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1. Structure of this Document
This document is organized as follows. Section 2 pro-

vides some notations in this document. Some preliminaries
are presented in Section 3. The proof of fixed point conver-
gence is presented in Section 4. More experimental results
are reported in Section 5.

2. Notations
For any x, y ∈ Rd, 〈x, y〉 = xT y denotes the inner

product. In SCI problem, we can assume d = nB. Let
H ∈ Rm×d and y ∈ Rm. We also assume m = n. I is
identity mapping.

3. Preliminaries
An mapping T : Rd → Rd is L-Lipschitz if

‖T (x)− T (y)‖ ≤ L‖x− y‖

for any x, y ∈ Rd. If T is L-Lipschitz with L ≤ 1, we say
T is nonexpansive. If T is L-Lipschitz with L < 1, we say
T is a contraction. Next we shall give the assumptions used
in the fixed point analysis.

Assumption 1 (Assumption (A) in [3]). We assume that all
denoisers Dσ : Rd 7→ Rd used in our method satisfy

‖(Dσ − I)(x)− (Dσ − I)(y)‖2 ≤ ε‖x− y‖2 (1)

for all x, y ∈ Rd for some ε > 0.

Assumption 2 (Assumption 1 in [4]). Assume that
{Rj}nj=1 > 0 which means for each spatial location j, the
B-frame modulation masks at this location have at least one
non-zero entries. We further assume Rmax > Rmin.

*Corresponding author.

A mapping P projecting x onto linear manifold y = Hx
can be expressed as

P (x) = x+HT (HHT )−1(y −Hx).

Following lemmas are required to prove Theorem 1 and 2.

Lemma 1 (Lemma 21 in [4]). For any x ∈ Rd, d = nB,
consider H satisfies Assumption 2, then

Rmin

Rmax
‖x‖2 ≤ ‖HT (HHT )−1Hx‖2 ≤ ‖x‖2.

Lemma 2. S = {Dσ : σ ∈ S} is a set of denoiser satisfy-
ing Assumption 1 and |S| <∞. Then the weighted denoiser
of S:

Dw(x) =
∑
σ∈S

wσDσ(x)

also satisfies Assumption 1, where
∑
σ∈S wσ = 1, wσ ≥

0,∀σ ∈ S.

Proof.

‖(Dw − I)(x)− (Dw − I)(y)‖2
=‖
∑
σ∈S

wσ(Dσ − I)(x)−
∑
σ∈S

wσ(Dσ − I)(y)‖2

=‖
∑
σ∈S

wσ[(Dσ − I)(x)− (Dσ − I)(y)]‖2

≤
∑
σ∈S

wσ‖(Dσ − I)(x)− (Dσ − I)(y)‖2

≤
∑
σ∈S

wσε‖x− y‖2 = ε‖x− y‖2,

where the first inequality follows from the triangle inequal-
ity.

1https://arxiv.org/abs/2003.13654v1
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3.1. Equivalence of PnP-DRS and PnP-ADMM

In this section, we show the equivalence of PnP-DRS and
PnP-ADMM, which is motivated from Section 9.1 in [3].
With the form of PnP-DRS, we substitute z(k) = x(k)−u(k)
to have

x(k+1/2) =Dσ(x(k) − u(k)),

x(k+1) =P
(
x(k+1/2) +

(
u(k) + (x(k+1/2) − x(k))

))
,

u(k+1) =u(k) + (x(k+1/2) − x(k)).

Reorder the iteration to get that

x(k+1/2) =Dσ(x(k) − u(k)),
u(k+1) =u(k) + (x(k+1/2) − x(k)),

x(k+1) =P
(
x(k+1/2) + u(k+1)

)
.

We rewrite ỹ(k+1) = xk+1/2 and x̃(k+1) = x(k), thus

x̃(k+1) =P
(
ỹ(k) + u(k)

)
,

ỹ(k+1) =Dσ(x̃(k+1) − u(k)),
u(k+1) =u(k) + (ỹ(k+1) − x̃(k+1)).

Finally, we get PnP-ADMM.

3.2. Equivalence of PnP-ADMM and Accelerated
PnP-GAP

In this section, we show that the PnP-ADMM is equiv-
alent to accelerated PnP-GAP. We are going to convert
the following PnP-ADMM into accelerated PnP-GAP. Pre-
cisely,

x(k+1) =argmin
x

1

2
‖x− v(k) − u(k)‖22, subject to Hx = y,

(2a)

=P (v(k) + u(k)), (2b)

v(k+1) =argmin
v
λg(v) +

γ

2
‖x(k+1) − v − u(k)‖22 (2c)

=Dσ(x(k+1) − u(k)), (2d)

u(k+1) =u(k) + (v(k+1) − x(k+1)). (2e)

We can rewrite x̃(k) = x(k)−u(k−1), then (2d) is converted
to

x̃(k+1) = v(k) +H(HHT )−1
(
y(k) −Hv(k)

)
,

where y(k) = y −Hu(k). Using (2e), y(k+1) is updated
with

y(k+1) = y(k) + y −Hv(k+1).

Now the PnP-ADMM (2) is converted into

x̃(k+1) =v(k) +H(HHT )−1
(
y(k) −Hv(k)

)
, (3)

v(k+1) =Dσ(x̃(k+1)), (4)

y(k+1) =y(k) + y −Hv(k+1). (5)

We then reorder the sequence to get that

y(k+1) =y(k) + y −Hv(k+1),

x̃(k+2) =v(k+1) +H(HHT )−1
(
y(k+1) −Hv(k+1)

)
,

v(k+2) =Dσ(x̃(k+2)),

which is the accelerated PnP-GAP used in our paper.
In Section 3.1 and Section 3.2, we convert the proof of

convergence of accelerated PnP-GAP into the proof of con-
vergence of PnP-DRS. The relationship between different
algorithms is

Convergence of PnP-DRS
⇒ Convergence of PnP-ADMM
⇒ Convergence of accelerated PnP-GAP.

If we can prove PnP-DRS converges to a fixed point, it
indicates accelerated PnP-GAP converges to a fixed point.
Therefore, in the next section, our proof is focused on the
convergence of PnP-DRS.

Before providing the proof, we have the following two
important equations:

‖HT (HHT )−1Hx‖2

=xTHT (HHT )−1HHT (HHT )−1Hx

=xTHT (HHT )−1Hx

=
〈
HT (HHT )−1Hx, x

〉
(6)

and 〈
HT (HHT )−1Hx,HT (HHT )−1Hy

〉
=xTHT (HHT )−1HHT (HHT )−1Hy

=xTHT (HHT )−1Hy

=
〈
HT (HHT )−1Hx, y

〉
=
〈
HT (HHT )−1Hy, x

〉
(7)

for any x, y ∈ Rd.

4. Fixed-point Convergence
Theorem 1. Assume H satisfies Assumption 2. Then the
following operator

G = Dσ ◦ P

is a contraction if Dσ satisfies Assumption 1 and

0 < ε <

√
Rmax

Rmax −Rmin
− 1.



Proof. In order to proveG is a contraction, for any x1, x2 ∈
Rd we have

‖G(x1)−G(x2)‖
=‖Dσ ◦ P (x1)−Dσ ◦ P (x2)‖
=‖(Dσ − I) ◦ P (x1)− (Dσ − I) ◦ P (x2) + P (x1)− P (x2)‖
≤(ε+ 1)‖P (x1)− P (x2)‖.

Last inequality follows from Assumption 1 and triangle in-
equality. Because

‖P (x1)− P (x2)‖2

=‖(x1 − x2)−HT (HHT )−1H(x1 − x2)‖2

=‖x1 − x2‖2 − ‖HT (HHT )−1H(x1 − x2)‖2

≤(1− Rmin

Rmax
)‖x1 − x2‖2,

we can have

‖G(x1)−G(x2)‖
≤(ε+ 1)‖P (x1)− P (x2)‖

≤(ε+ 1)

√
1− Rmin

Rmax
‖x1 − x2‖

<‖x1 − x2‖.

Then G is a contraction.

Theorem 2. Assume H satisfies Assumption 2. Let P be a
Euclidean projection on linear manifold y = Hx. Then

T =
1

2
I+

1

2
(2P − I)(2Dσ − I)

is a contraction if Dσ satisfies Assumption 1 and

0 < ε < 1−
√

1− Rmin

Rmax
.

Proof. From Section 3, we need to prove the convergence
of PnP-DRS which has the form

T =
1

2
I+

1

2
(2P − I)(2Dσ − I)

=
1

2
I+

1

2
2P ◦ (2Dσ − I)− 1

2
(2Dσ − I)

=I−Dσ + P ◦ (2Dσ − I).

BecauseP (x) = x+HT (HHT )−1(y−Hx), let T operates
on x ∈ Rd:

T (x)

=x−Dσ(x) + 2Dσ(x)− x
+HT (HHT )−1 [y −H(2Dσ(x)− x)]

=Dσ(x)−HT (HHT )−1H [2Dσ(x)− x] +HT (HHT )−1y.

Then we denote S := HT (HHT )−1H. Using (6) and (7),
we have the following equations:

‖Sx‖2 = 〈Sx, x〉

and
〈Sx,Sy〉 = 〈Sx, y〉 = 〈Sy, x〉 .

We prove that T is a contraction from the definition. For
any x1, x2 ∈ Rd, we have

‖T (x1)− T (x2)‖2

=‖Dσ(x1)−Dσ(x2)
− S[2Dσ(x1)− 2Dσ(x2)− (x1 − x2)]‖2

=‖Dσ(x1)−Dσ(x2)‖2

+ ‖S[2Dσ(x1)− 2Dσ(x2)− (x1 − x2)]‖2

− 2 〈S [2Dσ(x1)− 2Dσ(x2)− (x1 − x2)] ,
Dσ(x1)−Dσ(x2)〉 . (8)

Next, we calculate terms in (8) to get

‖S [2Dσ(x1)− 2Dσ(x2)− (x1 − x2)] ‖2

=4‖S [Dσ(x1)−Dσ(x2)] ‖2 + ‖S(x1 − x2)‖2

− 4 〈S[Dσ(x1)−Dσ(x2)],S(x1 − x2)〉
=4‖S [Dσ(x1)−Dσ(x2)] ‖2 + ‖S [x1 − x2] ‖2

− 4 〈S(x1 − x2),Dσ(x1)−Dσ(x2)〉

and

− 2 〈S [2Dσ(x1)− 2Dσ(x2)− (x1 − x2)] ,
Dσ(x1)−Dσ(x2)〉

=− 4 〈S[Dσ(x1)−Dσ(x2)],Dσ(x1)−Dσ(x2)〉
+ 2 〈S(x1 − x2),Dσ(x1)−Dσ(x2)〉

=− 4‖S[Dσ(x1)−Dσ(x2)]‖2

+ 2 〈S(x1 − x2),Dσ(x1)−Dσ(x2)〉 .

Plugging these terms into (8), we further get

‖T (x1)− T (x2)‖2

=‖S [2Dσ(x1)− 2Dσ(x2)− (x1 − x2)] ‖2

− 2 〈S [2Dσ(x1)− 2Dσ(x2)− (x1 − x2)] ,Dσ(x1)−Dσ(x2)〉
+ ‖Dσ(x1)−Dσ(x2)‖2

=‖Dσ(x1)−Dσ(x2)‖2 + 4‖S [Dσ(x1)−Dσ(x2)] ‖2

+ ‖S(x1 − x2)‖2 − 4 〈S(x1 − x2),Dσ(x1)−Dσ(x2)〉
+ 2 〈S(x1 − x2),Dσ(x1)−Dσ(x2)〉
− 4‖S[Dσ(x1)−Dσ(x2)]‖2

=‖Dσ(x1)−Dσ(x2)‖2 + ‖S(x1 − x2)‖2

− 2 〈S(x1 − x2),Dσ(x1)−Dσ(x2)〉
=‖Dσ(x1)−Dσ(x2)− S(x1 − x2)‖2. (9)



Then we have

‖T (x1)− T (x2)‖
=‖Dσ(x1)−Dσ(x2)− S(x1 − x2)‖
=‖Dσ(x1)−Dσ(x2)− S(x1 − x2)− (x1 − x2) + (x1 − x2)‖
=‖(Dσ − I)(x1)− (Dσ − I)(x2) + (I− S)(x1 − x2)‖
≤‖(Dσ − I)(x1)− (Dσ − I)(x2)‖+ ‖(I− S)(x1 − x2)‖
≤ε‖x1 − x2‖+ ‖(I− S)(x1 − x2)‖. (10)

Thus we derive the bound of ‖(I− S)(x1 − x2)‖ as

‖(I− S)(x1 − x2)‖2

=‖x1 − x2 − S(x1 − x2)‖2

=‖x1 − x2‖2 + ‖S(x1 − x2)‖2 − 2 〈S(x1 − x2), x1 − x2〉
=‖x1 − x2‖2 − ‖S(x1 − x2)‖2

≤(1− Rmin

Rmax
)‖x1 − x2‖2.

The last inequality follows from Lemma 1. Plugging this

into (10) and using condition ε < 1−
√

1− Rmin

Rmax
, we get

‖T (x1)− T (x2)‖
≤ε‖x1 − x2‖+ ‖(I− S)(x1 − x2)‖

≤(ε+
√

1− Rmin

Rmax
)‖x1 − x2‖

<‖x1 − x2‖.

This means T is a contraction. Finally, PnP-DRS converges
to a fixed point which is equivalent to the convergence of
PnP-ADMM and accelerated PnP-GAP.

5. More Experiments
5.1. More Results of the Experiments in the Paper

This subsection shows more results of the experiment in
our paper. Detailed results are shown in Figure 1, Figure 2,
Figure 3 and Table 3.

5.2. Comparison with Learned Prior

In this subsection, we reported experiment results com-
pared with learned prior method [1]. We use the four data
(named 103, 101, 73, 92) provided in the code of [1]2. The
results are presented in Table 1.

5.3. Comparison with Deep Learning

In this section, we compared our method with one pop-
ular deep learning method, i.e., λ-Net [2]. We use a bi-
nary mask that differs from that used in the training phase
for testing. λ-Net and our method have comparable results
while it requires a couple of days for training. The results
are reported in Table 2.

2https://github.com/KAIST-VCLAB/deepcassi

5.4. Results on Real Data: object

We conduct experiment on real data object. The re-
sults is listed in Table 4.

Table 4. Results on real scene: object
2DTV DeSCI Ours (2DTV)

object 36.75, 0.8857 36.21, 0.8501 37.72, 0.8717

References
[1] Inchang Choi, Daniel S. Jeon, Giljoo Nam, Diego Gutierrez,

and Min H. Kim. High-quality hyperspectral reconstruction
using a spectral prior. ACM Transactions on Graphics (Proc.
SIGGRAPH Asia 2017), 36(6):218:1–13, 2017. 4, 6

[2] Xin Miao, Xin Yuan, Yunchen Pu, and Vassilis Athitsos.
lambda-net: Reconstruct hyperspectral images from a snap-
shot measurement. In 2019 IEEE/CVF International Confer-
ence on Computer Vision (ICCV), pages 4058–4068. IEEE,
2019. 4

[3] Ernest K Ryu, Jialin Liu, Sicheng Wang, Xiaohan Chen,
Zhangyang Wang, and Wotao Yin. Plug-and-play methods
provably converge with properly trained denoisers. arXiv
preprint arXiv:1905.05406, 2019. 1, 2

[4] Xin Yuan, Yang Liu, Jinli Suo, and Qionghai Dai. Plug-and-
play algorithms for large-scale snapshot compressive imaging.
In Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 1447–1457, 2020. 1

https://github.com/KAIST-VCLAB/deepcassi


Truth

Ours

DeSCI

3DTV

FFD_TV

FFDNet

TV

Figure 1. Simulated data: feathers from CAVE. The four frames are at wavelengths 580nm, 620nm, 660nm, and 700nm.



Table 1. Comparison with learned prior method AE [1].
103 101 73 92 Average

AE 36.75, 0.9726 38.35, 0.9694 38.19, 0.9635 32.49, 0.8874 36.45, 0.9482
3DTV 34.65, 0.9590 35.96, 0.9396 36.36, 0.9490 31.35, 0.8516 34.58, 0.9248
DeSCI 23.98, 0.8053 26.15, 0.8334 28.36, 0.8492 20.76, 0.6865 24.81, 0.7936
Our (3DTV) 37.05, 0.9735 38.14, 0.9599 38.56, 0.9603 32.96, 0.8989 36.68, 0.9482

Table 2. Comparison with deep learning method λ-Net.
3DTV 2DTV FFDNet FFDNet-TV DeSCI λ-Net Ours (3DTV) Ours (2DTV)

Scene 1 31.83, 0.9179 34.68, 0.9321 27.91, 0.8794 35.08, 0.9237 36.07, 0.9505 37.99, 0.8971 37.12, 0.9626 38.16, 0.9630
Scene 2 22.38, 0.7542 27.39, 0.9165 22.55, 0.7463 27.39, 0.9114 30.64, 0.9580 32.70, 0.9465 30.11, 0.9558 30.11, 0.9566
Scene 3 28.66, 0.8851 28.52, 0.8888 21.75, 0.7236 28.04, 0.8883 29.87, 0.9132 34.02, 0.9524 31.70, 0.9156 31.38, 0.9040
Scene 4 25.44, 0.8205 31.72, 0.9309 24.97, 0.8055 32.47, 0.9303 40.35, 0.9780 30.11, 0.9247 31.89, 0.9404 38.25, 0.9691
Scene 5 31.05, 0.8782 31.63, 0.8599 26.17, 0.7643 32.02, 0.8547 33.86, 0.9038 38.10, 0.9330 34.73, 0.9313 34.70, 0.9265
Scene 6 26.47, 0.8517 28.04, 0.8613 26.11, 0.8725 28.79, 0.8525 33.59, 0.9421 30.73, 0.9222 31.44, 0.9234 32.82, 0.9326
Scene 7 29.20, 0.8841 33.90, 0.9287 24.81, 0.8128 34.31, 0.9279 35.76, 0.9515 37.15, 0.9675 34.70, 0.9431 36.17, 0.9476
Scene 8 26.94, 0.8716 30.12, 0.8779 21.64, 0.7117 30.29, 0.8703 31.34, 0.9061 34.35, 0.9454 30.12, 0.9086 31.62, 0.9044
Scene 9 33.31, 0.9350 35.31, 0.9569 37.64, 0.9485 35.90, 0.9541 40.87, 0.9694 36.04, 0.9264 37.07, 0.9705 40.56, 0.9746

Scene 10 25.23, 0.8307 27.59, 0.8431 20.37, 0.6289 27.83, 0.8400 28.96, 0.8746 29.47, 0.9062 28.81, 0.8803 28.99, 0.8731
Average 28.05, 0.8629 30.89, 0.8996 25.39, 0.7893 31.21, 0.8953 34.13, 0.9347 34.07, 0.9321 32.77, 0.9332 34.28, 0.9352

Table 3. The average result of PSNR in dB (left entry in each cell) and SSIM (right entry in each cell) by different algorithms on some data
from CAVE.

Data 2DTV 3DTV FFDNet DeSCI FFDNet-TV Ours (2DTV) Ours (3DTV)
feathers 26.95, 0.8642 27.11, 0.8523 25.30, 0.8411 27.75, 0.9103 27.68, 0.8731 31.29, 0.9291 32.30, 0.9324

stuffed toys 32.07, 0.9260 28.56, 0.9180 29.43, 0.8735 33.74, 0.9457 32.86, 0.9284 35.41, 0.9550 35.04, 0.9548
paints 26.69, 0.8943 27.95, 0.9159 27.31, 0.9041 28.46, 0.9402 27.55, 0.9054 31.76, 0.9593 32.53, 0.9621

thread spools 29.01, 0.8647 29.52, 0.8929 27.25, 0.8125 29.40, 0.8991 29.62, 0.8714 32.85, 0.9231 34.07, 0.9235
clay 34.48, 0.9150 26.51, 0.8142 36.57, 0.9191 40.41, 0.9723 35.40, 0.9227 40.28, 0.9578 33.06, 0.9003

photo and face 33.30, 0.9343 35.41, 0.9571 30.84, 0.8688 35.11, 0.9523 33.75, 0.9332 37.56, 0.9545 38.62, 0.9543
chart and stuffed toy 25.19, 0.8703 28.73, 0.9104 24.65, 0.8275 26.21, 0.9050 25.82, 0.8758 29.82, 0.9236 29.45, 0.9232

beads 22.08, 0.6929 22.69, 0.7466 20.78, 0.6026 22.94, 0.7621 22.54, 0.7111 24.70, 0.7994 25.49, 0.8205
fake and real food 32.67, 0.9001 30.37, 0.8725 29.25, 0.8543 32.54, 0.9269 33.30, 0.9049 35.66, 0.9387 36.33, 0.9304

fake and real lemon slices 29.83, 0.8476 33.21, 0.9274 28.16, 0.8216 30.69, 0.9234 30.39, 0.8572 34.39, 0.9232 35.93, 0.9263
fake and real peppers 34.05, 0.9397 30.12, 0.8817 30.74, 0.8993 33.97, 0.9544 34.74, 0.9458 36.05, 0.9564 37.11, 0.9469

flowers 31.83, 0.8906 30.04, 0.8823 27.06, 0.8206 32.51, 0.9197 32.18, 0.8961 34.36, 0.9320 34.94, 0.9383
fake and real beers 33.65, 0.9566 31.70, 0.9460 32.31, 0.9311 35.68, 0.9686 34.16, 0.9574 37.99, 0.9772 38.29, 0.9785

cloth 24.20, 0.6664 27.62, 0.7899 18.77, 0.4643 22.24, 0.6221 24.46, 0.6747 26.50, 0.7801 29.54, 0.8451
jelly beans 24.54, 0.7913 27.10, 0.8539 23.21, 0.7481 24.79, 0.8459 25.19, 0.8114 27.44, 0.8830 29.26, 0.9059

sponges 29.54, 0.9298 22.76, 0.8136 30.70, 0.9349 33.70, 0.9699 30.29, 0.9349 34.86, 0.9713 31.19, 0.9549
watercolors 26.11, 0.8465 29.76, 0.9238 22.29, 0.7167 26.21, 0.8547 26.51, 0.8529 29.14, 0.9129 31.67, 0.9391

egyptian statue 33.60, 0.9513 36.76, 0.9646 30.65, 0.9008 33.63, 0.9528 34.07, 0.9511 37.32, 0.9623 39.35, 0.9682
fake and real sushi 33.29, 0.9507 34.47, 0.9443 30.85, 0.8926 33.26, 0.9685 33.76, 0.9513 35.95, 0.9689 37.04, 0.9571

hairs 34.28, 0.9165 37.08, 0.9509 30.89, 0.8365 34.33, 0.9358 34.73, 0.9183 39.02, 0.9527 40.83, 0.9627
oil painting 26.35, 0.6975 28.71, 0.8035 22.59, 0.6426 27.47, 0.7879 26.80, 0.7067 30.38, 0.8552 32.12, 0.8785
pompoms 30.79, 0.8692 25.61, 0.8385 27.21, 0.7740 31.32, 0.8823 31.56, 0.8757 32.84, 0.8966 31.40, 0.9110

real and fake peppers 34.55, 0.9421 31.68, 0.9014 32.29, 0.9187 35.17, 0.9645 35.11, 0.9454 38.78, 0.9727 40.14, 0.9599
fake and real lemons 34.53, 0.9415 32.57, 0.9199 31.54, 0.9060 34.96, 0.9638 35.00, 0.9427 38.57, 0.9708 40.03, 0.9601

glass tiles 24.18, 0.7783 24.93, 0.8378 23.82, 0.7835 25.07, 0.8693 24.72, 0.7883 28.90, 0.9039 30.17, 0.9210
superballs 33.48, 0.8501 29.69, 0.8693 32.67, 0.8615 34.67, 0.9522 34.17, 0.8605 36.64, 0.9164 34.34, 0.9180

fake and real tomatoes 30.58, 0.9418 31.85, 0.9409 29.51, 0.8905 31.04, 0.9552 31.12, 0.9426 34.19, 0.9601 35.38, 0.9526
cd 32.21, 0.8655 27.86, 0.9112 31.49, 0.8523 35.70, 0.9497 32.72, 0.8706 35.37, 0.9304 30.45, 0.9497

fake and real strawberries 31.59, 0.8855 33.60, 0.9089 28.90, 0.8542 31.69, 0.9320 32.21, 0.8925 35.76, 0.9348 37.53, 0.9384
face 34.06, 0.9493 33.87, 0.9590 31.55, 0.8749 34.99, 0.9564 34.51, 0.9475 38.32, 0.9648 39.67, 0.9652

balloons 35.42, 0.9648 30.48, 0.9296 34.00, 0.9503 37.05, 0.9757 35.58, 0.9640 40.25, 0.9819 38.37, 0.9780
real and fake apples 37.34, 0.9625 36.32, 0.9201 34.17, 0.9071 37.99, 0.9703 37.82, 0.9610 40.38, 0.9697 41.54, 0.9535

* Our methods performs 100 iteration. 2DTV performs 250 iteration beacause DeSCI relies on it as an initialization. 3DTV performs 100 iteration.
FFDNet performs 100 iteration.
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Figure 2. Simulated data: Spectral curves of reconstruction. We select Bird, Toy, feathers, and flowers hyperspectral image for compari-
son. The areas bounding by the green box are selected randomly.
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Figure 3. Real data: Bird. The three frames are at wavelengths 591.02nm, 630.13nm, and 651.74nm.


