraining. Then our goal turns to maximize
the posteriors w.r.t the model parameters W and θ, i.e.,

max
W,θ

log p(W,θ|Y) ∝ log p(Y|W,θ) + log p(W )

, L(Y;W,θ), (9)

where p(Y|W,θ) is the likelihood of observed rainy video
Y . According to Eqs. (1) and (8), it can be written as:

p(Y|W,θ) =
∫
p(Y|W,θ,z)p(z) dz

=

∫
N
(
f(Y;W ) +G(s0,z;θ), σ

2I
)
p(z) dz.

Finally, we directly optimize the problem of Eq. (9) on
the whole labeled and unlabeled data sets, i.e.,

max
W,θ

∑
Yi∈D

L(Yi;W,θ) +
∑
Yj∈U

L(Yj ;W,θ). (10)

The insight behind Eq. (10) is to learn a general mapping
from rainy videos to clean ones, based on large amount of
data samples inD and U , which is expected to obtain a more
efficient and robust derainer than that in traditional infer-
ence paradigm implementing on single video.

Most notably, if only considering labeled data set, our
method naturally degenerates into a supervised deraining
model. However, the addition of unlabeled real data in-
creases the generalization capacity in real deraining tasks
as shown in the ablation studies in Sec. 4.2.2.

3.3. Inference and Learning Algorithm

For notation brevity, we only consider one data sample Y
in this part. Inspired by the technology of alternative back-
propagation through time [53], a Monte Carlo EM [10] al-
gorithm is designed to maximize L(Y;W,θ), in which one
expectation step samples latent variable z from its posterior
p(z|Y), and the next maximization step updates the model
parameters W and θ based on current sampled z.

1https://www.adobe.com/products/aftereffects.html

Algorithm 1 Inference and learning procedure for S2VD

Input: training data D = {Ybj ,X bj}Blj=1 and U =

{Ybj}Bl+Buj=Bl+1, where Ybj denotes the j-th mini-batch
data, number of Langevin steps l.

Output: the derainer parameters W .
1: Initialize W and θbj , zbj , j = 1, 2, · · · , Bl +Bu.
2: while not converged do
3: for j = 1, 2, · · · , Bl +Bu do
4: Sample the mini-batch data {Ybj ,X bj} or Ybj .
5: E-Step: For each data exampleYi in current mini-

batch Ybj , run l steps of Langevin dynamics to
sample zi following Eq. (12).

6: M-Step: Update W and θbj by Eq. (15).
7: end for
8: end while

E-Step: Let (W old,θold) and pold(z|Y) denote current
model parameters and the posterior under them, we can
sample z from pold(z|Y) using the Langevin dynamic [29]:

z(τ+1) = z(τ) +
δ2

2

[
∂

∂z
log pold(z|Y)

] ∣∣∣∣
z=z(τ)

+ δξ(τ)

= z(τ) − δ2

2

[
∂

∂z
g(z)

] ∣∣∣∣
z=z(τ)

+ δξ(τ) (11)

where

g(z) =
1

2σ2

∥∥∥Y − f(Y;W old)−G(z, s0;θold)
∥∥∥
2
+

1

2
‖z‖2,

(12)
τ indexs the time step for Langevin dynamics, δ denotes
the step size. And ξ(τ) is the Gaussian white noise, which
is added to prevent trapping into local modes. A key point
in Eq. (11) is ∂

∂z log pold(z|Y) = ∂
∂z log pold(Y, z), and the

right term can be easily calculated.
In practice, for the purpose of avoiding the high compu-

tational cost of MCMC, Eq. (11) starts from the previous
updated results of z. As for the initialized state vector s0
and the rain variation vector m of Eq. (8), we also sample
them together with z using the Langevin dynamics.
M-Step: Denote the sampled latent variable in E-Step as
z̃, M-Step aims to maximize the approximate upper bound
w.r.t. W and θ as follows:

max
W,θ
Q(W,θ) =

∫
pold(z|Y) log p(Y,z|W,θ) dz + log p(W )

≈ log p(Y, z̃|W,θ) + log p(W ). (13)

Equivalently, Eq. (13) can be further rewritten as the follow-
ing minimization problem, i.e.,

min
W,θ
L̂(W,θ) = 1

2σ2

∥∥Y − f(Y;W )−G(z̃, s0;θ)
∥∥
2
+

ρ
∑
i,j,t

vTγ + 1[Y∈D] ·
‖f(Y;W )−X‖2

ε20
, (14)

5
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Table 1. PSNR/SSIM results of different methods on the synthetic testing data set of NTURain. The best and second best results are
highlighted in red and blue, respectively.

Clip
No.

Rain DSC [37] FastDerain [24] DDN [13] PReNet [40] SpacCNN [6] SLDNet [56] S2VD
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

a1 29.71 0.9149 27.15 0.9079 29.29 0.9159 31.79 0.9481 32.13 0.9511 30.57 0.9334 33.72 0.9508 36.39 0.9658
a2 29.30 0.9284 28.84 0.9224 30.21 0.9245 30.34 0.9360 30.41 0.9375 31.29 0.9356 33.82 0.9512 33.06 0.9519
a3 29.08 0.8964 26.73 0.8942 29.94 0.9039 30.70 0.9301 30.73 0.9316 30.63 0.9247 33.12 0.9404 35.75 0.9564
a4 32.62 0.9381 30.58 0.9381 34.69 0.9707 35.77 0.9689 35.77 0.9700 35.30 0.9620 37.35 0.9722 39.53 0.9779
b1 30.03 0.8956 30.06 0.9015 29.35 0.9139 32.53 0.9465 32.66 0.9491 32.26 0.9454 34.21 0.9482 37.34 0.9712
b2 30.69 0.8874 30.85 0.9017 31.90 0.9520 33.89 0.9559 33.74 0.9557 35.11 0.9677 35.80 0.9595 40.55 0.9821
b3 32.31 0.9299 31.30 0.9295 29.28 0.9287 35.38 0.9663 35.34 0.9681 34.69 0.9566 36.34 0.9614 38.82 0.9754
b4 29.41 0.8933 30.61 0.9089 27.70 0.9095 32.62 0.9462 33.17 0.9526 34.87 0.9536 33.85 0.9469 37.53 0.9657

avg. 30.41 0.9108 29.52 0.9130 30.54 0.9255 32.87 0.9497 32.99 0.9519 33.11 0.9475 34.89 0.9540 37.37 0.9683

(a) Rain (b) Groundtruth (c) DDN (d) PReNet (e) SpacCNN (f) SLDNet (g) S2VD
Figure 4. Visual results of different methods on one typical image in NTURain synthetic testing data set. From left to right: (a) rainy image,
(b) ground truth image, (c)-(g) deraining results by DDN, PReNet, SpacCNN, SLDNet and our S2VD.

where 1[Y∈D] equals to 1 when Y comes from the labeled
data set D otherwise 0. Naturally, we can update W and
θ by gradient descent based on the back-propagation (BP)
algorithm [42] as follows,

Λ← Λ− η ∂

∂Λ
L̂(W,θ), Λ ∈ {W,θ}, (15)

where η denotes the step size.
Due to the capacity limitation, we empirically find it is

very difficult to fit the rain layers in all of the training videos
using only one generator defined in Eq. (8). Therefore, we
adopt one generator for each mini-batch data. With such
strategy, our model performs stably well when setting the
mini-batch size as 12 throughout all our experiments. The
detailed steps of our algorithm are listed in Algorithm 1.

4. Experimental Results
In this section, we conducted some experiments to evalu-

ate the effectiveness of the proposed semi-supervised video
deraining model on synthetic and real data sets. Then we
give some addition analysis about it. And we briefly denote
our Semi-Supervised Video Deraining model as S2VD in
the following presentation.

4.1. Evaluation on Rain Removal Task

Training Details: To train S2VD, we employ the syn-
thesized training data of NTURain [6] as labeled data set,
which contains 8 rain-free video clips of various scenes. For
each rain-free video, 3 or 4 rain layers are synthesized by
Adobe After Effects with different settings, and then added
to them as rainy ones. As for unlabeled data, 7 real rainy
videos without ground truth in the testing data of NTURain
are employed. To relieve the burden of GPU memory, we
used truncated back-propagation through time in training,
meaning that the whole training sequence were divided into

different non-overlapped chunks for forward and backward
propagation. And the length of chunk is set as 20.

The Adam [28] algorithm is used to optimize the model
parameters in M-Step of Algorithm 1. All the network pa-
rameters are initialized by [44]. The initialized learning
rates for the transition model, emission model and the de-
rainer are set as 1e-3, 1e-4 and 2e-4, respectively, and de-
cayed by multiplying 0.5 after 30 epochs. The mini-batch
size is set as 12, and each video is clipped into small blocks
with spatial size 64×64. Note that at the begining 5 epochs,
we only update the parameter W to pretrain the derainer,
which makes the training more stable. As for the hyper-
paramerters, ε20 = 1e-6, ρ = 0.5, γ = [1, 1, 2]T , and more
analysis on them is presented in Sec. 4.2.

4.1.1 Evaluation on Synthetic Data

We test our S2VD on the synthetic testing data set of NTU-
Rain [6], which consists of two groups of data sets. The
videos in the first group (with prefix “a” in Table 1) are cap-
tured by a panning and unstable camera, and those in the
second group (with prefix “b” in Table 1) by a fast moving
camera with speed range between 20 to 30 km/h. As for
the compared methods, six SOTAs are considered, includ-
ing one model-based image deraining method DSC [37],
one model-based video deraining method FastDerain [24],
two DL-based image deraining methods DDN [13] and
PReNet [40], two DL-based video deraining methods Spac-
CNN [6] and SLDNet [56]. The average PSNR and
SSIM [50] are used as quantitative metrics, which are eval-
uated only in the luminance channel due to the sensitiveness
of us to the luminance information.

Table 1 lists the average PSNR/SSIM results on 8 test-
ing video clips. Evidently, our S2VD method attains the
best (7 out of 8) or at least second best (1 out of 8) perfor-
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(a) Rain (b) DDN (c) PReNet (d) SpacCNN (e) SLDNet (f) S2VD

Figure 5. Visual comparisons of different methods on three typical real testing images in NTURain [6] (the 1st row) and [31] (the 2nd and
3rd row). From left to right: (a) rainy image, (b)-(f) deraining results by DDN, PReNet, SpacCNN, SLDNet and our S2VD.

(a) Rain

(b) = 0 (c) = 0.1 (d) = 0.5 (S2VD) (e) = 1.0 (f) = 2.0

(g) Baseline1 (h) Baseline2 (i) Baseline3
Figure 6. Comparisons of S2VD under different settings. The top row: (a) rainy image, (b)-(f) deraining results of S2VD with different ρ
values. The bottom row: (g) Baseline1, (h) Baseline1, (i) Baseline3, and the definitions of these baselines can be seen in Sec. 4.2.2.

mance in all cases. Comparing with current SOTAs (Spac-
CNN or SLDNet), it achieves at least 2.5dB PSNR and 0.01
SSIM gain. And the visual results are shown in Fig. 4. Note
that we only display the results of DL-based methods due
to page limitations. It can be observed that: 1) The derained
result of PReNet still contains some rain streaks. 2) DDN
and SpacCNN both lose some image contents. 3) SLDNet
can not finely preserve the original color maps. However,
our S2VD evidently alleviate such deficiencies and obtains
the closest result to ground truth, which indicates the effec-
tiveness of our proposed semi-supervised deraining model.

4.1.2 Evaluation on Real Data

To further test the generalization of S2VD in real tasks, we
test it on two kinds of real rainy videos, i.e., the real testing

Table 2. Average PSNR/SSIM results of S2VD on the synthetic
testing dataset of NTURain under different ρ values.

Metrics ρ
0 0.1 0.5 1 2

PSNR 38.18 38.05 37.37 35.50 31.55
SSIM 0.9719 0.9713 0.9683 0.9519 0.8947

data set in NTURain and several other real rainy videos in
[31]. Note that the former is included in our training set as
unlabeled data, but the second is not. Fig. 5 illustrates typi-
cal deraining results by different methods on such two kinds
of data sets. It can be seen that S2VD obviously achieves
the best visual results comparing with other methods. Espe-
cially, the superiorities in the second data set substantiates
that S2VD is able to handle the real rainy videos even that
do not appear in the unlabeled data set, such generalization
capability should be potentially useful in real deraining task.
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Table 3. Average PSNR/SSIM results of three baselines and S2VD
on the synthetic testing dataset of NTURain.

Metrics Methods
Baseline1 Baseline2 Baseline3 S2VD

PSNR 36.11 37.12 37.96 37.37
SSIM 0.9602 0.9673 0.9717 0.9683

4.2. Additional Analysis

4.2.1 Sensitiveness of hyper-paramerter ρ

The hyper-paramerter ρ in Eqs. (2) or (3) controls the rela-
tive importantance of MRF prior in S2VD. The quantitative
performance on the synthetic testing data set and the quali-
tative performance on the real testing data set of NTURain
under different ρ values are listed in Table 2 and Fig. 6, re-
spectively. On one hand, when ρ becomes gradually larger,
the performance on the synthetic testing set tends to de-
crease as shown in Table 2, since the constraint led by the
ground truth in Eq. (3) becomes weaker step by step. On the
other hand, MRF prior is able to prevent the derainer over-
fitting onto the synthetic data and thus improve the general-
ization capability in real case, which is sufficiently verified
by the visual comparisons in Fig. 6. Comprehensively con-
sidering these two aspects, we simply set ρ as 0.5.

4.2.2 Ablation Studies

As shown in Eq. (14), our S2VD degenerates into the Mean
Squre Error (MSE) loss when ε0 → 0. Comparing with
such special case, our model introduces one more likelihood
term, one more MRF regularizer and the semi-supervised
learning paradigm. To clarify the effect of each part, we
compare S2VD with three baselines as follows: 1) Base-
line1: We only train the derainer with MSE loss on labeled
data set as the first baseline. 2)Baseline2: We train S2VD
with ε20 = 1e-6 and ρ = 0 only on labeled data set so as to
justify the marginal gain brought up by the likelihood term
comparing with MSE (i.e., Baseline1). 3)Baseline3: On the
basis of Baseline2, we introduce the MRF regularizer by
setting ρ = 0.5 as the third baseline.

The quantitative comparisons on synthetic testing data
set of NTURain are listed in Table 3, and the visual re-
sults on real testing data set are also displayed in Fig. 6.
In summary, we can see that: 1) The performance improve-
ment (1.01dB PSNR and 0.0071 SSIM) of Baseline2 be-
yond Baseline1 substantiates that the likelihood term plays
a substantial role in our model. 2) Under the supervised
learning manner, MRF prior is beneficial to our model both
in the synthetic and real cases according to the performance
of Baseline3. 3) Obviously, the addition of unlabeled data
in S2VD increase the generalization capability on real task
as shown in Fig. 6 (d) and (i). However, it leads to a little
deterioration of the performance on synthetic data, mainly
because the large gap between the rain types contained in

(a) Rainy (b) S2VD

Figure 7. Two typical failed deraining examples by our method.
The 1st row represents the large camera motion case, while the
2nd row is with heavy rain streaks.

the synthetic labeled and unlabeled real data sets.

4.2.3 Limitation and Future Direction

Although achieving impressive deraining results as shown
above, our method may still fails in some real scenarios, e.g,
large camera motion between adjacent frames and heavy
rain streaks as shown in Fig. 7. That’s mainly because the
adopted MRF prior for unlabeled real data is not strong
enough to guarantee satisfactory deraining results in such
complex cases. Therefore, it is necessary to exploit better
prior knowledge in order to handle more general real de-
raining task in the future.

5. Conclusion
In this paper, we have constructed a dynamic rain gener-

ator based on the spatial-temporal process in statistics. With
such generator, a semi-supervised video deraining method
is proposed. Specifically, we elaborately model the rain
layer using such rain generator, which is able to facilitate
the rain removal task. In order to handle the generalization
issue in real cases, we propose a semi-supervise learning
manner to exploit the common knowledge underlying the
synthetic labeled and real unlabeled data sets. Besides, a
Monte Carlo based EM algorithm is designed to solve it.
Extensive experimental results demonstrated the effective-
ness of the proposed video deraining method. We believe
that our work can benefit to the research of rain removal in
computer vision community.
Acknowledgement: This research was supported by the
National Key R&D Program of China (2020YFA0713900),
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