
Medical Image Analysis 67 (2021) 101876 

Contents lists available at ScienceDirect 

Medical Image Analysis 

journal homepage: www.elsevier.com/locate/media 

Pairwise learning for medical image segmentation 

Renzhen Wang 

a , Shilei Cao 

b , Kai Ma 

b , Yefeng Zheng 

b , Deyu Meng 

a , c , ∗

a School of Mathematics and Statistics, Xi’an Jiaotong University, Xi’an, 710049, China 
b Jarvis Lab, Tencent, Shenzhen, 518075, China 
c Macau Institute of Systems Engineering, Macau University of Science and Technology, Taipa, Macau 

a r t i c l e i n f o 

Article history: 

Received 1 March 2020 

Revised 29 September 2020 

Accepted 5 October 2020 

Available online 17 October 2020 

MSC: 

41A05 

41A10 

65D05 

65D17 

Keywords: 

Medical image segmentation 

Conjugate fully convolutional network 

Pairwise segmentation 

Proxy supervision 

a b s t r a c t 

Fully convolutional networks (FCNs) trained with abundant labeled data have been proven to be a pow- 

erful and efficient solution for medical image segmentation. However, FCNs often fail to achieve satisfac- 

tory results due to the lack of labelled data and significant variability of appearance in medical imaging. 

To address this challenging issue, this paper proposes a conjugate fully convolutional network (CFCN) 

where pairwise samples are input for capturing a rich context representation and guide each other with 

a fusion module. To avoid the overfitting problem introduced by intra-class heterogeneity and boundary 

ambiguity with a small number of training samples, we propose to explicitly exploit the prior infor- 

mation from the label space, termed as proxy supervision. We further extend the CFCN to a compact 

conjugate fully convolutional network (C 2 FCN), which just has one head for fitting the proxy supervi- 

sion without incurring two additional branches of decoders fitting ground truth of the input pairs com- 

pared to CFCN. In the test phase, the segmentation probability is inferred by the learned logical relation 

implied in the proxy supervision. Quantitative evaluation on the Liver Tumor Segmentation (LiTS) and 

Combined (CT-MR) Healthy Abdominal Organ Segmentation (CHAOS) datasets shows that the proposed 

framework achieves a significant performance improvement on both binary segmentation and multi- 

category segmentation, especially with a limited amount of training data. The source code is available 

at https://github.com/renzhenwang/pairwise _ segmentation . 

© 2020 Elsevier B.V. All rights reserved. 
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. Introduction 

Semantic segmentation is a classic computer vision task which 

ims at predicting semantic labels for each pixel of an image so as 

o partition the image into meaningful objects. In medical image 

nalysis, semantic segmentation plays an important role in quan- 

itative measurement of volume and shape, and preliminary pre- 

rocess of computer-aided detection pipelines ( Litjens et al., 2017 ). 

enefitting from the recent advancement of fully convolutional 

etworks (FCNs) ( Long et al., 2015 ), deep learning based medical 

mage segmentation approaches ( Ronneberger et al., 2015; Milletari 

t al., 2016 ) have attracted vast attention and achieved great suc- 

ess in many scenarios ( Hesamian et al., 2019 ). 

Despite achieving great success, current medical image segmen- 

ation still faces some challenges deserving broad attention. First, 

he success of deep segmentation models is mostly attributed to 

 large number of training data. Gathering pixel-level annotations 

f medical images, however, is very difficult because the man- 
∗ Corresponding author. 

E-mail address: dymeng@mail.xjtu.edu.cn (D. Meng). 

t

a

b

ttps://doi.org/10.1016/j.media.2020.101876 

361-8415/© 2020 Elsevier B.V. All rights reserved. 
al delineation process is expertise-required and time-consuming. 

o address this issue, several remarkable techniques have been 

dopted, including data augmentation ( Ronneberger et al., 2015; 

ereira et al., 2016; Christ et al., 2016; Dong et al., 2017 ) and pre-

raining models ( Tajbakhsh et al., 2016; Wu et al., 2017; Zhou et al., 

019; Chen et al., 2019 ). Data augmentation methods directly en- 

arge the amount of training data by adopting a set of affine/elastic 

ransformations ( Pereira et al., 2016; Ronneberger et al., 2015 ) and 

ppearance adjustment ( Christ et al., 2016; Dong et al., 2017 ). How- 

ver, augmented samples have a strong correlation with the origi- 

al ones and different augmentation methods usually yield unsta- 

le results in different segmentation scenarios. Pre-training tricks, 

ubordinated to transfer learning, usually fine-tune the network 

rained on general images ( Tajbakhsh et al., 2016; Wu et al., 2017 )

r medical images ( Zhou et al., 2019; Chen et al., 2019 ). Although it

as been proven that the segmentation performance can be signifi- 

antly improved compared with random initialization, pre-training 

mplies that the architecture of model has been completely or par- 

ially determined, which may take adverse effects when the source 

nd target images suffer from a large domain shift. 

Second, and more typically, the intra-class heterogeneity and 

oundary ambiguity of the target object are still big challenges in 

https://doi.org/10.1016/j.media.2020.101876
http://www.ScienceDirect.com
http://www.elsevier.com/locate/media
http://crossmark.crossref.org/dialog/?doi=10.1016/j.media.2020.101876&domain=pdf
https://github.com/renzhenwang/pairwise_segmentation
mailto:dymeng@mail.xjtu.edu.cn
https://doi.org/10.1016/j.media.2020.101876
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Fig. 1. Examples show the intra-class heterogeneity and boundary ambiguity in 

medical imaging, visualized with two abdomen CT images (first row) and two ab- 

domen MR images (second row). Blue and red rectangles denote heterogeneous 

appearance and ambiguous boundary, respectively. (For interpretation of the ref- 

erences to colour in this figure legend, the reader is referred to the web version of 

this article.) 
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edical image segmentation ( Wang et al., 2019; Hesamian et al., 

019 ), as shown in Fig. 1 . Actually, the anatomical structures or 

esions are generally very heterogeneous in size, shape, and loca- 

ion from patient to patient. Even in one single target, local con- 

exts are usually very different. Besides, the ambiguous boundary 

s a known inherent imaging challenge where in-between target 

rgans and the neighboring tissues have a low contrast ( Hesamian 

t al., 2019; Xie et al., 2017 ), which usually occurs during imaging, 

uch as attenuation coefficient in Computed Tomography (CT) and 

elaxation time in Magnetic Resonance Imaging (MRI) ( Dou et al., 

017; Kronman and Joskowicz, 2016 ). Increasing the quantity of 

raining data may be the most direct way to alleviate this problem; 

owever, acquiring large amount of manually annotated training 

ata is not realistic. Data augmentation and pre-training tricks 

re also not ideal for solving this problem, since the former may 

agnify the intra-class inconsistency when enlarging the training 

ool and the latter only focuses on extracting general instead of 

pecific features for the target task. Exploiting hard-to-recognize 

ixels, like weighted loss function ( Ronneberger et al., 2015 ) and 

ascade network ( Wu et al., 2017 ), seems to be a feasible strategy 

o address this challenge; however, its performance tends to be 

egenerated when there is a limited amount of training data. 

To address the two aforementioned issues, a feasible solution is 

o combine data augmentation and weighted loss function, just like 

-Net ( Ronneberger et al., 2015 ) does. Aside from this ensemble 

trategy, a natural question is whether we can achieve it through a 

nified network architecture. We suspect that embedding the prior 

nowledge into deep models may be a feasible strategy, although 

urrent methods are mainly focusing on modeling manifolds of tar- 

et objects ( Chen et al., 2016; Ravishankar et al., 2017b; Araújo 

t al., 2019; Ravishankar et al., 2017a; Mosinska et al., 2018 ). Actu- 

lly, all the objects in medical images/volumes, not only the ones 

o be segmented, usually lie in a low-dimensional manifold and 

odeling the intrinsic relations of them is of great significance for 

egmentation. For example, in liver segmentation, the relative posi- 

ions of the surrounding organs are very important for locating the 

iver and helpful to the liver segmentation. Based on this prior in- 

ormation, we aim to address both the aforementioned issues with 

 unique pairwise learning framework. 

The proposed pairwise segmentation framework is based on 

he paradigm that a pair of samples is taken as input and jointly 

egmented in the network, and one more additional output is 

nvolved to explicitly learn the prior information from the label 
2 
pace (dubbed proxy supervision). Concretely, we adopt a Siamese 

rchitecture, referenced as conjugate fully convolutional network 

CFCN), which includes two identical parallel branches with each 

aking one sample and outputting the corresponding mask prob- 

bility map. Benefitting from training on pairs, the training sam- 

les are quadratically augmented so as to alleviate the overfitting 

ssue of the network compared to the traditional FCNs. To address 

ntra-class heterogeneity and boundary ambiguity, CFCN introduces 

ne more sub-network to fit the proxy supervision that is derived 

rom a function of the ground truth of input pairs. Considering 

hat medical image segmentation is a location-aware task where 

he relative position of the anatomical structure is very important 

or locating the target object, the proxy supervision utilizes logical 

perations, including logic AND and logic XOR , to establish the cor- 

elation of the two input samples at the same location. In this way, 

he logic AND can improve predictive confidence to eliminate intra- 

lass inconsistency through comparison learning, and logic XOR can 

mprove the exposure of pixels lying in the target boundary to en- 

ode the shape prior. Interestingly, with the formulated logical re- 

ation, we can remove both decoders in the Siamese structure to 

void directly fitting the ground truth segmentation, but just pre- 

erve the sub-network for fitting the proposed proxy supervision 

nly (dubbed compact conjugate fully convolutional network, and 

bbreviated as C 

2 FCN). We can utilize the learned logical relation 

mplied in proxy supervision to infer the segmentation probability 

f the target objects in the test phase. Under the premise of en- 

uring performance, our C 

2 FCN can use any off-the-shelf segmen- 

ation network to implement pairwise segmentation with a negli- 

ible number of additional parameters. 

The main contributions of this paper are mainly three-fold: 

• we propose a new pairwise segmentation framework to address 

medical image segmentation with limited training data, intra- 

class heterogeneity and boundary ambiguity in medical imaging 

using a unified network architecture. 
• we propose a proxy supervision which explicitly encodes the 

prior information from the label space and acts as global con- 

straint on the network in the training phase. 
• we propose a new segmentation paradigm through C 

2 FCN with 

more concise architecture beyond CFCN, which learns the log- 

ical relation of the input pair in the training phase only, and 

infers the segmentation probability from the learned logical re- 

lation in the test phase. 

This paper is extended from our preliminary work in 

 Wang et al., 2019 ), and the main extension includes: 

• We extend the proposed CFCN to a general pairwise segmen- 

tation framework, for which we present concrete mathematical 

formulation. Moreover, we extend CFCN from binary segmen- 

tation to multi-category segmentation, which is demonstrated 

with additional multi-organ segmentation. 
• We further propose a compact architecture C 

2 FCN, which is a 

slim version of CFCN as the number of parameters and the 

computational overhead are largely reduced during training, yet 

the segmentation performance is comparative or even better 

especially in alleviating overfitting issues against CFCN on all 

our segmentation experiments. 

The rest of the paper is organized as follows. Section 2 de- 

cribes related works. Section 3 presents the proposed pair- 

ise segmentation framework as well as implementation details. 

ection 4 demonstrates experimental results and the final discus- 

ion and conclusion is summarized in Section 5 . 
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. Related work 

.1. Deep pairwise learning 

Deep pairwise learning, also known as Siamese network, was 

rstly introduced by Bromley et al. (1994) in the signature verifi- 

ation application. Subsequently, pairwise neural network models 

ere extensively applied in computer vision, including face veri- 

cation ( Chopra et al., 2005; Taigman et al., 2014 ), image match- 

ng ( Zagoruyko and Komodakis, 2015; Singh and Lee, 2016 ), object 

racking ( Tao et al., 2016; Bertinetto et al., 2016 ), fine-grained clas- 

ification ( Zhang et al., 2018; Dubey et al., 2018 ), and visual co-

egmentation ( Li et al., 2018a; Chen et al., 2018a; Banerjee et al., 

019; Lu et al., 2019 ). Among these works, co-segmentation are 

losely related to our approach as they both take a pair of samples 

s input and predict pixel-level masks for segmenting meaningful 

bjects. However, there are at least two major differences between 

ur method and co-segmentation. First, our method falls into se- 

antic segmentation where the task consists of the training and 

est phases, which requires annotated training data to learn the 

odel in training, and segment the target in test images during the 

est phase. In other words, the target object could be segmented 

n test if and only if such category samples are annotated in train- 

ng samples and the semantic concepts they stand for have been 

earned by the model in training. Comparatively, co-segmentation 

ims to discover objects commonly appearing in multiple images, 

here the input of the model is more than one image and the 

o-occurring objects are annotated in training, which enables the 

odel to learn whether the input images have co-occurring ob- 

ects and segment them. Second, methods of semantic segmen- 

ation cope with multiple known categories in training and test 

hases. In contrast, co-segmentation usually works on multiple im- 

ges to predict whether the segmented pixels belong to a single 

et unknown category. 

Regardless of the application scenarios, the aforementioned 

orks mainly fall into two categories, namely metric-learning 

ethods ( Bromley et al., 1994; Chopra et al., 2005; Taigman et al., 

014; Zagoruyko and Komodakis, 2015; Singh and Lee, 2016; Tao 

t al., 2016; Bertinetto et al., 2016; Zhang et al., 2018; Dubey 

t al., 2018; Banerjee et al., 2019 ) and feature interaction methods 

 Li et al., 2018a; Chen et al., 2018a; Lu et al., 2019 ). The former

ethods adopt such a strategy where the two streams of Siamese 

etworks, respectively, extract the features of input pairs, and 

hen use the features to compute a similarity metric or to learn 

 similarity metric with an additional network. For example, in 

 Bromley et al., 1994 ), two sub-networks were adopted to extract 

eatures from two signatures, and the two branches of features 

re then used to learn a metric to predict whether the input 

ignatures are from the same class. The latter methods directly 

dopt a Siamese structure to capture the relationship between 

wo feature streams, which utilizes the information shared across 

hem and enables them to mutually learn from each other. For 

xample, Li et al. (2018a) employed a mutual correlation layer 

o compute localized correlations for highlighting the common 

bjects. Chen et al. (2018a) adopted a similar way where an 

ttention module was used to select the semantically related 

eatures for image co-segmentation. Lu et al. (2019) proposed 

 global co-attention mechanism to model inherent correlation 

mong video frames for video object segmentation. Although our 

ethod introduces an additional sub-networks (dubbed fusion 

et) except for two Siamese sub-networks, like metric learning 

ethods ( Zhang et al., 2018; Banerjee et al., 2019 ), our method 

ainly focuses on exploiting prior knowledge from the label space 

hrough a global operator, and the fusion net plays the role for 

ridging the feature space and the label space by fitting the global 

perator. 
3 
.2. Deep prior knowledge modeling 

There are some remarkable works for modeling the manifold 

r prior knowledge underlying the target objects. One group lever- 

ge the intrinsic relations among the same category of pixels to 

mprove the performance of FCNs. For example, a dense condi- 

ional random field (CRF) was attached to the FCN as a postpro- 

essing step ( Chen et al., 2017 ) or jointly trained with the FCN 

 Zheng et al., 2015 ) to preserve the boundary of the target objects. 

imilarly, Liu et al. (2017) proposed a spatial propagation network 

o learn an affinity matrix for modeling dense, global pairwise re- 

ationships of an image, and Ke et al. (2018) proposed an adaptive 

ffinity field to encode spatial structural information and geometric 

egularities through the label relations in the training process. 

Another group of methods improve the segmentation perfor- 

ance of FCNs by explicitly or implicitly modeling high-order 

rior knowledge in-between different objects in medical im- 

ges/volumes, such as shape and topological structures. Typi- 

ally, Chen et al. (2016) took gland objects and contours as 

uxiliary information under a multi-task learning framework to 

oost the gland segmentation from histology images. To model 

he shape manifold space and correct topological incoherency 

f segmentation networks, a non-linear shape model pre-learned 

y convolutional autoencoder (CAE) ( Ravishankar et al., 2017b ) 

nd a topology coherence model learned by variational auto- 

ncoder ( Araújo et al., 2019 ) were respectively incorporated in 

n FCN. Ravishankar et al. (2017a) proposed a novel framework 

ased on deep learning to jointly learn the foreground, back- 

round and shape to improve segmentation accuracy. BenTaieb and 

amarneh (2016) proposed a topology-aware loss to train the 

CN for coding geometric and topological priors of containment 

nd detachment on histology gland segmentation. A similar idea 

 Mosinska et al., 2018 ) was used to capture higher-order topologi- 

al features of linear structures, where the topology-aware loss was 

onstructed by the response of selected filters from a pre-trained 

GG19 network ( Simonyan and Zisserman, 2014 ). 

Different from the two groups of methods, we encode the prior 

nowledge through a global function of ground truth of input pairs, 

nd focus on both local context and global shape priors. 

. Methodology 

Given a training dataset D ={ (x i , y i ) } N i =1 
of Nsamples, x i ∈

 

H×W is the i -th sample with height Hand width W, and y i ∈
 0 , 1 } H×W ×K is the associated label over Kclasses. Different from the 

raditional semantic segmentation aiming at training a model that 

redicts the target segmentation with a single input, the proposed 

airwise segmentation framework takes sample pairs as input and 

ynergistically segment them through the CFCN model f, which can 

e formally formulated as 

f (x i , x j ; W ) = (y i , y j , y i j ) , (1)

here W is the parameters of f, and y i j is the proxy supervision de- 

ived from a user-designed function g proxy to explicitly exploit the 

rior information from the mask y i and y j , i.e., 

 i j = g proxy (y i , y j ) . (2) 

rom the point of network optimization, proxy supervision can be 

egarded as a global constraint on the network to fit inherent prior 

nowledge explored by g proxy . 

.1. Conjugate fully convolutional network 

In the following sections, we present the details of the proposed 

airwise segmentation network CFCN and introduce the proxy su- 

ervision g proxy to model location correlation and shape prior for 
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Fig. 2. The framework of the proposed conjugate fully convolutional network, 

where the two encoders share the same architecture and parameters, so do the 

two decoders. The black solid line arrows show the forward propagation, and the 

red dotted line arrows mark the gradient flow direction of the back propagation. 

Note that only one segmentation branch (the shaded part) is required for the infer- 

ence phase. (For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article.) 
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Fig. 3. The illustration of the proxy supervision implemented by logical operation 

between input pairs for addressing intra-class heterogeneity and boundary ambigu- 

ity. The logical operation ∧ and �denote logic AND and logic XOR , which result in an 

intersection map marked in blue and a difference map marked in red, respectively. 

(a) Intra-patient pair, the proxy supervision between two slices from the same case; 

(b) Inter-patient pair, the proxy supervision between two slices from different cases. 

(For interpretation of the references to colour in this figure legend, the reader is re- 

ferred to the web version of this article.) 
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ddressing the challenges arisen by intra-class heterogeneity and 

oundary ambiguity. 

.1.1. Network architecture 

As illustrated in Fig. 2 , the CFCN model consists of three parts: 

wo conjugate sub-networks made up of an encoder and a decoder, 

ith each for segmenting one single sample of an input pair, and 

 fusion net for learning the proxy supervision. 

The two conjugate sub-networks employ two identical FCNs 

ith encoder-decoder architecture, e.g., U-Net ( Ronneberger et al., 

015 ) and DeepLabv3+ ( Chen et al., 2018b ). To capture the intrinsic

elations of pairwise input and encode the manifold of target ob- 

ects, the two sub-networks share the same weights in the encoder 

nd decoder layers, which implies that the features captured by 

FCN should be sufficient to represent the target object and robust 

or distinguishing background. In this paper, in order to reduce the 

umber of parameters and improve computation efficiency, we fur- 

her adopt a conjugate DeepLabv3+ with a ResNet-18 backbone, 

hich contains four residual blocks with 18 layers in total. 

The fusion net takes the element-wise sum of the features (ly- 

ng at the same layers) of two conjugate sub-networks from one or 

ore layers as input, in order to capture the location-aware repre- 

entation under the proxy supervision. In this paper, the proposed 

usion net exploits two streams of input, including low-level fea- 

ures from the first residual blocks of ResNet18 and high-level fea- 

ures from the decoder of two conjugate sub-networks. (For sim- 

licity, we only show one stream of input to the fusion net in 

ig. 2.) To adaptively learn global context information for fitting 

he proxy supervision, we specially design a fusion net. Inspired 

y Yu et al. (2018) , we adopt a channel attention block to refine

he low-level features, and further element-wisely add the result- 

ng features to the high-level features. Then, the features are fed 

nto a 3 × 3 convolutional layer and bilinearly up-sampled to the 

ame size as output corresponding to the proxy supervision maps. 

.1.2. Proxy supervision 

As aforementioned, proxy supervision is a global constraint on 

he network, which can be employed to refine the network by de- 

igning g proxy . Although the form of g proxy is general, we hope that 

 proxy explicitly models task-related prior knowledge. To this end, 

e study the challenging issues arisen by intra-class heterogene- 

ty and boundary ambiguity with a handful of training samples on 

edical image segmentation. 
4 
As Fig. 1 shows, we revisit the aforementioned challenges in 

edical imaging: 1) Intra-class heterogeneity, i.e., the target ob- 

ects in different images/volumes share the same semantic label 

ut different appearances. For example, in liver segmentation, both 

ndividual anatomy variability and imaging device difference can 

esult in intra-class heterogeneity. Especially with limited train- 

ng data, the network is sensitive to intra-class inconsistency and 

rone to overfitting. 2) Boundary ambiguity, where in-between tar- 

et organs and the neighboring tissues suffer from a low contrast, 

hich usually occurs during imaging. Since the traditional FCN in 

his scenario is over-parameterized, it tends to perform well on 

he training dataset while poorly on the test dataset. Thus, how 

o trade-off between exactly modeling the manifold of target ob- 

ects and robustly representing the individual difference is the key 

f the proxy supervision. 

Inspired by the human-like comparison learning, we utilize log- 

cal operations, including logic AND and logic XOR , to establish 

he correlation of the two input samples at the same location for 

ddressing the intra-class heterogeneity and boundary ambiguity. 

ormally, logic AND is to make the pixels, belonging to the target 

bject at the same location, respond to one single mask map, i.e., 

 

1 
i j = y i ∧ y j , (3) 

here ∧ is the element-wise logic AND operation. Logic XOR is to 

ake the pixels, only one belonging to the target object at the 

ame location, respond to one single mask map, which can be 

chieved by element-wise logic XOR operation �on groundtruth 

aps y i and y j , i.e., 

 

2 
i j = y i � y j . (4) 

As shown in Fig. 3 , the blue region denotes the proxy super- 

ision y 1 
i j 

and the region masked in red denotes proxy supervision 

 

2 
i j 

. Specifically, Fig. 3 (a), shows the proxy supervision between two 

lices from the same case (an intra-patient pair), and Fig. 3 (b) 

hows the proxy supervision between two slices from different 



R. Wang, S. Cao, K. Ma et al. Medical Image Analysis 67 (2021) 101876 

c

w

t

s

i

d

f

a

t

t

c

c

p

p

a

i

i

s

e

t

w

a

w

y

y  

s

c

t

y

i

t

i

p

m

3

l

m

w

o

y  

s

r  

t

a

r

L

w

f  

a

l

w  

f

a

r

l

Fig. 4. The framework of the proposed compact conjugate fully convolutional net- 

work. The network has two identical encoders with shared parameters, and only 

one branch for fitting the proxy supervision. Note that a plain decoder, same as the 

baseline (e.g., DeepLabv3+ ( Chen et al., 2018b ) in this paper), is used in this branch 

for modifying the baseline as little as possible, which differs from CFCN that em- 

ploys a tailored fusion net. The black solid and red dotted line arrows show the for- 

ward and backward propagation, respectively. In the test phase, the segmentation 

probability map is inferred according to Eq. (12) . (For interpretation of the refer- 

ences to colour in this figure legend, the reader is referred to the web version of 

this article.) 
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ases (an inter-patient pair). In the training phase, a slice is paired 

ith different intra/inter-patient slices, and each pixel’s label is de- 

ermined by itself and the other pixel from its paired slice (at the 

ame location). In other word, its label change dynamically accord- 

ng to its paired pixels. During training, the network is trained un- 

er the guidance of the proxy supervision, which discriminates the 

ollowing three scenarios for binary segmentation: the two pixels 

re from the target object simultaneously, there is only one from 

he target object, they are both from background. This indicates 

hat fitting the aforementioned proxy supervision requires to dis- 

riminate the logical correlation of paired pixels through such a 

omparison learning, thus the predictive confidence will be im- 

roved and a misclassified pixel may be corrected by different 

aired pixels (a slice may be paired with different slices) to allevi- 

te the intra-class heterogeneity. 

As for boundary ambiguity, we know that accurately model- 

ng manifolds of target objects is a potential solution to address 

t. Therefore, we propose to sample the intra-patient pairs with a 

mall interval along the axial direction, where the exposure of pix- 

ls lying in the target boundary is improved and the difference of 

he masks helps encode the shape prior (see Fig. 3 (a)). Specifically, 

e employ the proxy supervision g proxy to model the shape prior in 

n end-to-end training manner, which ultimately assists the net- 

ork to distinguish ambiguous boundary. 

Taking liver segmentation as an example, we consider y 1 
i j 

and 

 

2 
i j 

as an integration, and then the overall proxy supervision 

 i j = { y 1 
i j 
, y 2 

i j 
} can be implemented by an additional 3-category

egmentation task, where the target label map consists of three 

hannels, including the intersection of background, the intersec- 

ion of the target objects y 1 
i j 

and the difference of the target objects 

 

2 
i j 
, respectively. For multi-category segmentation, the extension 

s natural where the maps of the proxy supervision are twice 

he number of categories and the fitting of the proxy supervision 

s multi-label segmentation (the reason is that a pixel of the 

roxy supervision may have two labels simultaneously) instead of 

ulti-class segmentation. 

.1.3. Training and inference 

The objective function of pairwise segmentation can be formu- 

ated as 

in 

W 

E (W ) = 

∑ 

i, j 

L 

(
(y i , y j , y i j ) , f (x i , x j ; W ) 

)
, (5) 

here L (·, ·) is the loss function to measure the error between the 

utput of CFCN model f and the overall supervision constituted by 

 i , y j and y i j . Since the output f (x i , x j ) consists of three branches of

egmentation maps (denoted as p i , p j and p i j for convenience) cor- 

esponding to the two ground truth of paired inputs y i and y j , and

he proxy supervision y i j , respectively, the CFCN can be viewed as 

 multi-task model. More specifically, the loss function L can be 

ewritten as 

 

(
(y i , y j , y i j ) , f (x i , x j ; W ) 

)
= L 1 (y i , p i ) + L 2 (y j , p j ) 

+ λL proxy (y i j , p i j ) , (6) 

here L 1 , L 2 and L proxy refer to the pixel-level segmentation losses 

or measuring the error between y k and p k , k = i, j, i j, respectively,

nd λis a user-preset weight used to balance the contribution of 

osses between input pairs and the proxy supervision. In this paper, 

e adopt the Dice loss for L 1 and L 2 , and the multi-class Dice Loss

or L proxy , and preset λto 2. 

The proposed CFCN is trained in an end-to-end manner with 

ll three branches updated simultaneously. As the input pairs are 

andomly selected during the training phase without any particu- 

ar contextual order, either of the two conjugate branches should 
5 
e self-sufficient for the segmentation. Therefore, only one sub- 

etwork is required in the test phase (see Fig. 2 ) and the additional

usion branch is also removed. 

.2. Compact conjugate fully convolutional network 

.2.1. Architecture 

Revisiting the pairwise segmentation framework and combining 

q. (1) and Eq. (2), we have 

f (x i , x j ; W ) = 

(
y i , y j , g proxy (y i , y j ) 

)
, (7) 

here the image space and the label space are bridged by a pair- 

ise segmentation network f, and the proxy supervision operator 

 proxy acts as global constraints for exploiting the prior knowledge. 

lthough CFCN model achieves significant performance improve- 

ent compared with the corresponding baseline, it also brings 

bout the increase of model parameters. In fact, CFCN has large 

odel redundancy because only part of the network parameters 

s used in the inference process, and the network is asymmetric, 

.e., f (x i , x j ; W ) � = f (x j , x i ; W ) . A bold yet natural strategy to im-

rove CFCN is to use any off-the-shelf network constrained by an 

ppropriate proxy supervision to implement pairwise segmenta- 

ion, which means the pairwise segmentation network just has one 

ead for fitting the proxy supervision, where the two branches of 

ecoders fitting ground truth of the input pairs are removed from 

he Siamese structure, as shown in Fig. 4 . The formulation is 

f (x i , x j ; W ) = g proxy (y i , y j ) , (8) 

here the two essential properties, i.e., reflexivity and symmetry 

re simultaneously strengthened. 

Reflexivity: The reflexivity indicates that when the input pair 

onsists of the same sample, the network can output the objects 

orresponding to its ground truth. Under this rule, we have 

f (x i , x i ; W ) = y i . (9) 

Symmetry: The symmetry signifies that the network is invari- 

nt to the ordering of pairwise inputs 

f (x i , x j ; W ) = f (x j , x i ; W ) . (10) 
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1 https://competitions.codalab.org/competitions/17094 . 
2 https://chaos.grand-challenge.org/ . 
s our proxy supervision operator g proxy is predefined, the symme- 

ry rule just requires the network invariant to input permutation 

nd a simple strategy is to aggregate the information of each input 

sing a simple symmetric function ( Zaheer et al., 2017; Qi et al., 

017 ). Specifically, we employ a fully parameter-shared encoder 

f en (·; W 1 ) to capture features of the pairwise inputs, respectively, 

nd aggregate the features with a permutation-invariant aggrega- 

ion operation (such as element-wise sum operation and element- 

ise max operation), and then the resulting features are fed into 

he decoder f de (·; W 2 ) to fit the proxy supervision. This can be for-

ulated as 

f (x i , x j ; W 1 , W 2 ) ≈ f de 

(
f en (x i ; W 1 ) � f en (x j ; W 1 ) ; W 2 

)
, (11) 

here �denotes a permutation-invariant aggregation operation. 

The next cornerstone is how to predefine the proxy super- 

ision to train the network to satisfy the reflexivity and the 

ymmetry. According to the Eqs. (8) -(10), the proxy supervision 

 proxy should be such a function that makes y i and y j satisfy the 

onsistent relation, i.e., 1) reflexivity g proxy (y i , y i ) = y i ; 2) symmet-

ic g proxy (y i , y j ) = g proxy (y j , y i ) . Revisiting the proposed proxy su-

ervision in Section 3.1.2 , the logic AND operation obviously satis- 

es the reflexivity and symmetry; however, the logic XOR opera- 

ion only satisfies the symmetry but not reflexivity ( y 2 
i j 

= y i � y i =
 ). Actually, for the proxy supervision y i j = { y 1 

i j 
, y 2 

i j 
} proposed in

ection 3.1.2 , we have g proxy (y i , y i ) = { y i , 0 } . According to Eq. (8) ,

e can get a slice’s ground truth when it is taken as input for both

ranches of the network f, i.e., 

f (x i , x i ; W ) = { y i , 0 } . (12) 

herefore, the proxy supervision proposed in Section 3.1.2 can be 

eused for training the one-head network f by minimizing the fol- 

owing objective function 

in 

W 

E (W ) = 

∑ 

i, j 

L 

(
y i j , f (x i , x j ; W 1 , W 2 ) 

)
, (13) 

nd in the test phase, the segmentation probability maps are in- 

erred according to Eq. (12) . Concretely, we just input a pair of the

ame slice (i.e., x i = x j ) and leverage the partial output maps fit-

ing the logic AND proxy supervision to predict the segmentation 

aps. In a word, we need not to incur overhead to employ two 

ecoders fitting each ground truth of the input pair explicitly. 

.2.2. Complexity analysis 

As the proposed compact conjugate fully convolutional network 

an be equipped with any off-the-shelf network, we hereby ana- 

yze relative complexity between C 

2 FCN and its baseline. In fact, 

he parameters of C 

2 FCN have the same magnitude as its baseline, 

ince the increase of the number of parameters is introduced by 

oubling the output channels, where the increased number of pa- 

ameters is the same as that of the last convolutional layer of its 

aseline. In this paper, we take DeepLabv3+ ( Chen et al., 2018b )

ith a ResNet-18 backbone as a baseline, and the resulting C 

2 FCN 

as a total of 16.60M parameters, which increases the number of 

arameters less than 0.01M compared with DeepLabv3+. More en- 

ouragingly, C 

2 FCN brings negligible computational overhead in the 

est phase, since the input pair is the same slice such that we 

nly need to forward propagate it through the encoder and de- 

oder once, and the additional computation is mainly determined 

y the increased number of parameters of the last convolutional 

ayer, which will be negligible compared with the computational 

verhead that the network requires. 

. Results and discussion 

In this section, we present experimental results of our proposed 

ramework for 2D medical image segmentation. More specifically, 
6 
e first substantiate the effectiveness of our proposed framework 

or the pathological liver segmentation. Second, we further ex- 

eriment with multi-modal MR images for multi-organ segmen- 

ation. All experiments are implemented with the PyTorch frame- 

ork ( Paszke et al., 2017 ) running on two NVIDIA GTX 1080 Ti

raphics cards. 

.1. Datasets and evaluation criteria 

.1.1. Datasets 

For pathological liver segmentation, we evaluate our method 

n the public benchmark dataset of the Liver Tumor Segmenta- 

ion Challenge Dataset 1 (LiTS) ( Bilic et al., 2019 ), which consists of 

01 contrast-enhanced abdominal CT volumes acquired by differ- 

nt scanners and protocols from multiple clinical sites. The dataset 

as a largely varying in-plane resolution from 0.55 mm to 1.0 mm 

nd slice thickness from 0.45 mm to 6.0 mm. Since the challenge 

rganizers only provided a subset of 131 volumes with manually 

abelled liver masks, we perform all our experiments on this sub- 

et. 

As for multi-organ segmentation, we evaluate our method 

n Combined (CT-MR) Healthy Abdominal Organ Segmentation 

2 

CHAOS) for segmentation of four abdominal organs, including 

iver, spleen, right kidney, and left kidney, from MRI images. In 

his paper, we use the second dataset (Abdominal MRI Dataset) of 

HAOS to evaluate our method. This dataset was acquired by a 1.5T 

hilips MRI scanner with two different sequences, i.e. T1-DUAL (in- 

hase and out-phase) and T2-SPIR, each of which has 40 volumes 

20 volumes of each sequence containing manually labelled ground 

ruth) acquired to scan abdomen using different radio frequency 

ulse and gradient combinations. On average, each volume has 36 

lices with a slice size of 256 × 256 pixels. To substantiate the ro- 

ustness and generalization capability of the proposed framework, 

he in-phase and out-phase of T1-DUAL are simply considered as 

wo different modalities, together with the T2-SPIR, which consti- 

ute a three-modality dataset, termed as Sub-CHAOS in this paper. 

e perform all the multi-organ segmentation experiments on the 

ub-CHAOS over 5-fold cross-validation. 

.1.2. Evaluation criteria 

To quantify the segmentation accuracy of pathological liver seg- 

entation, we follow the evaluation procedures of the LiTS chal- 

enge to compute the Dice coefficient. Dice coefficient measures 

he similarity of the two sets V Seg and V GT and is defined as 

ice = 

2 | V GT 

⋂ 

V Seg | 
| V GT | + | V Seg | , (14) 

here V Seg and V GT denote the automatically segmented set of vox- 

ls and the manually annotated ground truth, respectively, and 

 · | denotes the cardinality of a set (i.e., the total number of el- 

ments in the set). In this paper, we evaluate the segmentation 

erformance with an average of Dice per volume score (Dice-per- 

ase) and a global Dice score (Dice-global) which concatenates all 

est volumes into one long volume and computes the Dice coef- 

cient on it. We additionally employ a distance-based evaluation 

etric, Average Symmetric Surface Distance (ASSD), to quantify the 

oundary dissimilarity of the automatic segmentation V Seg from the 

round truth V GT , which is defined as 

SSD = 

1 

| B GT | + | B Seg | 

( ∑ 

x ∈ B Seg 

d(x, B GT ) + 

∑ 

x ∈ B GT 

d(x, B Seg ) 

) 

, (15) 

https://competitions.codalab.org/competitions/17094
https://chaos.grand-challenge.org/


R. Wang, S. Cao, K. Ma et al. Medical Image Analysis 67 (2021) 101876 

w

V

a

w

i

e

4

t  

t

d

s

e

4

b  

5  

s  

c

t

(  

w

o  

t

w

4

L

(  

w  

a

m

w

a

(

s

s

t

t

t

s

p

w

t

i

a

t

c

p

c

s

t

i

f

o

a

i

m

c

i

1

s

(

p

w

i

2

C  

2

i

o

p

a

d

(

t

t

i

t

t

i

m

a

g

a

h

m

f

i

t

d

I

t

l

f

a

t

s

t

t

fi

a

fi

s

s

d

d

w  

t

t

here B GT and B Seg are the border voxel sets of V Seg and 

 GT , respectively, and dis the Euclidean distance from one voxel to 

 voxel set. 

As for evaluating multi-organ segmentation, we run all models 

ith 5-fold cross-validation, and evaluate the performance adopt- 

ng the average evaluation of Dice-per-case and ASSD scores for 

ach organ and the average scores for all organs. 

.2. Experiments on pathological liver segmentation 

Although there exist lots of sound methods for liver segmen- 

ation ( Li et al., 2018b; Fang et al., 2020; Wang et al., 2020 ), au-

omatic segmentation of pathological liver remains a challenge to 

eep FCNs as the presence of any pathology or abnormality may 

eriously distort the scanned texture, especially with small or mod- 

rate amount of training data. 

.2.1. Implementation details 

We use the Adam Optimizer ( Kingma and Ba, 2014 ) with a 

atch size of 16, a learning rate of 10 −4 , and a weight decay of

 × 10 −4 for a total of 40 epochs in training. As the voxel inten-

ity of CT scans range from -10 0 0 HU to over +30 0 0 HU, we trun-

ate the HU values of all volumes to the range of [-200, +250] HU 

o remove the irrelevant details, and then normalize them to [0,1] 

 Li et al., 2018b ). For each of paired inputs, we adopt a 2.5D input

ith three adjacent slices, and the input pairs are sampled from 

ne volume at intervals of 5, 9, and 13 slices along the axial direc-

ion in intra-patient pairs 3 and sampled from two random volumes 

ith each slice paired twice in inter-patient pairs. 4 

.2.2. Comparison experiment 

We evaluate the proposed methods CFCN and C 

2 FCN on the 

iTS dataset in comparison with two benchmark methods U-Net 

 Ronneberger et al., 2015 ) and DeepLabv3+ ( Chen et al., 2018b ),

hich are variants of FCN ( Long et al., 2015 ) and have been

pplied to various scenarios of medical and natural image seg- 

entation, and their effectiveness and generalization have been 

idely proven. Moreover, we compare the performance of CFCN 

nd C 

2 FCN with a Siamese encoder-decoder structure ABDOCS 

 Chen et al., 2018a ) to verify the effectiveness of the proposed 

tructure. 

U-Net ( Ronneberger et al., 2015 ): The architecture of U-Net con- 

ists of a encoder to capture abstract features, a symmetric decoder 

o recover detailed location information, and a skip-connection be- 

ween encoder and decoder to compensate for missing details of 

he pooling layers. 

DeepLabv3+ ( Chen et al., 2018b ): The architecture integrates 

patial pyramid pooling module named strous spatial pyramid 

ooling (ASPP) and encoder-decoder structure into a united FCN, 

hich aids to encode multi-scale contextual information and cap- 

ure sharper object boundaries by gradually recovering the spatial 

nformation. 

ABDOCS ( Chen et al., 2018a ): The method adopts a semantic 

ttention learner to spotlight feature channels that have high ac- 

ivation in all input images and suppress other irrelevant feature 

hannels. With the attention learner, the relationship between a 

air of images is captured with certain high-level features, and the 
3 Please refer to Fig. 2 for a more intuitive explanation. The proposed network 

ontains two branches of input, and each one is taken for segmenting one slice, 

uch as the upper one framed in yellow and the lower one framed in blue. Here, the 

wo framed slices are intra-patient pairs sampled along the axial direction, and 2.5D 

nput means we also take the adjacent slices of the two framed slices, respectively, 

or capturing rich context information. 
4 Sampling slice pairs from similar position of different volumes cannot be rec- 

mmended, due to tedious data processing arisen by the alignment of volumes with 

 different number of slices and slice thickness. 

t

o

f

4

t

a
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7 
nformation shared into these features is utilized to boost the seg- 

entation performance. Since the network was originally used for 

o-segmentation, we use the segmentation loss to enable it apply- 

ng to the segmentation task, and update its backbone as ResNet- 

8 for fair comparison. 

Table 1 shows the average performance of all the compari- 

on methods under 80% and 5% proportions of training samples 

training ratio) on the LiTS dataset. It is easy to observe that the 

roposed CFCN and C 

2 FCN consistently outperform other methods 

ith respect to all evaluation measures. Specifically, with a train- 

ng ratio of 5%, CFCN achieves a Dice-global of 95.11%, which is 

.4% higher than standard FCN variants ( Ronneberger et al., 2015; 

hen et al., 2018b ) and 1.9% than deep pairwise model ( Chen et al.,

018a ); The Dice-per-case is 95.01%, which results in about 1.8% 

mprovement over standard FCN variants and 1.5% improvement 

ver the deep pairwise model; The ASSD score is 1.82mm, out- 

erforming that of standard FCN variants over 1.4mm and 0.9mm 

gainst deep pairwise model. Furthermore, we also try to train 

eep models with an extremely limited training set of one volume 

with a training ratio of 1%). We randomly select one volume from 

he training set of LiTS and whose index is volume-56 . Since in 

his setting the training data only have one volume, sampling the 

nter-patient pair is impossible. As a result, we shuffle the slices of 

he volume and simulate inter-patient pair with each slice paired 

wice (this is not implemented in our conference paper). As shown 

n Table 1 , our CFCN outperforms the second best comparison 

ethod about 6.1%, 7.5%, and 3.0mm in Dice-per-case, Dice-global 

nd ASSD, respectively. The results demonstrate that CFCN is of 

reat potential in dealing with medical image segmentation under 

 limited number of training data. This is partly because our CFCN 

as a Siamese architecture where the input pairs augment the 

agnitude of training samples. More importantly, the CFCN model 

ocuses on modeling the manifold of target objects and eliminat- 

ng the effect of intra-class inconsistency, which is the main reason 

hat CFCN is superior to the ABDOCS ( Chen et al., 2018a ). 

Despite the significant performance improvement, an obvious 

rawback of CFCN is the increase of the number of parameters. 

n contrast, C 

2 FCN only has one-head output and reduces both 

he number of parameters and the inference time to the same 

evel as DeepLabv3+ ( Chen et al., 2018b ) with an acceptable per- 

ormance degradation (0.01% in Dice-global, 0.52% in Dice-per-case, 

nd 0.26mm in ASSD with 5% training ratio) against CFCN. An in- 

eresting finding is that the performance of C 

2 FCN inclines to be 

uperior to that of CFCN with an extremely limited amount of 

raining data, i.e., the training ratio is 1%. This is mainly because 

he parameters of C 

2 FCN is fewer than CFCN, reducing the over- 

tting risk with such a small training set. Besides, CFCN involves 

n additional hyper-parameter in loss function (see Eq. (6) ). Such a 

xed value in training fails to make full use of the proxy supervi- 

ion. By contrast, C 

2 FCN just has one-head output to fit the proxy 

upervision, which dominates the training of the network and re- 

uces the computational overhead for tuning the hyper-parameter 

uring training. 

We show the qualitative segmentation results on LiTS dataset 

ith a training ratio of 5% in Fig. 5 , CFCN and C 

2 FCN are superior

o the comparison methods in delineating the boundary and main- 

aining intra-class consistency of the pathological liver segmenta- 

ion, which manifests the effectiveness of the proposed methods 

n modeling the manifold of target objects and eliminating the ef- 

ect of intra-class inconsistency only with a small training set. 

.2.3. Ablation study 

Effectiveness of the architecture components: To investigate 

he effect of each component of our CFCN model, we perform 

n ablation study on the LiTS dataset with 5% training ratio. We 

espectively study the ablation for the Siamese architecture, the 
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Table 1 

Quantitative comparison between the proposed approaches and the state-of-the-arts on the LiTS dataset ( Bilic et al., 

2019 ) with 80%, 5% and 1% proportions of training samples (training ratio), and the test set is always set as a fixed 

proportion of 20%. 

Training Ratio Evaluation metric U-Net DeepLabV3 + ABDOCS CFCN(Ours) C 2 FCN(Ours) 

80% Dice-per-case ∗(%) 95.91/96.09 95.90/96.12 96.10/96.22 96.26/96.35 96.18/96.30 

Dice-global (%) 96.51 96.51 96.59 96.82 96.71 

ASSD (mm) 1.35 1.46 1.29 1.22 1.25 

5% Dice-per-case ∗(%) 92.01/93.25 92.19/92.65 93.20/93.53 94.76/95.01 94.29/94.49 

Dice-global (%) 92.66 92.71 93.18 95.11 95.10 

ASSD (mm) 3.81 3.25 2.73 1.82 2.08 

1% Dice-per-case ∗(%) 82.73/83.65 82.42/83.14 83.70/85.46 90.77/91.61 90.87/92.01 

Dice-global (%) 81.83 81.09 82.77 90.24 91.60 

ASSD (mm) 8.79 7.30 6.76 3.77 3.65 

∗
Without/with postprocessing through a largest connected component labeling. 

Table 2 

The performance of ablation study for network architectures on the LiTS dataset ( Bilic et al., 2019 ) with 5% training samples, and the test 

set remains fixed as Table 1 . 

Model Siamese architecture Fusion net Multi-head output Proxy supervision Dice-per-case ∗(%) Dice-global (%) 

DeepLabv3 + 92.19/92.65 92.71 

SiamFCN � � 93.07/93.47 92.93 

C 2 FCN � � 94.29/94.49 95.10 

C 2 FCN+ � � � 94.85/95.08 95.19 

CFCN � � � � 94.76/95.01 95.11 

∗
Without/with postprocessing through a largest connected component labeling. 

Fig. 5. Examplar segmentation results on the LiTS dataset with a training ratio of 5%. Here, blue and red lines manifest ground truth and automatic segmentation results of 

deep models, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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usion net, multi-head output, and the proxy supervision. Specif- 

cally, if we assemble these model components from the baseline 

rchitecture of DeepLabv3+ ( Chen et al., 2018b ) in different ways, 

e will get four different models: 1) SiamFCN, of which the 

wo branches are the same as DeepLabv3+ with shared weights, 

nd for each branch the input of the decoder is compensated by 

eatures at the same layer of the other branch; 2) C 

2 FCN, which 

an be regarded as DeepLabv3+ assembling Siamese architecture 

nd the proxy supervision, but the output is one-head; 3) C 

2 FCN+, 

eplacing the decoder of CFCN with the fusion net, which can be 

egarded as a network removing the two segmentation branches of 

FCN; 4) CFCN, in which the Siamese architecture, the fusion net, 

ulti-head output and the proxy supervision are simultaneously 
8 
ncluded. It can be seen from Table 2 that: 1) The four mod- 

ls achieve higher segmentation performance than DeepLabv3+ 

 Chen et al., 2018b ), which indicates the Siamese architecture 

re helpful for the task as the pairwise learning is an efficient 

ata augmentation method. 2) C 

2 FCN significantly outperforms 

iamFCN, which shows the proposed proxy supervision plays an 

mportant role for the performance gains and the network can 

earn the logical relation implied in the proxy supervision. Actually, 

ith a small training set, fitting the proposed proxy supervision re- 

uires to discriminate the logical correlation of pixels at the same 

ocation of input pairs, which improves predictive confidence to al- 

eviate the intra-class heterogeneity. 3) C 

2 FCN+ inclines to achieve 

light performance gains against C 

2 FCN, which shows the fusion 
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Table 3 

The performance of ablation study for intra/inter-patient pairs on the 

LiTS dataset ( Bilic et al., 2019 ) with 5% training samples, and the test 

set remains fixed as Table 1 . 

Dice-per-case (%) ∗ Dice-global (%) 

Identical pairs 89.98/93.07 90.12 

Intra-patient pairs 93.20/94.69 93.14 

Inter-patient pairs 94.31/94.53 94.78 

Intra & inter-patient pairs 94.76/95.01 95.11 

∗
Without/with postprocessing through a largest connected compo- 

nent labeling. 
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et can promote the fitting of the proxy supervision. 4) Compared 

ith C 

2 FCN, CFCN mainly equips two segmentation branches to 

earn the ground truth for input pairs, respectively. Its perfor- 

ance is just comparative with C 

2 FCN and C 

2 FCN+, which further 

anifests that the proposed proxy supervision are sufficient to 

xploit the semantic information for the segmentation task. 

Effectiveness of Intra-patient Pairs and Inter-patient Pairs: 

s aforementioned, CFCN and C 

2 FCN take paired slices as input, 

hich quadratically augment the training samples. For the effi- 

iency of network training, we sample the input pairs in two ways: 

ntra-patient pairs and inter-patient pairs, as shown in Fig. 3 . Con- 

retely, the input pairs are sampled from one volume at intervals 

f 5, 9, and 13 slices in intra-patient pairs, and sampled from two 

andom volumes with each slice paired twice in inter-patient pairs. 

he results on the LiTS dataset with 5% training samples are listed 

n Table 3 . It can be observed that both intra-patient pairs and 

nter-patient pairs largely improve the segmentation performance 

ompared with naive CFCN, which is trained using thesame slice 

aken as input pairs. Moreover, the two ways of sampling the in- 

ut pairs are complementary, since it achieves more performance 

ain when intra-patient and inter-patient pairs are used together. 

.3. Experiments on multi-organ segmentation 

Multi-organ segmentation Gibson et al. (2018) ; 

eng et al. (2020) from different modalities is another challenging 

ut valuable task for many clinical procedures. 

.3.1. Implementation details 

We split the Sub-CHAOS data into 5-folds for cross-validation, 

nd in each round the training set contains 16 cases and the test 

et remains four cases. For each patient’s case, the image is clipped 

o the [2 . 0 , 98 . 0] percentiles of the intensity values of the entire im-

ge and normalized to [0,1] in the end, and all slices in the train-

ng phase are resized to 256 ×256 yet kept the original size in the 

est phase. We train the segmentation networks using the Adam 

ptimizer ( Kingma and Ba, 2014 ) with a learning rate of 10 −4 , a
Table 4 

Quantitative comparison between the proposed a

Sub-CHAOS dataset. Dice-per-case scores ( ±std

cross-validation. 

Method Liver Right Kidney 

Dice-per-case (%) 

U-Net 90.70 ±3.68 86.06 ±4.92 

DeepLabv3 + 90.46 ±2.84 86.91 ±1.94 

ABDOCS 90.90 ±2.78 88.77 ±1.30 

CFCN (ours) 91.76 ±2.28 89.38 ±1.79 

C 2 FCN (ours) 92.09 ±1.52 89.38 ±2.40 

ASSD (mm) 

U-Net 4.18 ±2.19 3.46 ±1.16 

DeepLabv3 + 3.42 ±1.13 2.49 ±0.78 

ABDOCS 2.95 ±0.80 1.89 ±0.33 

CFCN (ours) 2.99 ±1.17 1.78 ±0.41 

C 2 FCN (ours) 2.75 ±0.68 1.73 ±0.44 

9 
eight decay of 5 × 10 −4 with mini-batch size of 20 for a total of 

00 epochs. The input pairs are sampled from one volume at in- 

ervals of 3, 5, and 7 slices in intra-patient pairs and sampled from 

wo random volumes with each slice paired twice in inter-patient 

airs. 

.3.2. Results and discussion 

Since we run all models with 5-fold cross-validation, we 

resent the results adopting the average evaluation of Dice-per- 

ase and ASSD scores for each organ and the average scores for 

ll organs in Tabel 4 . As shown, 1) compared with the baseline 

eepLabv3+ ( Chen et al., 2018b ), our CFCN achieves a large per- 

ormance improvement, i.e., average Dice-per-case score increase 

rom 86.37% to 88.25% while ASSD decreases from 3.14mm to 

.83mm; 2) in terms of Dice-per-case and ASSD, the proposed 

 

2 FCN achieves average scores of 88.62% and 2.47mm, respectively, 

hich significantly outperform all comparison methods; 3) in con- 

rast to left kidney segmentation, the overall performance of C 

2 FCN 

s better than that of CFCN. It is probably because the proxy su- 

ervision acts as global constraints in the training phase of CFCN, 

nd its contribution is affected by the hyper-parameter λin Eq. (6) . 

uch a single parameter fails to adequately imbalance the diver- 

ence of different categories in multi-category segmentation com- 

ared with binary segmentation. As a result, the performance gain 

f CFCN is not as significant as that of C 

2 FCN, where the proxy 

upervision is treated as a complete supervision. 

. Discussion and conclusion 

In this paper, we proposed a new framework for medical image 

egmentation with a limited number of training samples. Specif- 

cally, we focused on addressing the challenging issues arisen by 

ntra-class heterogeneity and boundary ambiguity. Extending our 

reliminary work ( Wang et al., 2019 ), we improved our framework 

rom two-fold: First, we extended the proposed CFCN to a general 

airwise learning framework in Section 3 , where the proxy super- 

ision acted as a global constraint on the network to fit inherent 

rior knowledge from the label space. Except for binary segmenta- 

ion on the LiTS dataset ( Bilic et al., 2019 ), we further extended 

FCN to multi-category segmentation for multi-organ segmenta- 

ion on benchmark dataset CHAOS in Section 4.3 , and the results 

emonstrated that our CFCN could achieve state-of-the-art results 

mong all comparison methods. 

Second, we extended the CFCN to a compact architecture C 

2 FCN 

n Section 3.2 , which can equip with any off-the-shelf segmen- 

ation networks with a negligible number of additional parame- 

ers and computational overhead in the test phase. Specifically, 

e adopted DeepLabv3+ ( Chen et al., 2018b ) as baseline, the re- 

ulting C 

2 FCN achieved competitive results on the LiTS dataset 
pproaches and the state-of-the-art on the 

) are reported in percentage over 5-fold 

Left Kidney Spleen Mean 

85.43 ±4.99 81.14 ±7.82 85.83 

86.00 ±4.86 82.12 ±7.12 86.37 

86.97 ±4.78 84.33 ±4.58 87.74 

88.45 ±4.19 83.41 ±6.13 88.25 

88.17 ±4.17 84.82 ±4.66 88.62 

3.53 ±1.25 7 . 79 ±7.41 4.74 

2.95 ±1.17 3.71 ±1.63 3.14 

2.09 ±0.75 3.73 ±1.48 2.67 

2.06 ±0.79 4.49 ±3.34 2.83 

2.20 ±1.21 3.19 ±1.94 2.47 
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see Table 1 ) and superior results on the Sub-CHAOS dataset (see 

able 4 ) compared with CFCN. However, the number of parame- 

ers and computational overhead of C 

2 FCN were largely reduced 

uring training against those of CFCN. More importantly, the pro- 

osed C 

2 FCN learned the logical relation implied in proxy supervi- 

ion with only one head in the training phase, and the segmenta- 

ion probability was inferred by the learned logical relation in the 

est phase. Compared with CFCN, there was no need to incur over- 

ead of two decoders to explicitly fit the ground truth of the input 

air in C 

2 FCN, which manifested that learning the general relation 

hrough deep models is feasible and potential. 

It is worth mentioning that we employed the proposed pairwise 

egmentation framework to address the challenges arisen by intra- 

lass heterogeneity and boundary ambiguity in this paper. More 

rior information, however, can be exploited by explicitly design- 

ng the function g proxy in Eq. (2) . Another research line in the fu-

ure is to employ the proposed CFCN and C 

2 FCN to more segmen- 

ation scenarios, especially the automatic segmentation of a tube- 

ike structure, such as a blood vessel or small bowel, which often 

olds in the 3D space and the shape prior is difficult to model by 

he intra-patient adjacent slices. Besides, extending our method to 

D models will be a direction of our future research. 

In conclusion, we proposed a new pairwise segmentation 

ramework in this paper for medical image segmentation with a 

imited number of training samples. To address intra-class hetero- 

eneity and boundary ambiguity in medical imaging, we proposed 

 proxy supervision to explicitly encode the prior information from 

he label space, which acted as a global constraint on the net- 

ork in the training phase. Particularly, we proposed a new seg- 

entation paradigm through C 

2 FCN, where the network aimed to 

earn the logical relation between the input pair rather than to di- 

ectly fit the ground truth of the targets as conventional FCNs did, 

nd the segmentation probability of a test sample is inferred by 

he learned logical relation. The experimental results demonstrated 

hat the proposed pairwise segmentation could significantly im- 

rove segmentation accuracy with a limited amount of training 

ata. 
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