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Fourier Series Expansion Based Filter
Parametrization for Equivariant Convolutions

Qi Xie, Qian Zhao, Zongben Xu and Deyu Meng

Abstract—It has been shown that equivariant convolution is very helpful for many types of computer vision tasks. Recently, the 2D
filter parametrization technique has played an important role for designing equivariant convolutions, and has achieved success in
making use of rotation symmetry of images. However, the current filter parametrization strategy still has its evident drawbacks, where
the most critical one lies in the accuracy problem of filter representation. To address this issue, in this paper we explore an ameliorated
Fourier series expansion for 2D filters, and propose a new filter parametrization method based on it. The proposed filter
parametrization method not only finely represents 2D filters with zero error when the filter is not rotated (similar as the classical Fourier
series expansion), but also substantially alleviates the aliasing-effect-caused quality degradation when the filter is rotated (which
usually arises in classical Fourier series expansion method). Accordingly, we construct a new equivariant convolution method based on
the proposed filter parametrization method, named F-Conv. We prove that the equivariance of the proposed F-Conv is exact in the
continuous domain, which becomes approximate only after discretization. Moreover, we provide theoretical error analysis for the case
when the equivariance is approximate, showing that the approximation error is related to the mesh size and filter size. Extensive
experiments show the superiority of the proposed method. Particularly, we adopt rotation equivariant convolution methods to a typical
low-level image processing task, image super-resolution. It can be substantiated that the proposed F-Conv based method evidently
outperforms classical convolution based methods. Compared with pervious filter parametrization based methods, the F-Conv performs
more accurately on this low-level image processing task, reflecting its intrinsic capability of faithfully preserving rotation symmetries in
local image features.

Index Terms—Filter parametrization, equivariant convolution, Fourier series expansion, rotation symmetry of deep network,
convolutional neural networks, image super-resolution.
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1 INTRODUCTION

IN many computer vision and image processing tasks,
there are usually kinds of transformation symmetries

existed across both the local features and global semantic
representations of images [1]. Typical examples include
translation, rotation and reflection symmetries, intrinsically
contained by different kinds of images utilized in both low-
level and high-level computer vision tasks. It is desirable to
make use of such transformation symmetries to reduce the
number of model parameters and enhance the generaliza-
tion capability of machine learning methods.

In the past few years, convolutional neural network
(CNN) based models have achieved great success in many
computer vision and image processing tasks, such as image
recognition, objective detection, semantic segmentation and
image reconstruction [2]. One of the most principal reasons
is that CNN is a shift equivariant network. That is, shifting
an input image of CNN is equivalent to shifting all of its in-
termediate feature maps and output image. In other words,
the translation symmetry is preserved throughout the CNN
layers. Compared with conventional fully-connected neural
networks, this translational equivariance property brings in
weight sharing for CNN, makes the network parameters
being used more efficiently, and thus leads to substantially
better generalization capability. Recently, several kinds of
equivariant CNNs have been further proposed to preserve
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rotations and reflection symmetries beyond current CNNs.
It has been shown that equivariant CNNs can be very
helpful for computer vision tasks on images like biomedical
microscopy and astronomical images [3], [4], [5].

The early equivariant CNNs achieve π/2 degree rotations
and reflection equivariant (i.e., p4 and p4m group equivari-
ant) on square lattices [6]. This kind of CNNs is designed
based on the property that π/2 degree rotation and reflection
on square lattice can be easily implemented by changing
the position of elements in a convolutional filter, and an
element-shared filter set can be easily designed in this way.
Afterwards, HexaConv [7] expanded rotation equivariant to
π/3 degree rotations (i.e., p6 and p6m group equivariant) by
replacing the commonly used square lattices with hexagonal
lattices. However, this category of methods can only deal
with a 4-fold or 6-fold rotational symmetry for images,
since the practically used image data are mostly stored with
square lattices and it is hard to be transformed into lattices
other than hexagonal one.

Very recently, the filter parametrization technique has
been employed to make use of more rotation symmetry
in CNNs [3], [4], [5]. In 2018, Weiler et al. [3] proposed
harmonics based steerable filters to achieve equivariance on
arbitrary degree rotation in the continuous domain. Later
on, Shen et al. [5] further proposed partial differential oper-
ator based equivariant convolution (PDO-eConv). The basic
idea of these methods is to define the to-be-learnt filters
as the linear combination of a set of basis functions (i.e.,
elementary filters) and learn the combination coefficients
[9]. Then, as the example shown in Fig. 1 (a), one can rotate
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Fig. 1. (a) Illustration of filter parametrization by linear combination of basis functions, and the filter rotation based on it. All the filters are with circular
shape masks for better rotation. (b)-(d) The representations (upper) and correlated π/4 rotations (lower) of a given 2D filter, by adopting harmonics
bases [3], 2D Fourier bases [8] and the proposed bases as the basis functions, respectively. (e) The original filter (upper) and its π/4 rotation (lower).

the filter to arbitrary degrees by rotating the basis functions
in the continuous domain and use it to construct rotation
equivariant convolutions.

While the current filter parametrization strategies have
achieved great success in the development of equivariant
CNNs, they still have evident drawbacks. The most critical
one lies in the accuracy of filter representation. For har-
monics based steerable filters [3], [4], the harmonic bases are
strongly bandlimited on purpose to be more robust to rota-
tions (i.e., reducing aliasing during sampling, since the bases
are defined in the continuous domain), which usually leads
to over-smooth configurations on filter representation as
shown in Fig 1(b). Moreover, proper radial profile is usually
necessary for harmonic based filter parametrization, e.g.,
improper parameter setting for the commonly used ring-
shape radial profile would result to unexpected ring-shape
artifacts. This also introduce a parameter tuning problem for
radial profile. As for PDO-eConv, it is just designed for 5×5
filters, and only contains 15 simple elementary filters [5].
Although it can well represent partial differential operators,
it’s not able to finely represent varying kinds and sizes of
filters with high accuracy. The aforementioned inaccuracy
issue in current filter parametrization methods tends to
affect the performance of the corresponding equivariant
convolutions. Especially, this issue will be more severe in
low-level image processing tasks, where the rotation equiv-
ariance of local features is important, but still has not been
fully and accurately explored yet, calling for a practicable
equivariant convolution method.

To address this issue, this study explores a filter
parametrization method for equivariant convolution de-
signing. The contribution of this work can be mainly sum-
marized as follows:

1) We explore the filter parametrization method bas-
ing on 2D fourier series expansion, and propose a fil-
ter parametrization method which is able to alleviate the
low-expression-accuracy problem and the aliasing effect
simultaneously1. Specifically, when the rotation degree is
kπ/2 (k ∈ N), the proposed filter parametrization are exactly
equivalent to 2D inverse discrete Fourier transform, which
ensures that any discrete filter can be represented with no
representation error. Besides, when the rotation degree is

1The aliasing effect here is resulted from the insufficient sampling
rate of the discrete filter when the frequency of bases is too high,
which will lead to an incorrect rotation result. Please refer to the
supplementary material for more details and analysis.

other than kπ/2 (k ∈ N), as shown in Fig. 1 (c) and (d),
the proposed filter parametrization can largely alleviate
the aliasing effect that usually occurs in conventional 2D
Fourier series expansion, inclining to highly improve the
representation capability of filter parametrization for both
low-level and high-level tasks.

2) With the proposed filter parametrization, we construct
a new equivariant convolution method, named Fourier
series expansion based equivariant convolution (F-Conv).
In F-Conv, we first time propose the rotation equivari-
ant convolution for the output layer of CNNs, which is
suitable for applying equivariant convolutions especially
to low-level image processing tasks. We prove that the
equivariance of F-Conv is exact in the continuous domain,
while becoming approximate only after the discretization.
Moreover, we provide theoretical error analysis for the case
when the equivariance is approximate, showing that the
approximation error is dependent on the mesh size and filter
size, complying with our common sense for this task.

3) Experiments on both high-level and low-level com-
puter vision tasks have been implemented for evaluating
the performance of the proposed method. Particularly, this
study applies filter parameterized equivariant convolutions
to the low-level image super-resolution task for the first
time along this research line, and achieves evidently better
performance than conventional filter parametrization based
equivariant convolutions. This reveals the possibility of
filter parametrization based equivariant convolutions on the
low-level image feature preservation, and the potential use-
fulness of this methodology to wider range of applications.

The paper is organized as follows. Section 2 reviews the
related works and introduces some necessary prior knowl-
edge. Section 3 presents the proposed filter parametrization
framework with theoretical analysis on its properties. Based
on this filter parametrization method, Section 4 presents the
F-Conv method on continuous functions and discrete do-
main, respectively. Section 5 then demonstrates experimen-
tal results implemented on typical high-level classification
and low-level image super-resolution tasks, to substantiate
the superiority of the proposed method both visually and
quantitatively. The paper is finally concluded with a future
work discussion.
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2 RELATED WORK AND PRIOR KNOWLEDGE

2.1 Equivariant CNNs

Early attempts for exploiting transformation symmetry
prior in images are mainly designed by heuristics [10], [11],
[12], [13]. Data augmentation [10] is the most commonly
used one among them. The idea is to enrich the training set
with transformed samples to train a model that is robust
to the transformations. Besides, TI-Pooling [11] applied the
transformation invariant pooling operator to the outputs
of parallel architectures for the considered transformation
set. [12], [14] further transformed feature maps with differ-
entiable modules to enforce equivariance transformations.
This category of approaches learns the transformation in-
variance directly from data, which, however, demands for
a relatively large number of parameters and makes the
network prone to overfitting.

Recent works along this line focus on incorporating
transformation equivariance directly into the network ar-
chitecture, i.e., constructing equivariant convolutions. The
aforementioned G-CNN [6] and HexaConv [7] method suc-
cessfully construct equivariant convolutions for π/2 and π/3
rotations, respectively. However, arbitrary degree rotation
equivariance convolutions remain a hard problem due to
the discrete filters exploited in these methods. In order
to exploit more symmetries, [15] and [16] produced fea-
ture maps and filters at different orientations with bilin-
ear interpolation, achieving an inherently approximately
equivariant. [17] used harmonics to extract features and
obtain 360◦ equivariance. However, in these methods, the
expected equivariance cannot be theoretically guaranteed
after Gaussion-resampling or bilinear interpolation.

Current equivariant CNN methods exploit filter
parametrization technique for arbitrarily rotating filters in
continuous domain. [3] and [4] make early attempts by
employing harmonics as steerable filters to achieve exact
equivariance with respect to larger transformation groups in
the continuous domain. The harmonic based approach guar-
antees full rotation equivariance which attracts practical
application and theoretical research. Typically, [18], [19] pro-
vided theoretical treatment of equivariant convolution, and
derive generalized convolution formulaes. Recently, [5] and
[20] designed equivariance by relating convolutions with
partial differential operators and proposed PDO-eConv, and
firstly provided the error analysis to the approximation in
the discrete domain.

The key drawback of these filter parametrization meth-
ods is in the accuracy of filter representation. Specifically, for
harmonics based method, the maximum angular frequen-
cies for each radial part of harmonics are hard to choose,
and one usually has to select lower angular frequencies to
alleviate aliasing effect, which will then easily lead to over-
smooth issue. Besides, the commonly used ring-shape radial
parts need properly tuning multiple parameters, it also can
conduct unexpected ring-shape artifacts. As for PDO-eConv,
it is specifically designed for 5 × 5 filters, with limited and
relatively simple elementary filters [5] which is hard to suffi-
ciently represent varying kinds and sizes of filters with high
accuracy. Such inaccurate-representation issue might less
affect the performance of high-level computer vision tasks,
which mainly require relatively coarse-scale transformation

(a) Input image (b) CNN output (c) Equ. conv. output

Fig. 2. (a) A typical input cartoon image. (b)-(c) Outputs of randomly
initialized CNN and proposed rotation equivariant convolution network,
respectively, where the demarcated areas are zoomed in 3 times for
easy observation.

equivariance knowledge. However, for low-level problems,
one has to consider to represent much finer-grained local
details in pixel level with higher accuracy requirement,
which makes current filter parametrization regimes hardly
be used effectively.

2.2 Prior Knowledge about Equivariance
We follow the equivariance of prior works: Equivariance
of a mapping transform means that a transformation on
the input will result in a predictable transformation on the
output [4], [5]. Specifically, let Ψ be a mapping from the
input feature space to the output feature space, and G is a
group of transformations. Ψ is equivariant with respect to
the action of G, if for any g ∈ G,

Ψ [πg[f ]] = π′g [Ψ[f ]] , (1)

where f can be any input feature map in the input feature
space, and πg and π′g denote how the transformation g acts
on input and output features, respectively.

In this paper, we focus on the rotation equivariance on
2D convolutions2. In this case, G is a group of rotation
transformations, and Ψ is a convolution mapping. For local
features, as shown in Fig. 2, the rotation equivariance can
be easily understood as: Image local textures in different
orientations will result to similar local features along corre-
sponding orientations. From the figure, we can also observe
that rotation equivariant convolution is expected to better
maintain the symmetry of local features underlying the
image as compared to CNN.

3 FILTER PARAMETRIZATION FRAMEWORK

Filter parametrization is one of the most important concepts
for the realization of equivariant convolution. In this section,
we explore the relationship between filter parametrization
and Fourier series expansion, and conduct the proposed
parametrization method.

As shown in Fig. 1(a), the basic idea of filter parametriza-
tion is to define the objective functional filter as the linear
combination of a set of basis functions {ψn}Nn=1, aiming to
get a learnable functional filter ψ : R2 → R. Formally, it can
be expressed as [3], [9]:

ψ(x) =
N∑
n=1

wnψn(x), (2)

2The proposed method can be easily extended to rotation+reflection
equivariance as previous works [4], [5], [6] did.
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Fig. 3. (a) Illustrations of the 2D Fourier bases φckl, with p = 11, k, l = 0, 1, · · · , p− 1. The discretization of high frequency bases in black boxes are
symmetrical to the low frequency bases in red box. (b) The 45◦ rotation results of 2D Fourier bases. (c)-(d) illustration of rotating φc1,1 and φc10,10
by 45◦. Note that φc1,1 is the same as φc10,10, but their rotation results are different to each other, which is due to the heavy aliasing effect in φc10,10.
(e)-(f) Illustrations of the proposed basis set (cosine part) and its 45◦ rotation.

where x = [x1, x2]T ∈ R2 denotes the 2 spatial coordinates,
N is the number of basis functions,wn is the n-th coefficient.
Moreover, the rotation operator πθ can be easily expressed
by coordinate transformation, that is:

πθ[ψ](x) = ψ(U−1θ x),where Uθ=

[
cos (θ) sin (θ)
− sin (θ) cos (θ)

]
, (3)

where θ ∈ (−π, π] denotes the rotation angle and πθ repre-
sents the θ degree rotation operator. In practice, the rotation
operator is usually adopted on the bases instead of the filter
itself, that is

πθ[ψ](x) =
N∑
n=1

wnπθ[ψn](x) =
N∑
n=1

wnψn(U−1θ x). (4)

Previous research has exploited different types of basis
set for filter parametrization, such as harmonics, partial-
differential-operator-like and polynomial bases [3], [4], [5],
[21]. To further improve the representation accuracy of
filter parametrization, it is naturally to construct a Fourier
series expansion based filter parametrization method. Since
Fourier series expansion is equivariant to 2D inverse dis-
crete Fourier transform (DFT), which is with zero represen-
tation error.

2D Fourier bases. A p× p discrete filter φ̃ can be viewed
as the discretization of an underlying 2D function φ(x),
sampling uniformly on the [−(p−1)h/2, (p−1)h/2]

2 area of R2,
where h represents the mesh size of images. Formally, the
2D Fourier bases can be expressed as follows [22]:

φckl(x) = Ω(x) cos

(
2π

ph
[k, l] ·

[
x1
x2

])
,

φskl(x) = Ω(x) sin

(
2π

ph
[k, l] ·

[
x1
x2

])
,

(5)

where k, l = 0, 1, · · · , p − 1 and Ω(x) ≥ 0 is a radial mask
function3 that satisfies Ω(x) = 0 if ‖x‖ ≥ (p+1/2)h. For
intuitive understanding of Eq. (5), illustrations of Fourier
bases (take cosine bases as example) are shown in Fig. 3(a).
Then, the real part of 2D inverse DFT for φ̃ (with circular
shape mask) can be expressed in the following Fourier series
expansion form:

φ(x) =

p−1∑
k=0

p−1∑
l=1

(aklφ
c
kl(x) + bklφ

s
kl(x)) , (6)

3Please refer to the supplementary material for detailed settings of
the radial mask function Ω(x).

where akl and bkl are expansion coefficients. (6) is a specific
case of (2), which means it is also a filter parametrization.

Eq. (6) can represent any discrete filter φ̃ (masked into
circular shape) with zero representation error4. This is be-
cause, one can set coefficients akl and bkl as DFT results of φ̃,
and then inverse DFT can restore φ̃ with zero error. Besides,
it is easy to deduce that Ω(x) doesn’t affect the Fourier series
expansion for x s.t. Ω(x) 6= 0. Thus, Eq. (6) seems to be a
rational filter parametrization.

However, when we use this basis set to represent a
rotated filter by Eq. (4), the rotation result is usually unsat-
isfying, as shown in Fig. 1(c). The incorrect rotation result is
due to aliasing effect5, i.e., the sampling rate of the discrete
filter is insufficient to the high frequency bases. Specifically,
as shown in Fig. 3(d), the aliasing effect will cause the
Fourier bases with higher frequencies to be badly destroyed
after rotation by (3), which effect less to the bases with low
frequencies (as shown in Fig. 3(c)). These aliasing effects
tend to seriously hamper the accuracy for representing the
rotated filter, and thus such 2D Fourier bases set should not
be properly suggested to be directly employed for designing
filter parametrization methods.

Proposed bases and filter parametrization. The key
issue now is to alleviate the aliasing effect in Fourier series
expansion for the rotated cases, while possibly keep its high
accuracy for the rotation free cases. As clearly depicted by
the bases in the lower right corner of Fig. 3 (a) and (b), 2D
Fourier bases with high frequencies will be badly destructed
after rotation. Fortunately, these high frequency bases are
actually symmetry to those with low frequencies (in the top
left of Fig. 3(a)) when there are no rotations. This symmetry
between high frequency and low frequency bases can be
used for alleviating aliasing effect.

Specifically, as shown in Fig. 3, the bases of the four
areas (marked with boxes in red and black colors) in Fig.
3 (a) are symmetrical. This means that we can use the
mirror functions of low frequency bases (in the red boxes)
to replace the high frequency bases (in the black boxes,
which intrinsically cause the aliasing effect). In other words,
for all k > p − 1 − bp/2c, we should use a basis with
frequency k − p to replace the basis with frequency k (b·c is

4Zero representation error means φ̃kl = φ(xkl), where xkl is the
coordinate to the element of φ̃ in its k-th row and l-th column.

5More explanations on this issue is stated in supplementary file.
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the floor operator). This will change the value of frequency
from {0, 1, · · · , p− 1} to {− bp/2c · · · , 0, · · · , p− 1−bp/2c}.
Formally, we propose the following bases:

ϕckl(x) = Ω(x) cos

(
2π

ph

[
k −

⌊p
2

⌋
, l −

⌊p
2

⌋]
·
[
x1
x2

])
,

ϕskl(x) = Ω(x) sin

(
2π

ph

[
k −

⌊p
2

⌋
, l −

⌊p
2

⌋]
·
[
x1
x2

])
,

(7)

where k, l = 0, 1, · · · , p− 1, and Ω(x) is the aforementioned
radial mask function. Illustrations of these bases are shown
in Fig. 3(a) for easy visualization6.

To analyze the properties of the proposed bases, we first
deduce the following conclusion7:

Remark 1. For any mesh size h ∈ R, filter size p ∈ N+, and
grid point x on the p× p mesh of [(1−p)h/2, (p−1)h/2]2, i.e., x1 =
(i− (p−1)/2)h, x2 = (j − (p−1)/2)h, ∀i, j = 0, 1, · · · , p − 1,
let k, l = 0, 1, · · · , p− 1, and then it holds that,

φckl(x) = s(k, l) · ϕcI(k),I(l)(x),

φskl(x) = s(k, l) · ϕsI(k),I(l)(x),
(8)

where ϕckl and ϕskl are defined in (7), φckl, φ
s
kl are defined in (5),

I(·) = ((·) + b(p−1)/2c) %p, and s(k, l) ∈ {−1, 1}, satisfying
s(k, l) = sign(k−p/2+ε)p−1 ·sign(l−p/2+ε)p−1, 0 < ε < 1/2.

From Remark 1, it is easy to see that, the proposed basis
set is exactly equivalent to commonly used 2D Fourier bases
when there is no rotation (or other transformations), just
some of their expansion coefficients being with opposite
signs when s(k, l) = −1. Especially, when p is an odd
number, as shown in Fig. 3 (a) and (e), it is easy to observe
that the framed parts in these two figures are the same to
each other. This implies that the filter parametrization so
designed is equivalent to inverse 2D DFT when there is no
rotation, and there is no representation error in this case.

Moreover, as shown in Fig. 3(f), the aliasing effect can be
largely alleviated when we rotate the proposed bases. Note
that the smallest period of the commonly used 2D Fourier
bases is p

p−1h ≈ h. Thus, that there is a non-zero possibility
for one peak and one valley to exist simultaneously between
two grid points, which intrinsically leads to heavy aliasing
effect in rotation results as shown in Fig. 3 (b) and (c).
Comparatively, the smallest period of the proposed bases
is (ph/bf0c) ≥ 2h. There is thus at most one peak or valley
between two grid points8, which helps alleviate the aliasing
effect.

According to the above analysis, the proposed filter
parametrization not only faithfully keeps the high accuracy
of 2D Fourier bases, but also well weakens the issue of
the aliasing effect. In the following, we will introduce the
equivariant convolutions based on this basis set.

4 EQUIVARIANT CONVOLUTION FRAMEWORK

In this section, we first introduce the equivariant convo-

6Since ∀k, l ∈ Z, cos (v(kx1 + lx2)) = cos (v(−kx1 − lx2)) and
sin (v(kx1 + lx2)) = − sin (v(−kx1 − lx2)), we actually only need
about half number of the bases in Eq. (7). Especially, when p is a odd
number, p2 bases are enough. More detailed analysis on the proposed
bases have been made in the supplementary material.

7The proofs of all the theoretical results in this paper are presented
in supplementary material due to page limitation.

8Half period of cosine and sine functions can only contain one peak
or valley.

TABLE 1
The involved concepts and notations for equivariant convolutions

(eConv) in the continuous and discrete domains, respectively.

Concept Notation

Continuous Discrete

Input Image r(x) I
Transformation Group O(2) S
Group element/Index A,B ∈ O(2) A,B ∈ S
Feature Map e(x,A) FA

Filter (Input) ϕin
(
A−1x

)
Ψ̃A

Filter (Intermediate) ϕA
(
B−1x

)
Φ̃B,A

Filter (Output) ϕout
(
B−1x

)
Υ̃B

eConv (Input) Ψ[r] Ψ̃ ? I

eConv (Intermediate) Φ[e] Φ̃ ? F

eConv (Output) Υ[e] Υ̃ ? F

lutions in continuous domain. It should be noted that the
input and intermediated layers of equivariant convolutions
have been well defined in previous works [3], [4], [5], while
we further introduce a novel equivariant convolution for
the output layer, which is necessary for low-level computer
vision tasks. Then, we discretize the proposed equivariant
convolutions, and provide theoretical analysis for the equiv-
ariant error in discrete domain.

4.1 Necessary Notations and Concepts

To avoid possible confusion cased by different notations in
continuous and discrete domains, we list the major nota-
tions correspondingly used in two domains in Table 1.

Specifically, we represent an image as a two-dimensional
grid function I ∈ Rn×n, and represent an intermediate fea-
ture map as F . Note that in rotation equivariant networks,
a feature map is a multi-channel matrix (i.e., a tensor), as
shown in Fig. 4 (a), with F ∈ Rn×n×t, where the third mode
is with respect to the rotation group S, and t is the number
of elements in S. Moreover, we denote a specific channel in
F as FA ∈ Rn×n, where A ∈ S is a rotation matrix, and also
used as an index for denoting a specific channel in F .

In the continuous domain, we follow the previous works
[4], [5], and consider the equivariance on the orthogonal
group O(2)9. Formally, O(2) = {A ∈ R2×2|ATA = I2×2},
which contains all rotation and reflection matrices. Without
ambiguity, we use A to parameterize O(2). We consider
the Euclidean group E(2) = R2 o O(2) (o is a semidirect-
product), whose element is represented as (x,A). Restricting
the domain of A and x, we can also use this representation
to parameterize any subgroup of E(2). The input image can
be modeled as a function defined on R2, denoted as r(x).
The intermediate feature map can be model as a function
defined on E(2), denoted as e(x,A) (as shown in Table 1,
and r(x) and e(x,A) are the continuous versions of I and
FA, respectively). We denote the function spaces of r and e
as C∞(R2) and C∞(E(2)), respectively10.

9The rotation group S represents a subgroup of O(2), and it is also
regarded as the discretization of O(2) in this paper.

10The smoothness of e means that the feature map e(x,A) is smooth
with respect to x when A is fixed. For simplicity, we set the functional
space as C∞(R2). Actually, in implementation, we only require that
r ∈ C2(R2). The requirement on e is the same.
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With above notations, the transformations on the in-
put and feature maps can be mathematically formulated.
Specifically, for an input r ∈ C∞(R2) and transformation
Ã ∈ O(2), Ã acts on r by

πR
Ã

[r](x) = r(Ã−1x),∀x ∈ R2. (9)

For a feature map e ∈ C∞(E(2)) and transformation Ã ∈
O(2), Ã acts on e by

πE
Ã

[e](x,A) = e(Ã−1x, Ã−1A),∀(x,A) ∈ E(2). (10)

These two transformations will be used in the theoretical
analysis.

4.2 Equivariant Convolutions in Continuous Domain
The equivariant convolutions for input and intermediate
layers have been well defined in previous works [3], [4],
[18], [19], which can be expressed in following formulations.

Input layer. The convolution for input layer is denoted
as Ψ, which maps an input r ∈ C∞(R2) to a feature map
defined on E(2). Specifically, for any (y,A) ∈ E(2),

Ψ[r](y,A) =

∫
R2

ϕin
(
A−1x

)
r(y − x)dσ(x), (11)

where σ is a measure on R2 and ϕin is a parameterized filter
defined in the formulation of Eq. (2).

Intermediate layers. The convolution for intermedi-
ate layer is denoted as Φ, which maps an feature map
e ∈ C∞(E(2)) to another feature map defined on E(2).
Specifically, for any (y,B) ∈ E(2),

Φ[e](y,B)=

∫
O(2)

∫
R2

ϕA
(
B−1x

)
e(y−x,BA)dσ(x)dv(A), (12)

where v is the Haar measure on O(2), A,B ∈ O(2) denote
orthogonal transformations in the considered group, and
ϕA indicates the filter with respect to the channel of feature
map indexed by A. Note that the discrete version of these
convolutions are shown in Fig. 4 for easy understanding.

In practice, different manners have been proposed to
extract the information of interest in the final output layer
of networks. For high-level tasks, such as classification
and segmentation, the output layer for rotation-invariant
networks can be easily set as a pooling over the orientation
dimension [3], [4], [5]. Therefore, equivariant convolutions
for input and intermediate layers are enough for these tasks.
However, for low-level tasks, an equivariant convolution for
the output layer is supplementally required to guarantee
equivariance while avoiding the detail texture losing of im-
ages. We thus define the following equivariant convolution
for the output layer.

Output layer. We use Υ to denote the convolution on the
final layer, which maps a feature map e ∈ C∞(E(2)) to a
function in C∞(R2). Specifically, for any y ∈ R2, we define:

Υ[e](y)=

∫
O(2)

∫
R2

ϕout
(
B−1x

)
e(y−x,B)dσ(x)dv(B), (13)

where B ∈ O(2) and ϕout is a parameterized filter.
The convolutions for input and intermediate layers have

been proved in previous work [3] that they are equivariant
under orthogonal transformations (O(2)). By using similar
manner, it is easy to deduce that the proposed convolution

for output layer is also equivariant under orthogonal trans-
formations. In summery, we have the following conclusion.

Remark 2. For r ∈ C∞(R2), e ∈ C∞(E(2)) and Ã ∈ O(2),
the following results are satisfied:

Ψ
[
πR
Ã

[r]
]

= πE
Ã

[Ψ [r]] ,

Φ
[
πE
Ã

[e]
]

= πE
Ã

[Φ [e]] ,

Υ
[
πE
Ã

[e]
]

= πR
Ã

[Υ [e]] ,

(14)

where πR
Ã

, πE
Ã

, Ψ, Φ and Υ are defined by (9), (10), (11), (12)
and (13), respectively.

By substituting the filter parametrization as defined
in Eq. (2), we can obtain the proposed equivariant con-
volutions, i.e., Fourier series expansion based equivariant
convolution (F-Conv). Since the convolution operators are
naturally translation equivariant, it is easy to verify that the
proposed convolutions are equivariant over E(2).

4.3 Equivariant Convolutions on Discrete Domain
Next, we show how to apply the F-Conv to 2D digital
images. Formally, an image I ∈ Rn×n can be viewed
as a two-dimensional discretization of a smooth function
r : R2 → R at the cell-center of a regular grid with n × n
cells, i.e., for i, j = 1, 2, · · · , n,

Iij = r(xij), (15)

where xij=
((
i− n+1

2

)
h,
(
j− n+1

2

)
h
)T

and h is the mesh size.
Similarly, an intermediate feature map F ∈ Rn×n×t in

equivariant networks is a multi-channel tensor, which can
be viewed as the discretization of a continuous function
defined on Ẽ = R2oS, where S is a subgroup11 ofO(2) and
t is the number of elements in S. Formally, F can be repre-
sented as a three-dimensional grid tensor sampled from a
smooth function e : R2 × S → R, i.e., for i, j = 1, 2, · · · , n,

FAij = e(xij , A), (16)

where xij =
((
i− n+1

2

)
h,
(
j − n+1

2

)
h
)T

and A ∈ S.
A single channel p×p filter represents a two-dimensional

grid function obtained by discretizing a smooth function
ϕ : R2 → R, which satisfies ϕ(x) = 0,∀x, s.t., ‖x‖ ≥
(p+1/2)h. Accordingly, we define filters for input, interme-
diate and output layers as Ψ̃ ∈ Rp×p×t, Φ̃ ∈ Rp×p×t×t and
Υ̃ ∈ Rp×p×t, respectively, where t is the number of elements
in S. For i, j = 1, 2, · · · , p, and A,B ∈ S, we denote

Ψ̃A
ij = ϕin

(
A−1xij

)
,

Φ̃B,Aij = ϕA
(
B−1xij

)
,

Υ̃B
ij = ϕout

(
B−1xij

)
,

(17)

where xij =
((
i− p+1

2

)
h,
(
j − p+1

2

)
h
)T

, ϕin, ϕout and
ϕA are parameterized filters defined in the formulation of
(2), and ϕA indicates the filter with respect to the channel of
feature map indexed by A.

It should be noted that the filters in (17) can be learnt by
calculating the expansion coefficients as shown in (2). For

11In practice, the subgroup is usually assumed to contain t rotations
with 2π/t degree for an integer t ∈ N+.
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(a) Convolution on input layer (b) Convolution on intermediate layer (c) Convolution on output layer

Image        Feature Map

Feature Map        Image
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Fig. 4. Illustration of an example network constructed by the proposed equivariant convolutions, where we set the transformation group S (Ai, Bi ∈
S) as 2πi/3 rotations, i = 1, 2, 3. (a)-(c) Equivariant convolutions of the input layer, intermediate layers, and output layer, respectively.

example, for any A ∈ S, Ψ̃A shares a set of representation
coefficients, and can be obtained by learning the coefficients
of the bases

{
ϕ̃cAkl , ϕ̃

sA
kl |k, l = 0, 1, · · · , p− 1

}
, where(

ϕ̃cAkl

)
ij

= ϕckl(A
−1xij),

(
ϕ̃sAkl

)
ij

= ϕskl(A
−1xij). (18)

Accordingly, we can discretize the continuous convolu-
tions for input layer, intermediate layers and output layer
(i.e., (11), (12) and (13),) as follows.

Input layer. For any A ∈ S the convolution of Ψ̃ and I
can be computed by discretizing Eq. (11), which is(

Ψ̃ ? I
)A

= Ψ̃A ∗ I, (19)

where ∗ is the commonly used discrete 2D convolution.
Intermediate layers. For any B ∈ S the convolution of

Φ̃ and F can be computed by discretizing Eq. (12), which is(
Φ̃ ? F

)B
=
∑
A∈S

Φ̃B,A ∗ FBA. (20)

The implementation of (20) is relatively more complex, since
there is a channel shift of F caused by adopting B on
its channel indexes. Therefore, we will further introduce
the implementation detail of this convolution in the later
sections. So far, one can see Fig 4 (b) for a sketchy under-
standing of this equivariant convolution.

Output layer. The convolution of Υ̃ and F can be
computed by discretizing Eq. (13), which is

Υ̃ ? F =
∑
B∈S

Υ̃B ∗ FB . (21)

One can see Fig 4 for easy understanding these equivariant
convolutions.

Although it has been proved that the equivariance of
continuous convolutions (11), (12) and (13) are exact, their
discretization still contain approximation errors. We then
provide an error analysis for the discretized convolutions.
Firstly, we denote the transformations on I and F by(

π̃R
Ã

(I)
)
ij

= πR
Ã

[r](xij),
(
π̃Ẽ
Ã

(F )
)A
ij

= πE
Ã

[e](xij , A),

∀i, j = 1, 2, · · · , n,∀A, Ã ∈ S.
(22)

Then, we deduce the following theorem for evaluating
approximation errors of the equivariance.

Theorem 1. Assume that an image I ∈ Rn×n is discretized
from the smooth function r : R2 → R by (15), a feature map F ∈
Rn×n×t is discretized from the smooth function e : R2 × S → R
by (16), |S| = t, and filters Ψ̃, Φ̃ and Υ̃ are generated from
ϕin, ϕout and ϕA,∀A ∈ S, by (17), respectively. If for any
A ∈ S, x ∈ R2, the following conditions are satisfied:

|r(x)|, |e(x,A)| ≤ F1,

‖∇r(x)‖, ‖∇e(x,A)‖ ≤ G1,

‖∇2r(x)‖, ‖∇2e(x,A)‖ ≤ H1,

|ϕin(x)|, |ϕA(x)|, |ϕout(x)| ≤ F2,

‖∇ϕin(x)‖, ‖∇ϕA(x)‖, ‖∇ϕout(x)‖ ≤ G2,

‖∇2ϕin(x)‖, ‖∇2ϕA(x)‖, ‖∇2ϕout(x)‖ ≤ H2,

∀‖x‖ ≥ (p+1)h/2, ϕin(x), ϕA(x), ϕout(x) = 0,

(23)

where p is the filter size, h is the mesh size, and ∇ and ∇2 denote
the operators of gradient and Hessian matrix, respectively, then
for any Ã ∈ S, the following results are satisfied:∥∥∥Ψ̃ ? π̃R

Ã
(I)− π̃Ẽ

Ã

(
Ψ̃ ? I

)∥∥∥
∞
≤ C

2
(p+ 1)2h2,∥∥∥Φ̃ ? π̃Ẽ

Ã
(F )− πẼ

Ã

(
Φ̃ ? F

)∥∥∥
∞
≤ C

2
(p+ 1)2h2t,∥∥∥Υ̃ ? π̃Ẽ

Ã
(F )− π̃R

Ã

(
Υ̃ ? F

)∥∥∥
∞
≤ C

2
(p+ 1)2h2t,

(24)

where C = F1H2 + F2H1 + 2G1G2, π̃R
Ã

, π̃Ẽ
Ã

, Ψ̃, Φ̃ and Υ̃ are
defined by (17) and (22), respectively, the operators ? involved in
Eq. (24) are defined in (19), (20) and (21), respectively, and ‖ ·‖∞
represents the infinity norm.

In practice, the conditions in the above theorem are
easy to be satisfied, which only need the first and second
derivatives of the underlying input function to be bounded.
From the theorem, it is easy to see that the accuracy of
equivariance is mainly dependent on the patch size, the
mesh size and the group size. This fully complies with our
common sense that the smaller mesh size and the fewer
pixel number in a filter are, the smaller approximation
error should be. When the mesh size approaches zero, the
approximation error also approaches zero. Moreover, the
theorem also implies that applying a rotation to the input
image results in a joint spatial rotation operation and cyclic
shift over the orientation indices of the feature maps.
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Combining the proposed discrete F-Conv with nonlin-
earities such as ReLU, which do not disturb the equivari-
ance, we can construct networks that preserve equivariance
over the entire network.

4.4 Implementation Details

Implementation of group convolutions. The proposed con-
volutions for the input and the output layers are easy to be
implemented in practice, since (19) and (21) are both with
the expressions of commonly used convolution in popular
softwares. However, the convolution for the intermediate
layers (20) is relatively complex, for there is a B adopted
on the channel indexes of F . Fortunately, previous works
[3], [4], [5] have introduced an efficient manner for fastly
implementing it. Specifically, we first rewrite (20) as(

Φ̃ ? F
)B

=
∑
A∈S

Φ̃B,B
−1A ∗ FA. (25)

Then, it is easy to see that Eq. (25) can be implemented
by performing the commonly used convolution on F and
a p× p× t× t filter rotated spatially and shifted cyclically
along the third mode, as shown in Fig. 4(b). More specif-
ically speaking, we prepare a filter Φ̄ ∈ Rp×p×t×t, which
satisfies Φ̄B,A = Φ̃B,B

−1A. Then, Eq. (25) can be performed
by convoluting Φ̄ and F .

Normalization of bases in F-Conv. Formally, a set of
rotated filters can be represented as Ψ̃ ∈ Rp×p×t, where t
is the number of orientations. Let ϕn be the n-th element
of {ϕckl, ϕskl|k, l = 1, 2, · · · , p} and wn be the n-th element
of {akl, bkl|k, l = 1, 2, · · · , p}, and then the parametriza-
tion of Ψ̃ can be represented as Ψ̃A

ij =
∑
n wnϕ

A
n =∑

n wnϕn(A−1, xij). Then, we can obtain

vec(Ψ̃) =

vec(ϕA1
1 )

...
vec(ϕAt

1 )

· · ·
. . .
· · ·

vec(ϕA1
n )

...
vec(ϕAt

n )

·
w1

...
wn

 , Dw, (26)

where vec(·) is the vectorization operator, D ∈ Rtp
2×2p2 . In

practice, we perform singular value decomposition on D,
i.e., D = UΣV T , and replace D with U ∈ Rtp

2×r , where r
is the rank of D, and represent the parameterized filter by:

vec(Ψ̃) = Uŵ, (27)

where ŵ = ΣV Tw is the new coefficients. This can reduce
the redundant parameters and make the learning of param-
eters easier. It can also avoid the non-uniqueness of to-be-
estimated coefficients, which is caused by the redundancy
of columns in D. Besides, by Eq. (27), ‖Ψ̃‖ = ‖ŵ‖, and this
will lead to an easy initialization scheme on ŵ.

Initialization scheme. An important practical issue of
training deep networks is an appropriate initialization of
ŵ. For convolutional networks, Glorot and Bengio [23] and
He et. al. [24] came up with initialization schemes which
are accepted as a standard for random weight initialization.
Following [3] and [5], we adapt He’s weight initialization
scheme to initialize ŵ. Since ‖Ψ̃‖ = ‖ŵ‖, this implies a
normalization to the filter energies.

5 EXPERIMENTAL RESULTS

In this section, we first conduct simulated experiments to
evaluate the representation capability of the proposed filter
parametrization regime. Experimental results on classifica-
tion and super-resolution tasks are then demonstrated to
verify the effectiveness of the F-Conv method 12.

5.1 Filter Parametrization Verification
In Fig. 1, we have shown the superiority of the proposed
bases when representing a simple filter function with ro-
tation. Moreover, in Fig. 3, we have further depicted the
advantage of the proposed bases as compared to the corre-
sponding traditional 2D Fourier bases after imposing a rota-
tion on them. In this section, we will show more verifications
to evaluate the proposed filter parametrization method,
compared with previous filter parametrization strategies,
which are based on traditional 2D Fourier bases (Fourier),
the harmonics (harmonic) [3], [4] and partial differential op-
erator (PDO) [5], on more complex filters under more filter
sizes. The latter two are actually the filter parametrization
strategies exploited in SOTA equivariant convolutions, i.e.,
E2-CNN [4] and PDO-eConv [5], respectively.

We estimate the representation coefficients by solving
a least squares problem for all competing methods13. For
example, for the general parametrization formulation (2),
we estimate wn by solving

min
wn

p∑
i=1

p∑
j=1

(
ψ̂i,j −

N∑
n−1

wnψn (xij)

)2

+ λ
N∑
n=1

w2
n, (28)

where ψ̂ is the observed discrete filter for parametrization,

xij =
((
i− p+1

2

)
h,
(
j − p+1

2

)
h
)T

and we set λ = 10−10.
It is easy to obtain the closed-form solution for this opti-
mization problem [25].

Parametrization of continuous function. We first verify
the representation capability of all compared methods on a
continuous function. The exploited function is a 2D variant
of Morlet wavelet [26], i.e.,

ψ0(x) = exp

(
−1

2
‖a� (x+b)‖2

)
cos (10 (x1+b1)) , (29)

where � denotes the elemental wise multiplication, a and
b are zooming and translation parameters, respectively. Let
ψ̂ij = ψ0 (xij), and then we solve wn for all competing
methods by Eq. (28).

Fig. 5 shows the representation results of (29) and the
45◦ rotation results achieved by the representations of all
competing methods, where a = [2, 1.5]T and b = [0.1, 0.1]T .
Note that filter parametrization and filter rotation are per-
form separately, in order to show the degree of aliasing
effect. For the case of p = 11, the PDO based method is
not compared since it is only designed for 5 × 5 filters. It
is easy to observe that in this experiment, the results of the
proposed method evidently outperform other comparison
methods, with almost no difference from the ground truth.
In comparison, there is obvious quality degradation in the

12Code is available at https://github.com/XieQi2015/F-Conv.
13For the 2D Fourier bases and the proposed bases, we can also

exploit the 2D DFT to estimate the representation cofficients.
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(a) Original (i) Proposed(b) Harmonic  (c) Fourier (d) Proposed (e) Original (h) Fourier(g) Harmonic(f) PDO
Fig. 5. (a) A discretization of the functional filter (29) and its π/4 rotation, with filter size p = 11 and mesh size h = 1/5. (b)-(d) The representations
and the corresponding π/4 rotations of the given 2D filter, where harmonics bases [3], 2D Fourier bases [8] and the proposed bases in this study
are adopted as basis functions, respectively. (e) A discretization of the functional filter (29), with filter size p = 5 and mesh size h = 1/2. (f)-(i) The
representations and the corresponding π/4 rotations of the given 2D filter, by adopting PDO bases [5], harmonics bases [3], 2D Fourier bases [8]
and the proposed bases in this study as basis functions, respectively.

TABLE 2
The RMSE (mean±standard deviation over 1000 random generated samples) of filter parametrization on continuous functions, obtained by all

competing methods under different filter sizes.

11× 11 5× 5

Method parameterization before rotation simultaneously parameterization before rotation simultaneously

original 45◦ rotation 0◦&45◦ original 45◦ rotation 0◦&45◦

PDO - - - 4.3e-01±6.5e-02 1.1e-01±1.1e-01 4.7e-01±3.8e-02
Harmonic 3.5e-01±4.3e-02 3.7e-01±4.5e-02 2.7e-01±3.4e-02 4.5e-01±6.5e-02 1.3e-01±1.3e-01 3.3e-01±3.4e-02
Fourier 9.7e-13±4.2e-14 9.0e-01±2.4e-01 3.7e-01±2.2e-01 1.7e-10±3.0e-11 2.1e-01±2.1e-01 1.8e-01±2.2e-01
Proposed 9.7e-13±4.2e-14 4.1e-02±9.7e-03 2.0e-02±2.6e-03 1.7e-10±3.0e-11 2.4e-02±2.4e-02 6.6e-02±2.6e-03

parametrization result and its rotation for Harmonic based
method. The commonly used Fourier bases can achieve an
accurate parametrization result in rotation free case (similar
as the proposed method). Nevertheless, its rotation result is
with poor visual quality. For the comparison to PDO based
filter parametrization, we also show the result of p = 5 case
in Fig. 5 (e)-(i). It is seen that the result obtained by the
proposed method perfectly preserves the shapes of the orig-
inal function. Comparatively, the results by other competing
methods contain more evident quality degradations.

Table 2 shows more parametrization results on contin-
uous functions, with a = [2, 1.5]T , b ∼ N(0, 0, 1) and
θ be randomly sampled from [0, 2π). We perform filter
parametrization on filter ψθ = πθ[ψ0], where πθ is defined in
Eq. (3). We repeat experiments for 1000 times and calculate
the relative-mean-square error (RMSE) of parametrization
in two cases. In the first case, we first perform parametriza-
tion before rotation, and then calculate the RMSE for the
original filter and its 45◦ rotation separately. In the other
case, we perform parametrization for a filter and its rotation
simultaneously (sharing wn), which is similar to the scene
when filter parametrization is adopted in equivariant con-
volutions. From Table 2, it is easy to see that in the rotation
free case, the 2D Fourier bases and the proposed bases can
represent the filter with RMSE lower than 10−13, where the
approximation error is possibly due to the numerical error
in PC computing. When there is 45◦ rotation, the Fourier
bases parametrization performs relatively worse, the pro-
posed method still evidently outperforms other competing
methods. Besides, for the simultaneously parametrization
case, it is easy to observe that the proposed method outper-

TABLE 3
The RMSE (mean±standard deviation over 1000 random generated

samples) of filter parametrization of random initialization filters,
obtained by all competing methods under different filter sizes.

Method 11× 11 5× 5

PDO - 4.9e-01±1.3e-01
Harmonic 4.2e-01±5.9e-02 5.7e-01±1.2e-01
Fourier 9.5e-13±3.8e-14 6.2e-11±2.3e-11
Proposed 9.5e-13±3.8e-14 6.2e-11±2.3e-11

forms other competing methods.

It is should be noted that the quality degradation of local
filters may not largely affect the performance in high-level
tasks, like classification and segmentation, which mainly
require relatively coarse-scale transformation equivariance
knowledge. However, for low-level problems, one has to
consider to represent much finer-grained local image de-
tails in the pixel level with higher accuracy requirement.
Therefore, the proposed F-Conv is expected to show more
superiority, as compared with current filter parametrization
based equivariant convolutions, in low-level tasks.

Parametrization of random initialization. In practice,
filters are usually randomly initialized by independent
and identically distributed distributions such as Gaussian
and uniform distributions. Therefore, the representation
capability on random initialization is important for filter
parametrization methods. Specifically, in rotation equivari-
ant convolutions, a filter parametrization method is ex-
pected to be able to well represent and rotate the random
initializations. Here, we verify all competing methods on
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TABLE 4
Average equivariant error of feature maps between rotation free and

rotated inputs on 100 image in the Div2k testing samples.

Randomly initialization Trained network

Method RMSE ↓ LEPN (%) ↓ RMSE ↓ LEPN (%) ↓

CNN 1.43±0.12 0.58±0.08 0.40±0.17 0.17±0.06
E2-CNN 0.30±0.06 0.05±0.01 0.18±0.04 0.05±0.02
F-Conv 0.42±0.08 0.10±0.05 0.19±0.05 0.06±0.03

the following randomly generated filter:

ψ̂ = Resize(Gaussion(8, 8), p), (30)

where Gaussian(n, n) is a n × n 2D patch sampled from
Gaussian distribution whose mean and variance are 0 and
1, respectively, and Resize(·, p) is the operator of resizing a
2D patch to the size of p× p with bicubic interpolation [27].

We repeat the experiments for 1000 times and calculate
the relative-mean-square error (RMSE) of filter parametriza-
tion of each completing method. The results are shown in
the last 2 columns of Table 3. It is easy to observe that the 2D
Fourier bases and proposed bases can both exactly represent
the filter, and both evidently outperform the harmonic and
PDO based filter parametrizations.

5.2 Equivariance Verification
In Section 4, we have provided the theoretical anal-

ysis of equivariance error associated with the proposed
convolutions. Here, we further empirically investigate the
equivariance error of the proposed convolutions.

We first compare the equivariance error of CNN, E2-
CNN [4] and the proposed F-Conv, where E2-CNN is the
SOTA equivariant convolutions based on Harmonic bases.
The 3 utilized networks are both with 5 convolutional
layers, and each convolutional layer consistently contains a
convolution, a batch normalization and a ReLU operator. We
consider the p24 group for E2-CNN and F-Conv methods
and set the channel number of all convolution layers in the 2
utilized equivariant networks to be 9 (each channel contains
24 sub-channels for 24 orientations). We set the output layer
of F-Conv the same as E2CNN (i.e., group max-pooling)
for fair comparison in this experiment. Besides, we set the
channel number of all convolution layers in CNN to be 9×24
so that the three networks take similar computing memory.

We exploit 100 images from the testing set of the DIV2K
dataset [28] for conducting the experiments. For each image,
we rotated its output through the three models to a random
degree θ ∈ [−π, π], and then compared it with the network
output of the θ degree rotation of the same image. Table
4 shows equivariance errors of the three networks, before
and after training them as auto-encoders, where we exploit
two quality indices for performance evaluation. The first is
RMSE, and the second is large-error-pixel number (LEPN)
which is the number of pixels satisfying ‖xr−x0‖/‖x0‖ > 1,
where x0 is a pixel of the output of original image and xr
is a pixel of the rotated copies. From the table, we can see
that the equivariance errors of both E2-CNN and F-Conv
are evidently less than that of the CNN model, both in the
trained and untrained networks, while E2-CNN achieves
slightly better rotation equivariance than F-Conv. The ex-
cellent rotation equivariance of E2-CNN is actually resulted

(a) Input image (c) F-Cnov output (b) CNN output

Fig. 6. (a) A typical input cartoon image. (b)-(c) Outputs of randomly
initialized CNN and F-Conv, respectively, where the demarcated areas
are zoomed in 5 times for easy observation.

from the heavy band limiting of its filter parametrization
[28], which is detrimental to the expression capability of
filters. As comparison, the F-Conv achieves comparable
rotation equivariance to E2-CNN without band limiting,
which implies that it is a good choice for performing ro-
tation equivariant convolution in low-level vision tasks.

Fig. 6 illustrates the output of CNN and F-Conv with an
cartoon input image. It is easy to observe that the outputs
of F-Conv show more orderly structural patterns, which
better match the characteristics of the input images. While
the output of CNN seems too chaotic to finely deliver such
meaningful structures. These results verify the equivariance
of F-Conv visually, and imply that F-Conv can be more
suitable for low-level vision tasks than CNN.

5.3 Experimental Results on Image Classification
MNIST-rot-12k [29] is the standard benchmark for rotation-
equivariant models. It contains handwritten digits of the
classical MNIST14, each being rotated by a random angle
from 0 to 2π (full angle). The dataset contains 12,000 training
samples and 50,000 test samples, respectively. Meanwhile,
we randomly select 2,000 training images as a validation
set and choose the model with the lowest validation error
during training. Following [3], we augment the dataset with
continuous rotations during the training progress.

Comparison in simple architectures. We first evaluate
the performance of F-Conv with comparison to the current
equivariant convolution methods. The competing methods
include G-CNN [6], E2-CNN [4] and PDO-eConv [5], which
are the most typical equivariant convolutions along this re-
search line. Note that the last two methods are the SOTA fil-
ter parametrization based equivariant convolution methods.
We use the same network architectures with convolutions
replaced by the equivariant convolutions proposed in all
competing methods.

We consider the p8 group for E2-CNN, PDO-eConv
and the proposed F-Conv methods, and exploit a CNN
model with 6 convolutional layers and a fully connected
layer, while all the convolution layers and fully connected
layer contain 10 channels. Each convolutional layer consis-
tently contains a convolution, a batch normalization and
a ReLU operator. We exploit p4 group for G-CNN since it
is designed for p4 groups, and we set double times of the
filter number for GCNN in each network layer to make its
channel number similar with other methods. The filter sizes
of these competing methods are all set as 5.

14http://yann.lecun.com/exdb/mnist/
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TABLE 5
Results of all competing methods with similar simple network

architecture on MNIST-rot-12k.

Method Test Error (%) Params

G-CNN [6] 2.00±0.106 201.7k
E2-CNN [4] 1.23±0.068 44.6k
PDO-eConv [5] 1.79±0.138 60.6k
F-Conv-reduce 1.23±0.091 44.6k
F-Conv 1.13±0.059 100.9k

The parameter number difference of these methods is
mainly attributed to their different basis numbers for rep-
resenting a filter (E2-CNN, PDO-eConv, F-Conv contain 11,
15, 25 bases, respectively). To observe the comparison under
the same parameter number, we also conduct a F-Conv-
reduce method which only utilizes the first 11 principal
components of the proposed bases for filter parametrization.
Note that F-Conv-reduce contains exactly the same number
of channels and parameters as E2-CNN method.

We use Adam optimizer [30] with a weight decay of
0.001 to train the networks for 100 epoches. The batch size
is set to be 128. The learning rate is started with 10−3 and
reduced gradually to 10−5.

Table 5 shows the results of different methods, where all
the experiments are averaged over 30 times repeating for
guaranteeing the statistical stability of the results. We can
see that F-Conv-reduce achieves comparable performance
as E2-CNN, while the complete F-Conv can achieve better
performance with a little more computation cost.

Comparison with the leading board methods. We then
compare the performance of our F-Conv with more compet-
itive models. The competing methods include H-Net [17],
OR-TIPooling [15], RotEqNet [16], PTN-CNN [12], SFCNN
[3], E2-CNN [4] and PDO-eConv [5].

Following E2-CNN [4], we set the group size and filter
size to be 12 and 5, respectively. The model is trained using
the Adam algorithm [30] with a weight decay of 0.001. We
train the network with the batch size 128 for 200 epochs. The
initial learning rate is set as 5e-3 and reduced gradually to
5e-6, and the dropout rate is 0.25. We exploit a CNN model
with 7 convolutional layers and a fully connected network.
The convolutional layers have 16, 16, 32, 32, 32, 64 and 96
channels, respectively. Each convolutional layer of F-Conv
consistently includes a batch normalization, a ReLU and a
dropout operator. We use spatial pooling and orientation
pooling after the final F-Conv layer, and input the pooling
result to the fully connected network, containing 1 hidden
layer, with hidden node number set as 96.

Table 6 shows the results of F-Conv on MNIST-rot-12k,
as well as the reported best results of leading board methods
on this dataset15. As shown in the table, the SOTA methods
have achieved high precisions (e.g., 0.682%, 0.714% and
0.709% test error for E2-CNN, SFCNN and PDO-eConv,
respectively). Comparatively, our method achieves 0.671%
test error, getting further performance gain. This substanti-
ates the effectiveness of F-Conv in this high-level task.

15Since the parameter number of OR-TIPooling, SFCNN and E2-
CNN are not reported in their paper, we thus calculate the approximate
ones according the reported networks.

TABLE 6
Results of leading board methods and ours on MNIST-rot-12k.

Method Test Error (%) Params

H-Net [17] 1.69 0.03M
OR-TIPooling [15] 1.54 ≈1M
RotEqNet [16] 1.01 0.10M
PTN-CNN [12] 0.89 0.25M
SFCNN [3] 0.714±0.022 ≈3M
E2-CNN [4] 0.682±0.022 ≈5M
PDO-eConv [5] 0.709 0.65M
F-Conv 0.671±0.020 3.05M

5.4 Experimental Results on Image Super-resolution

We then adopt the filter parameterized equivariant convo-
lutions to a typical low-level image processing task, image
super-resolution, for verifying their performance in low-
level problems. Specifically, single image super-resolution
(SR), as a classical problem in computer vision, aims at
recovering a high-resolution image from a single low-
resolution image. Recently, deep convolutional neural net-
work (CNN) based methods have achieved significant im-
provements over conventional SR methods [35], [36], [37],
[38], [39], and attracted much research attention.

Network architecture settings. We exploit 3 SOTA net-
works designs for SR tasks, including EDSR [35], RDN [36]
and RCAN [37], for our experiments. The EDSR network
consists of residual blocks [40], a global residual connection
and an upsampling modular. In our experiments, we set
the number of residual blocks to be 16, and set the channel
number of each residual block to be 256. The RDN network
consists of residual blocks [40], dense connections [41] and
an upsampling modular. We set the number of residual
blocks, the growth rate and conv number in RDN as 16,
64 and 8, respectively. The RCAN network consists of resid-
ual in residual (RIR) blocks and residual channel attention
blocks. Wet set the number of RIR blocks, the number of
residual blocks of RIR and the channel number of each
residual block to be 10 and 16 and 64, respectively.

Convolutional method settings. The competing equiv-
ariant convolution methods include G-CNN [6], E2-CNN
[4], PDO-eConv [5] and the proposed F-Conv. We replace
the original convolutions in EDSR, RDN and RCAN with
the competing convolutions, respectively.

For G-CNN based network, since an intermediate feature
map is a 4-channel matrix, we set the channel number of
residual blocks as 1/4 of that in the original network, so as
to make it with similar memory cost as the original one.
Following the original setting in EDSR, RDN and RCAN,
the filter size is set as 3 × 3 in G-CNN based network. For
E2-CNN, PDO-eConv and F-Conv, we exploit p8 group for
the equivariant convolutions and set the channel number
of each residual block (and the growth rate in RDN) as
1/8 to the original networks in each layer to keep their
similar memory with the original network. Besides, we set
the filter size as 5 × 5 for these convolutions (this is due
to that the PDO-eCOnv is only designed for filters with
size 5 × 5, and the circular shape masks in filters of E2-
CNN and F-Conv make 3 × 3 filters contain insufficient
effective pixels). Since the channel attention operation is
not rotation equivariant, we remove the channel attention
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TABLE 7
The average SR results (mean±deviation) of all competing methods on 4 exploited image datasets, including Urban100 [31], B100 [32], Set14 [33]

and Set5 [34]. The results in the upper and lower parts are produced by networks trained without and with data argumentation, respectively.

×2 ×4

Method argu. EDSR [35] RDN [36] RCAN [37] EDSR [35] RDN [36] RCAN [37]

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

CNN × 32.39±4.81 0.917±0.053 32.38±4.83 0.917±0.053 32.48±4.85 0.919±0.052 26.95±4.15 0.768±0.109 27.05±4.21 0.771±0.108 27.02±4.19 0.770±0.109

G-CNN × 32.44±4.81 0.918±0.053 32.45±4.89 0.918±0.053 32.57±4.84 0.919±0.052 27.02±4.09 0.770±0.107 27.08±4.12 0.772±0.107 27.13±4.16 0.774±0.107

E2-CNN × 32.23±4.72 0.916±0.053 32.33±4.82 0.917±0.053 32.01±4.67 0.914±0.055 26.95±4.06 0.768±0.108 27.03±4.08 0.769±0.108 26.72±3.87 0.760±0.109

PDO-eConv × 31.62±4.65 0.909±0.057 31.41±4.60 0.906±0.058 31.79±4.70 0.911±0.056 26.56±3.89 0.752±0.113 25.77±3.44 0.726±0.111 26.55±3.83 0.753±0.111

F-Conv × 32.51±4.81 0.918±0.053 32.62±4.87 0.920±0.052 32.73±4.83 0.920±0.051 27.15±4.19 0.774±0.107 27.21±4.22 0.776±0.106 27.20±4.16 0.775±0.105

CNN X 32.41±4.80 0.918±0.053 32.45±4.83 0.918±0.053 32.52±4.84 0.919±0.052 27.18±4.21 0.774±0.107 27.20±4.20 0.775±0.107 27.26±4.19 0.776±0.106

G-CNN X 32.46±4.76 0.918±0.052 32.45±4.85 0.918±0.053 32.54±4.80 0.919±0.051 27.18±4.15 0.775±0.106 27.12±4.11 0.773±0.106 27.21±4.23 0.775±0.106

E2-CNN X 32.30±4.74 0.917±0.053 32.36±4.85 0.917±0.053 32.03±4.69 0.914±0.055 26.95±4.09 0.767±0.109 27.06±4.10 0.771±0.107 26.77±3.90 0.761±0.109

PDO-eConv X 31.65±4.68 0.909±0.057 30.76±4.24 0.899±0.059 31.75±4.71 0.910±0.057 26.59±3.91 0.754±0.113 25.83±3.48 0.728±0.111 26.51±3.79 0.752±0.111

F-Conv × 32.52±4.81 0.919±0.053 32.66±4.82 0.920±0.051 32.73±4.88 0.921±0.050 27.25±4.23 0.776±0.106 27.26±4.20 0.777±0.106 27.32±4.21 0.778±0.104

(a) Ground Truth (b) CNN (c) G-CNN (d) E2-CNN (e) PDO-eConv (f) F-Conv
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Fig. 7. (a) A sample of high-resolution image from the Urban100 [31] dataset. (b) From upper to lower: the 2 times super-resolution images restored
by the EDSR, RDN and RCAN methods, respectively, where the convolution operators are set as commonly used convolutions, i.e., CNN. (c)-(f)
From upper to lower: the super-resolution images restored by the EDSR, RDN and RCAN methods, respectively, where the convolution operators
are set as G-CNN, E2-CNN, PDO-eConv and the proposed F-Conv, respectively. All the involved methods are trained without data argumentation.

modular in the equivariant-convolution-based RCAN meth-
ods. For these equivariant based methods, we adopt the
proposed convolution methods for output layer before the
upsampling operator, which ensures that the major parts
of these networks are rotation equivariant. It should be
indicated that the upsampling operator at the tail parts are
still not rotation equivariant, which does not substantially
influence the effect brought by these rotation equivariant
convolutions.

Datasets and degradation models. Following [35], [36],
[37], we use 800 training images from the DIV2K dataset
[28] as the training set. For testing, we use four standard
benchmark datasets, including Urban100 [31], B100 [32],
Set14 [33] and Set5 [34], which contain 100, 100, 14 and 5
natural images, respectively. We conduct experiments with
bicubic degradation models [35], [36], [37].

Training settings. For all competing methods in this
series of experiments, we use Adam optimizer [30] with
no weight decay to train the networks for 150 epoches.
Besides, following the setting of the original paper of EDSR
[35], RDN [36] and RCAN [37], during the training, we set
the batch size for all the EDSR, RDN and RCAN based
methods as 16. For the 2 scale super-resolution cases, we
set the training patch size for EDSR, RDN and RCAN based

methods as 96, 64 and 96, respectively, and set the training
patch size for the 4 scale super-resolution cases double to
the 2 scale cases. The initial leaning rate is set as 2 × 10−4

and then decreased to half at the 100 and 130 epoches.
Since the rotation-based data augmentation will lead to

more “rotation equivariant” training results, and this effect
may be mixed with the benefit resulted from rotation equiv-
ariant convolutions, we first train the competing methods
without data augmentation, in order to observe the pure
benefit from equivariant convolutions. Then, following the
setting of previous methods, we also train the competing
methods by randomly rotating the training images by 90◦,
180◦, 270◦ and flipping horizontally for data augmentation.

Quantitative results. Table 7 shows the SR results of
15 competing methods on 5 exploited data sets, without
and with data augmentation, respectively. The evaluation
measures include PSNR and SSIM [42] on Y channel (i.e.,
luminance) of the transformed YCbCr space. By compar-
ing the results in Table 7, it is easy to see that removing
data augmentation will significantly degenerate the perfor-
mance of the 3 CNN-based SR methods, especially in the
4 scale SR experiments. Comparatively, the performance
of equivariant-convolution-based methods does not change
too much with or without data augmentation, since most of
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(a) Ground Truth (b) CNN (c) G-CNN (d) E2-CNN (e) PDO-eConv (f) F-Conv
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Fig. 8. (a) A sample of high resolution image from the Urban100 [31] dataset. (b) From upper to lower: the 4 times super-resolution images restored
by the EDSR, RDN and RCAN methods, respectively, where the convolution operators are set as commonly used convolutions, i.e., CNN. (c)-(f)
From upper to lower: the super-resolution images restored by the EDSR, RDN and RCAN methods, respectively, where the convolution operators
are set as G-CNN, E2-CNN, PDO-eConv and the proposed F-Conv, respectively. All the involved methods are trained with data argumentation.

the network modulars in these methods are rotation equiv-
ariant. This phenomena imply that the rotation symme-
tries of local features and rotation equivariant convolutions
should be helpful for improving SR performance. Besides,
one can also observe that E2-CNN and PDO-eConv have
not attained satisfactory SR performance, possibly due to
their less representation accuracy of the filter parametriza-
tion methods. Comparatively, the proposed F-Conv method
shows evident superiority than other filter-parametrization-
based equivariant convolutions in this task, and achieves
better result than CNN and G-CNN based methods which
do not involve filter parametrization. To the best of our
knowledge, this should be the first filter parametrization
based rotation equivariant convolutions that help intrinsi-
cally improve performance of low-level tasks.

Visual results. Figs. 7 and 8 visually show the SR results
of all competing methods on 2 samples from the Unban100
dataset, with SR scale set as 2, trained without augmenta-
tion, and SR scale set as 4, trained with data augmentation,
respectively. From these figures, it is easy to observe that the
SR results of filter parametrization based method like E2-
CNN and PDO-eConv based methods are usually with over-
smooth artifacts and certainly lose texture details. As com-
parison, F-Conv based method performs evidently better
in sense of achieving clearer SR image and more faithfully
preserving image textures and edges, which are superior to
the methods based on other 4 convolutions. This implies
that the proposed filter parametrization method should be
helpful to enhance the performance on a low-level task.

6 CONCLUSION

In this paper, we have proposed a filter parametrization
method, and built rotation equivariant convolutions basing
on it. The proposed filter parametrization can be viewed
as an enhanced version of conventional Fourier series ex-
pansion, where we reduce the maximum frequency of the
bases by exploiting symmetrical functions of low frequency
Fourier bases to replace the high frequency ones. By theo-
retical analysis and empirical evaluation, we have shown
that the proposed filter parametrization method inherits

the high-accuracy of Fourier series expansion for represent-
ing functional filter when there is no rotation, and more
importantly, it significantly alleviates the heavy aliasing
effect which original Fourier series expansion suffers from.
In this way, the proposed filter parametrization method
evidently prompts the low-accuracy representation issue of
previous filter parametrization methods. Based on this filter
parametrization manner, we construct a new equivariant
convolution framework, named F-Conv, and analyze its the-
oretical properties in detail. We have further demonstrated
the superiority of the proposed F-Conv beyond previous
filter parametrization methods. Especially, to the best of
our knowledge, F-Conv should be the first equivariant
convolution that could intrinsically help evidently improve
the performance of the low-level task, implying its better
preservation capability of the rotation symmetries (more
than 4 angles) of image features, and potential usefulness
for a wider range of image processing tasks.

Except rotation equivariant convolutions, the proposed
Fourier series expansion based filter parametrization should
be useful for the designing of many other learnable op-
erators in deep learning frameworks. In our future work,
we will further extend the employed filter parametrization
methodology and explore more applications along this line.
Typically, the multi-scale network modules play an impor-
tant role in many computer vision tasks, and the utilized
filter parametrization framework in this study is hopeful
to be extended to design novel and rational multi-scale
filters. A feasible strategy might be to discretize the func-
tional filter with different resolutions, and then multi-scale
filters with shared parameters can be obtained. Besides,
the parametrization strategy can also be used in dynamic
network design, where one can input different kinds of
transformations to a learnable filter to dynamically control
the network. A more comprehensive and deep exploration
on filter parametrization method with high accuracy should
also be a meaningful research issue in future research.
Besides the Fourier series expansion, other transforms, such
as Hartley Transform [43] and Cosine Transform [44], can
be also exploited for designing efficient and high accuracy
filter parametrization methods.
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