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Abstract—In the document, we give the detailed proofs of our the-
oretical assertions (i.e., Theorem 1) presented in the manuscript in
Section 1. Next, we give the detailed proof of Theorem 2 presentied
in the manuscript in Section 2. Furthermore, in Section 3, we sug-
gest two extended models based on the proposed 3DCTV regularizer,
which tends to get better performance in certain scenarios. The more
evaluations on the hyper-parameter robustness issue, experiments on
extending CTV to its tensor form and image inpainting experiments to
validate the generalization of 3DCTV are provided in Sections 4, 5 and
6, respectively.

1 MAIN PROOFS

1.1 The Equivalent Model of 3SDCTV-RPCA

The 3DCTV-RPCA model is:

3
wig > NGl +3AIS]
w0 &
st. M=X+8,

G, =V;(X),i=1,2,3,

where X € R"X*P, and V;(-),i = 1, 2,3 are the differential
operators. Since such differential operators are linear, the
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three gradient maps G; = V;X,i = 1,2,3 can be trans-
formed in the form of matrix product, i.e.,

ni—2
G1 = A1X0,A1 = circ(fl, 1, 0, ey 0),
h n17h72
GQ = AQXO,AQ = Cll‘C(*l,O, A ,0, 1, 0, ey 0),
ni—2

e e
Gg = XoBl, B1 = Cil‘C(*l,O, - ,0, 1),

where “circ” denotes the circulant matrix, and n1 = h x
w,na = p. Thus, our 3DCTV-RPCA model can be trans-
formed into the following form:

win JAXI. + | AX], + [XBy . +37|S]l

)

st. M=X+48S.

Note thatif A;, A and By in Eq. (3) are expanded /reduced
by N times, then the trade-off coefficient A needs to be
expanded/reduced in the same proportion. Therefore, we
make the fo-norm of Aq, Az, and B; be one by setting
A1 = A1/||A1||2, AQ = AQ/”AQ”Q and B1 = B1/||B1||2

1.2 Mathematical Preliminaries

Suppose we are given a large data matrix M, and know that
it can be decomposed as:

M = Xy + Sy, 4)

where X, Sy are the joint low-rankness and local smooth-
ness component, and the sparse component, respectively.
Theorem 1 in the main text has asserted that by solving the
3DCTV-RPCA model, we can get the exact decomposition
(Xo, Sp). Before proving theorem 1, it is helpful to review
some basic concepts and introduce some notations.

For a give scalar x, we use sgn(z) to denote the sign of
z. By extension, sgn(8) is the matrix whose entries are the
signs of those of 8. We recall that any sub-gradient of ¢,
norm at Sg supported on {2, is of the form

sgn(Sp) + F,

where F vanishes on 2, i.e., PoF = 0, and obeys ||F||. < 1.
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We then assume that each gradient map G;, (i = 1,2, 3)
of rank r has the singular value decomposition U;%,; VY,
where U, € R™*" and V,; € R">*". Then according to the
chain rule of derivation, we can get

G« O|A;Xol|. T T T -

_ — ATU VT + ATW,.i = 1.2,
X, 5%, i ViV AT Wi
IGll« 9] XoB1]l« TT T .

_ —U,VIBT + W,BT,i =3,
X, X, i B+ Wiby

©)
where U/'W, = 0,W,V, = 0and |W,|| < 1,(i = 1,2,3).
Weuse Ty, (i = 1,2, 3) to denote the linear space of matrices,
ie.,
T, = {UXT+YV] X c R"*" Y ¢ R"*"}, (i = 1,2,3)

and T (i = 1,2,3) to denote its orthogonal complement.
For any matrix M, the projections onto T} and T;- are
PrM =U,U'M + MV, V] - U, U'MV, V],

6
PrM=(1-U,UNMI -V, V), (i=1,2,3), ©)

where I is the identity matrix.
Therefore, for any matrix of the form éké?,
see that

[Proére] |7 = (XU U )e]”l|(X — ViV])e?
> (1= pr/na) (1= pr/ng).
We assume pr/n1y < 1, and ngyy = max{ni,na}, ne) =
min{ny,ny}. Since [|Pr.éxé] |7 + [|Préxé] |7 = 1, this
gives

it is easy to

2r
n(2)

The following incoherence conditions will be used in our
proofs:

|Pr,éxé] || < (i=1,2,3). @)

max [UTe,]|? < &5, (i = 1,2,3), ®)
k ni

max ||V1Ték||2 < —MT, (i=1,2,3), 9)
k o

-
UV oo < /-5

(i=1,2,3). (10
112

1.3 An Elimination Lemma
We begin with a helpful definition.

Definition 1: We say that S is a trimmed version of S if
supp(S) C supp(S) and S = 8,;; whenever SZJ # 0.

In other words, a trlmmed version of S is obtained
by setting some of the entries of S to be zeros. And
then, the following elimination theorem asserts that if the
Eq. (3) recovers the low-rank and sparse components of
M, = X + Sy, it also correctly recovers the components
of My = Ly + S, where S is a trimmed version of Sg.

Lemma 1: Suppose the solution to Eq. (3) is exact with input
My = Xy + Sg, and consider MEJ =Xy + SEJ, where S is
a trimmed version of Sy. Then the solutlon to the Eq. (3) is
exact as well with input MO Xo + SO

2

Proof: We first write Sy = P, Sy for some Qg C [n] x [n]
and let (X S) be the solution to Eq. (3) with input My =
X + Sy. Then

2
D IAX]L + [XBy|. + 3A[S]y

i=1

2
< NAXo]l + [ XoBills + 3 PaySolls

and therefore,

2
SO IAX ] +IXBy + 32 (ISl + 1Py Soll1)

i=1

2
<D T AXol|« + [ XoBuy | + 3ASoll1-

i=1

Note that (X, S + PqsS0) is a feasible solution to Eq. (3)
under the condition that the measurement matrix satisfies
My = Xy + Sp, and ||S + PQLSO”l < ||S||1 + ||’PQLSO||1,
we thus have

2
S IAX ] + [IXBy. +3X (1IS + Poy Soll1)

i=1

2
<3 IAX] + 1XBu . + 37 (I8]1 + [Pay Solh)

i=1

2
<D T AXol|« + [ XoBuy | + 3ASoll1-

i=1

The right-hand side above, however, is the optimal
value, and by uniqueness of the optimal solution, we
must have each A;X = A;Xjy, and XB1 = XpB4, and
S + ,PQLSO = 8y. So we further have X = Xy and

S = Pq,So = S'. This proves the claim. |

1.4 Dual Certificates

Lemma 2: Assume that |PoPr| < 1,(: = 1,2,3). Then
(X0, Sp) is the unique solution to the Eq. (3) if there exist a
pair ({W;}3_,, F) obeying

2
> {ATU V] + ATW,} + U VI B + W3BT

= (1)
= 3A(sgn(So) + F)
with P, (W,;) =0,||W,|| < 1,(i =1,2,3), Po(F) =0and

[Flloe < 1.

Lemma 3: Assume that ||PoPr. || < 1/2,(i = 1,2,3). Then
(X0, Sp) is the unique solution to the Eq. (3) if there exist a
pair ({W;}3_,, F) obeying

2
> {ATU V] + ATW,} + U3VIB] + W;3B]
=1

— (12)
= 3A(sgn(So) + F + PoD)

with Pr(W;) = 0,[|W,]| < 1/2,(i = 1,2,3), [Fllee < 1
and || PoDlo < 1/4.

Page 50 of 58



Page 51 of 58

oNOYTULT D WN =

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

The above lemmas imply that to prove our final exact re-
covery result, it is sufficient to produce two dual certificates
W, W, obeying

W, € T,

Wil < 3,

[P (ATU, VT + ATW, — Asgn(So)) || < 2,

IPo. (ATUNVT + ATW)) [l < 3,
(13)

and a dual certificate W3 obeying

W; e TP)L,
[Wal| < 3,
IPo (UsVIBT + W3BT — Asgn(So)) [|F < 7,

1.5 Dual Certification via The Golfing Scheme

The remaining work is to construct the aforementioned
dual certificates. Before introducing our construction, we
first assume that  ~ Ber (p), or equivalently that Q° ~
Ber (1 — p). Now the distribution of {2° is the same as that
of Q° = 4 U Qs U --- U Qy,, where each ); follows the
Bernoulli model with parameter ¢, that is,

P ((i,§) € Q) = P(Bin(j", ¢) = 0) = (1 — ¢)"°,
so that the two models are the same if
p=(1— q)jo ]

Now, taking dual certificate W1 as example, we can
decompose it as

W; = WE + W5,

where each component can be constructed in the following
way.

Construction of WL via the Golfing scheme. Let jp > 1,
and let Q;,1 < j < jo, be defined as aforementioned so that
Q° = U1§j§j09j~ Then define

W =P Y, (14)
where

Y;=Y; 1+q¢ "Po,Pr, (UIVIT - Yj,l) Y, =0. (15)

Construction of W¥ via the Method of Least Squares.
Assume that [[PoPr| < 3. Then, ||[PoPrPal <
le and thus, the operator Pg — PP Po mapping {2
onto itself is invertible, and its inverse is denoted by

(Pa — PaPrn ’Pg)fl. We then set
W& = XPp. (Po — PaPr,Pa) ' (sgn(Se)).  (16)
This is equivalent to

W =P 3 (PaPrPo)’ (sgn(S)).  (17)

k>0

Since both WL and W¥ belong to 7" and PoW?* =
APo(T — Pr,) (Pa — PaPr,Pa) ' (sgn(So)) = Asgn(So),

*****For Peer Review Only*****
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we shall establish that WL + W* is a valid dual certificate
if it obeys
[WE+ W9 < 4,
1Po (ATUVT + ATWE) | < 4,
[Por (ATULVT + ATWE + ATWS) || < 2.
(18)
This can be done by using the following two lemmas.

Lemma 4: Assume that @ ~ Ber(p) with p < p; for some
ps > 0. Set jo = 2[logn| (use logn for rectangular
matrices ). Then, the W1 in Eq. (14) obeys

@ [|W|| < 1/4
b) [[Po (ATULVT + ATWE) || < )/4,
© |Par (ATULVT + ATWE) || < A/4.

Lemma 5: Assume {} ~ Ber(p,), and the sign of Sy are
independent and identically distributed symmetric (and
independent of €2). Then, the matrix W* with Eq. (16) obeys

@ [IW7 <1/4,
) Por (AT WH)[ls < A/4.

1.6 Proofs of Dual Certification

Before proving Lemma 2, we shall list the following three
useful lemmas.

Lemma 6: (Lemma 4.1 in [1]): Suppose 2y ~ Ber(po). Then
with high probability,

||PT - PalpTlpﬂoPTl ” <, (19)

provided that py > Cj e 2Burlog n(l)/n(g) for some numer-
ical constant Cy > 0.

Lemma 7: (Lemma 3.1 in [2]) : Suppose Z ¢ Tj is a fixed
matrix, and €y ~ Ber(pg). Then with high probability,

1Z — py ' PryPayZlloe < €l|Z]co (20)

provided that pg > Coe 2 purlogng / n2y for some numeri-
cal constant Cy > 0.

Lemma 8: (Lemma 6.3 in[1] and Lemma 3.2 in [2]): Suppose
Z is fixed, and €y ~ Ber(pg). Then with high probability,

)t
(= py " Pay) 2] < O %HZHW 1)

provided that py > C1plog (1) / n2) for some small numer-
ical constant Cq > 0.

1.6.1 Proof of Lemma 4
Proof: We first introduce some notations. Setting
Z; = U, V] —PpY;,

thus Z; < Ty for all j > 0. From the definition of Y (15),
and Y; ¢ QL we have

Zj = (PTI - qillpTllpﬂjlpTl)ijla
Yj = ijl + qil'PQj ijl-
Therefore, when

q > Coe *prlog ngy/n), (22)
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we have

||Zj||oo < 6”ijlnoo (23)
by Lemma 7. In particular, this gives that with high proba-
bility,

1Zjlloe < €UV [l (24)
When g obeys Eq. (22), we have
125l < ellZjllr (25)
by Lemma 6. This further gives that with high probability,
1Z5llr < ULV |7 < /. (26)
We assume € < e 1.
proof of (a). Since Y, =3, q*I’PQj Z;_, wehave

IWE = 1Pr: Yiilloo <D llg " Pry Pa, Zj 1 |
i

< 1Pre (a7 Pa, Zjos — Zi )|
J

<> g P, 21— Zj ||
j

By logna 27)
<Oy Y 2
q j
ﬂn(l) 10g n(l) j T
<Cy 725 [U1V7 [lec
q j
C Bny logn
< b PR v
(1—¢) q

The fourth step is according to Lemma 8 and the fifth step
can be directly obtained from Eq. (23). Now by using Eq.
(22) and (10), we get

[WE| < Coe
for some numerical constant Cs.
proof of (b). Since PoY;, =0,
Pa(UiVi + WH) = Po(Ui VY + Pr:Yj,)
=Pa(UiV{ — Pr,Y;,) = Pa(Z;,).
By using Eqgs. (22) and (26) , we can get
1Pa(Zj) e < 1Zj, || » < €°V/r.
Since ¢ < e !, jo > 2log n¢1y and e < 1/n%1>, then
éo\/r < M\/4 is satisfied with probability at least 1 — na[;
for all 5 > 2. Since
IPo(AT (UiV] + WH)|lr < AT (U V] + W) e
< AT (UL VT + WH)|r
= [[(U V] + WH)r
< 1Zjolr,

this then proves the claim.
proof of (¢). According to the setting of A; in Eq. (3), we
have

[AT (U1 V] + W[l < |ULV] + WE|[o.  (28)

Thus, we only need to show [|[U1 VI + W[, < \/4. We
have UlVf + WL = Z;, +Y;, and know that Y;, is
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supported on Q°. Therefore, since ||Z;, |lcc < || Zj,|lF < A/8,
it suffices to show that || Y, |leo < 2. To this end, we deduce

1Y ollee a7 "> I1Pa,Zj 1]l
J
<q ") 12l
J

<q ) UV |ee-
i

Since [|[U1 VT ||oo < /-2, this gives

=~ nina’
s
C

1Y olloe € ——— -
gy (log ng)

(29)

for some numerical constant ¢ whenever g obeys Eq. (22).
By setting A = 1/, /fiy, [ Yjllee < A/8if

c<C (W(log n<1>)2> !

n(2)
We have seen that (a) and (b) are satisfied if € is suffi-
ciently small and jo > 2logn(1). For (c), we can take ¢ on the

order of (pr(logn(1y)?/n))*, which could be sufficiently
small as well provided that p, in Eq. (17) in the manuscript
is sufficiently small. Note that everything is consistent, since
Coe2urlog nay/ney < 1 [ ]
1.6.2 Proof of Lemma 5
Proof: Following the proof of Lemma 2.9 in [2], we have

@ Wl <1/4,

) [[WPloo < A/4.
According to the setting of A, we further have

1Pos (ATWH)loo < [ATW
< WHoo < M/A4.

Thus, this lemma can be established. [ |

(30)

Using the similar techniques, we can construct the other
two dual certificates W5, W3 to make the Eq. (11) hold true.
Therefore, Theorem 1 presented in the manuscript can be
established.

1.7 Proofs of Some Auxiliary Lemmas

1.7.1  Proof of Lemma 2

Proof: It is easy to see that for any H # 0O,
(Xo 4+ H, Sy — H) is also a feasible solution. We show that
its objective is larger than that at (Xo, Sp), hence prov-
ing that (Xo,Sp) is the unique solution. To do this, let
U; VI + W? be an arbitrary sub-gradient of the nuclear
norm at G, (4 = 1,2,3), and sgn(Sp) + Fo be an arbitrary
sub-gradient of the £; norm at Sp. Then we have

2
> AXo + AH|, + [ XoBy + HBy ||, + 3\|S — H|s
=1

2
> | AXo]l + [IXoBull. + 3X][Sollx
=1

+ i <UiVZT + WY, AiH> + <U3V3T + WY, HB1>

—3A({sgn(S) + Fy, H) .
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1 Now pick {W?}? , such that (W? A,H) = 172 Proofoflemma3
2 1Py (A, (0 =1, 2 ) (W3, HB1) = [[Pro(HBu)l.  pyoqy, Following the proof ideas of Lemma 2, we first get
3 and Fy such that (Fo, H) = —||Po. H|)1. We further have
4 2
5 S lAXo + AH[.L + [ XoBy + HBy || +3X[ISo — HJy
6 2 i—1
|AiXo + A;HJ|. + [|XoB1 + HB1 ||« + 3A[|So — HJ|1 2 1
; ; Z |A: X0l + [ XoB1ll« + 3ASoll1 +5
2 -1
9
2 ) IAXo |« + [IXoBull. + 3A[[Soll1
10 ; Y _IPr(AB)|. + [[Pry (HB1)|L + 3A|Po- Hllx
1 i=
12 +Z||’PTL A H)” + ||’PTL(HB1)|| +3||PQLH||1 <PQD A1H+A2H+HB1>
13 2 1
14 > JAXolls + [XoBull. + 3A[Sollx +5
15 Z (UVT, AH) + (UsVI HB1) -~ 3\ (sgn(So), H) .~ 5

—_
o0 N O
/_\

2
Y I1Pr (AH)| + [[Pry (HBy). +3>‘||IPQLH||1>

—_

1=

Consideri A
19 onsidering = (Pa(AH) || + | Pa(AH)||r + | Po(HB1)| )
20
21 ) Due to the fact that
22 T
23 > (Uv/! AH) IPa(AH) | < [Pa(Pr, + Pr ) (AHD| 7
24 = < (AH AH
. + (UsVE, HBy ) — 3 (sgn(So), H) @31) = qP“PTl( e+ 1PaPry (AdD] e
2% 2 < SIAH|F + [Py (AH) 7
27 = (> ATU V] + U3ViB] — 3)sgn(Sy), H 1 1
58 = < S IPo(ABDIIF + 5[Pas (AH)|
> + 1P (AE) | £, (0 =1,2),
31 and by assumption (11),
32 |Pa(HB1) | < [[Po(Pr, +Pry ) (HB1)|

w
@
IA

[PaPr,(HB1)||F + [|PoPr, (HB4)|

34 2
T T TRT 1
36 o 1 1
2
<= HB = HB
38 — Pr.(HB
= + [Py (HBY) |,
39 2
40 <p (Z [Pz (AiH)||s + [Py, (HB1)[[« + 3>\||739LH||1> we can get
41 i=1
42 [Pa(AH)||F < [|Por (AiH)|| F + 2Pr (AH)|[F, (i = 1, 2),
43 [Po(HB1)||F < [[Por (HB1)[|F + 2(|Pry (HB1)|| p-
44 for g —max ({IWillFop, [Fll) < 1. Thus, |
45 In conclusion,
46 2
47 2 Z||AiXO+AiH||* + [|[XoB1 + HBq . + 3A[|So — H|
48 > [lAXo + AH|. + [ XoB1 + HBy . +3X[|Sp — HJ)x i—1
49 i=1 2
50 2 2> [AXoll + [ XoBull + 3X]Soll1
51 > IJAXols + [ XoBy [l + 3A[Soll1 + (1 - B) =1
52 =1 ( 2
2 > 1Pr (AH)|| + [Py (HBy) >
- (Z 1Prs (AH) | + [Py (HBY)|. + 3A||7>QLH||1> . =
o (Z IPas (AH) 1 +[|Po <HB1>||1> ,
57 2
58 Note that Q\T; = {0}, we have 35, [|Pr. (AiH)ll« +  and the last two terms are strictly positive when H # 0. W
59 [Pr: (HB1) |« + 3A[Pqr H|1 > 0 unless H = 0.
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TABLE 1
The gquantitative comparison of the 3DCTV-G, 3DCTV-RPCA and
RPCA model on DC mall dataset under different levels of Gaussian
noise. The best and second results on each line are highlighted in bold
italics and underline, respectively. The value in the table is the average
result of ten independent trails.

Noise Metric | Noisy | 3DCTV-G | 3DCTV-RPCA | RPCA
psnr 20.00 34.84 34.56 32.06

o =010 ssim 0.5147 0.9707 0.9629 0.9586
ergas 375.89 67.55 68.71 90.69

psnr 13.98 31.05 30.34 27.97

o =020 ssim 0.2563 0.9320 0.9060 0.9001
ergas 751.51 103.78 110.62 144.830

psnr 10.46 29.02 27.93 25.59

o =030 ssim 0.1437 0.8933 0.8457 0.8398
ergas 1127.1 130.60 145.22 190.93

psnr 7.95 27.72 26.22 23.97

o =040 ssim 0.887 0.8578 0.7852 0.7838
ergas 1504.5 151.54 176.34 230.71

2 PROOF OF THEOREM 2

Now we shall give the detailed proof of Theorem 2 pre-
sented in the main text. To this end, we need the following
two lemmas.

Lemma 9: The sequence of dual variables {T'*
rithm 1 are bounded.

~ 1 in Algo-

Proof: According to the optimality principle, we have
0Ca(IGH ) T (VX Gl
0 € ABNS* ) — T — (M — XFFL — ghtly,

Combining this with the update criterion of the {T¥}# | in
Algorithm 1, we have

L e o(IGEH L), i =1,2,3,
Titt e o@3AIS ),

3 (33)
i =) Vi)
i—1
Note the fact that the dual norm of || - ||. and || - ||1 are
|- ll2 and || - ||, respectively, and || - |2 = A Y| - [« by the
definition in [3], [4]. Thus, using Theorem 4 in [3], we get
that {T'*}%_, are bounded. ]

Lemma 10: The accumulation point ({GF}3_ , Xk Sk)
generated by Algorithm 1 is a feasible solution of 3DCTV-
RPCA model (1).

Proof: Based on the general ADMM principle, we have

TR+ TF|| = bV, X+
[
(34)

k k k1
Lillr = p"IM - X*T —
Since {¢/*} is an increasing sequence and limy_ ;o p* =
+00, and according to Lemma 9, we have

G p,n=1,2,3

) ) )
Sk+1||F

lim ||V, Xk G =0,n=1,2,3,
hm [M — Xk _gh+l) . =0
k——+co
This completes the proof. [ |

With the above lemmas, we next give the proof of
Theorem 2 in the main text.

Proof: Suppose (X*,8*,{G;}? ) is an optimal solution
of the 3DCTV-RPCA model (1), and ({T'}} ) is the

6

optimal solution of its dual model, it thus get that
(X*,8* {G;13_;,{Ts}1 ) forms the saddle point of the
Lagranglan function (i.e., Eq. (14) in the main text).

Recall Eq. (33), we have

ZIIG’“II + 381 < Z IGi|l- — (T}, G} — GI))
+3X[S™ |l — (T}, S* —s")
3
=3 UG+ 3MI87 Iy
i=1
3
+) (TF, Vi(XF — X)) + (Th, 8% — 87)
i=1
3
=Y IGF [l + 3™ [l + (TF, 8% + X* — M)
i=1
(36)

Combining Eq. (36) with Lemma 10, we further have

m ZIIGkII +3/\||Sk||1—ZIIG*|| + 3871 (37)

i=1

This completes the proof. [ |

3 THE EXTENDED MODELS BASED ON 3DCTV
REGULARIZER
3.1 The 3DCTV-G model

The first extended model is:

3
D NGl + S|
i=1

st. M=X+S8,
G; =V,;(X),i=1,23,

(38)

where V;(-),i =1, 2, 3 is a differential operator. This model
(38) named 3DCTV-G model can be used to separate pure
Gaussian noise. We can use Algorithm 1 in the manuscript
to solve this model. And according to the setting of [5], the
trade-off coefficient A can be set as A = 1/(6(y/n1 +/n2)o),
where o is estimated variance of the Gaussian noise.

Tables 1 and 2 list the specific performance of 3DCTV-G
model under Gaussian noise on different datasets. In these
two tables, it can be observed that the 3DCTV-G model gains
a 1dB higher value of PSNR than the 3DCTV-RPCA model
on average. The restoration images are provided in Figs. 1-3
for visualize comparison. From these figures, we can see that
3DCTV-G model can better remove the noise and preserve
the local texture details.

3.2 The 3DWCTV-RPCA model

To remove the stripe noise, we propose another extended
model named 3DWCTV-RPCA model, which is of the form
as
3
win 2(Gall + Y Gl +3AIS]
=2 (39)
st. M=X+8,
G; =V(X),i=1,2,3,
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3DCTV-G 3DCTV-RPCA

Fig. 1. Recovered images of all competing methods with bands 58-27-
17 as R-G-B. (a) The simulated DC mall image. (b) The noise image
with Gaussian noise variance is 0.4. (c-n)Restoration results obtained
by 13 comparison methods with a demarcated zoomed in 3 times.
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3DCTV-G

3DCTV-RPCA

Fig. 2. Recovered images of all competing methods with bands 58-
27-17 as R-G-B. (a) An image selected from one data set from the
CAVE datasets. {b) The noise image with Gaussian noise variance is
0.4. (c-n) Restoration results obtained by 3 comparison methods with a
demarcated zoomed in three times.

where the trade-off parameter A is also setas A = 1/, /fi(n).

In Eq. (39), the weight on the gradient map G is set
twice of that imposed on G2 and Gs3, which makes the
model have a better removal effect for horizontal stripe
noise. It is easy to observe in Fig. 4 that the 3DWCTV-RPCA
model can effectively remove horizontal stripes.

4 HYPER-PARAMETER ROBUSTNESS

As suggested by the theoretical assertion, A\ = 1/, /i) is a
good choice for the proposed model. To better clarify the
issue of hyper-parameter setting, we provide a series of

*****For Peer Review Only*****

]

Original Noisy

3DCTV-G 3DCTV-RPCA

Fig. 3. Recovered images of all competing methods with bands 58-
27-17 as R-G-B. (a) An image selected from one data set from the
CAVE datasets. {b) The noise image with Gaussian noise variance is
0.4. (c-n) Restoration results obtained by 3 comparison methods with a
demarcated zoomed in three times.

Noisy RPCA

3DCTV-RPCA

3DWCTV-RPCA

Fig. 4. Recovered images of all competing methods with bands 6-104-
36 as R-G-B. (a) The original urban part image. (b-d} Restoration results
obtained by 3 comparison methods with a demarcated zoomed in three
times.

experiments for the selection of parameter A. Specifically, we
plot the relative error with varying A under different cases in
Fig. 5 using the same settings of our simulated experiments
in the main text. From the figure, one can easily see that the
optimal performance of all cases are approximately obtained
on A with order of O(1/,/7(1y). It can also be observed that
although the best performance is not always exactly attained
at A = 1/,/Aqy, it still achieves comparable performance
with the optimal one. Combining this observation with our
theoretical assertions (e.g., Theorem 1), we still prefer to
suggest users to directly adopt A = 1/,/n( in practical
applications for more convenience.
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Fig. 5. The performance in terms of relative error with varying A, where A = ¢/, /n1. (a) X with fixed size 400 x 200, composed by low-rank term X
with rank 20 and sparse term Sg with sparsity 0.1, 0.2 and 0.3 from upper to lower; (b) X with fixed size 400 x 200, composed by Sg with sparsity
0.1 and X with rank 10, 20, 40 from upper to lower; (¢} X with sizes 400 x 200, 2500 x 200 and 10000 x 200, composed by X, with rank 20 and
S with sparsity 0.1 from upper to lower; (d) X with fixed size 400 x 200, composed by X with rank 20, Sg with sparsity 0.1 and Gaussian noise

with standard variances 0,0.05,0.1 from upper to lower.

TABLE 2
The quantitative comparison of all competing methods under different
levels of noises on 32 scenes in the CAVE datasets. Each value is the
mean of all data performance. The best and second results on each
line are highlighted in bold italics and underline, respectively. The value
in the table is the average of ten times.

Noise | Metric | Noisy | 3DCTV-G | 3DCTV-RPCA | RPCA
psnr 20.00 34.18 33.47 25.59
0=0.10 | ssim 0.4180 0.9434 0.9006 0.8450
ergas 52058 104.15 111.76 282.86
psnr 13.98 31.30 30.27 22.44
=020 | ssim 0.2033 0.8895 0.7803 0.7185
ergas | 1041.18 144.80 15894 385.78
psnr 10.46 29.73 28.24 20.54
=030 | ssim 0.1246 0.8449 0.6712 0.6248
ergas | 1561.74 172.57 199.46 47191
psnr 7.96 28.69 26.69 19.25
=040 | ssim 0.0847 0.8079 0.5778 0.5533
ergas | 2082.38 193.94 237.36 543.23

5 EXPERIMENTS ON TENSOR RPCA

Because the gradient map obtained by imposing the dif-
ference operation to the original data can inherit the low
rank of the original data, it is not hard to construct a tensor
version of CTV to deal with higher-order data. Specifically,
by using the tensor nuclear norm via t-SVD framework
defined in [6], [7], we can readily generalize the proposed
CTV regularizer from the matrix form to the tensor form
(we shortly call it t-CTV for convenience), that is,

3
1
[X[lcrv == gZ”giH*a (40)
i1

where G;(i = 1,2,3) represents the tensor form of the
gradient map obtained by applying the difference operator
along the i—th mode on original data A, and * is the tensor
nuclear norm as defined in [6], [7].

Therefore, by replacing the tensor nuclear norm with the
above t-CTV regularizer in traditional tensor RPCA model,
we can then get the following new model:

Xl + AE]1, st. Y =X+E. 41)

To illustrate the performance of this new model, we have
chosen the typical TRPCA model [6], [7] with solid theo-
retical guarantee, together with the aforementioned tensor
formulation of CTV (t-CTV shortely) based TRPCA model,
as the representative of the tensor RPCA model for perfor-
mance comparison. As the experimental settings in Section
7.2 of the manuscript, we have used four datasets in the
CAVE database in experiments, and the results are shown
in Table 3. It can be easily seen that the performance of the
CTV-RPCA and t-CTV are evidently higher than that of the
RPCA and TRPCA models. This validates the superiority of
this proposed new regularizer. Specifically, compared with
t-CTV, the performance of CTV-RPCA is slightly worse than
t-CTV in removing sparse noise, but is obviously better in
removing mixed noise and Gaussian noise, which shows
that the performance gain is mainly attained from the CTV
formulation, but not essentially on its matrix or tensor forms
in these cases. The advantage of our methods can also be
observed from Fig. 6, which plots the recovered images of
all competing methods. It can be seen that our method can
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TABLE 3
Performance comparison of all competing methods under different noisy cases for the CAVE database. The best and second best results on each
dataset are highlighted in bold italics and underline, respectively.
Data | Metric cloth feathers jelly beans thread spools
Noise IndeX RPCA TRPCA t+-CTV CTV RPCA TRPCA t-CTV CTV RPCA TRPCA t+-CTV CTV RPCA TRPCA t-CTV CTV

MPSNR || 31.94 | 38.53 | 41.33 | 42.33 || 26.22 | 39.70 | 44.43 | 41.20 || 28.98 | 34.65 | 37.72 | 36.25 || 28.73 | 47.55 | 50.47 | 44.95
MSSIM || 0.980 | 0.988 | 0.993 | 0.997 || 0.936 | 0.991 | 0.996 | 0.997 || 0.963 | 0.987 | 0.994 | 0.993 || 0.954 | 0.998 | 0.990 | 0.998
ERGAS || 102.9 | 50.3 |38.05 | 35.4 ||226.7|56.12|34.11 | 46.7 |[173.9| 82.9 |59.14| 74.0 || 205.6 | 28.71 [ 18.72 | 35.0
TIMES || 13.16 | 172.6 | 342.5 | 122.5 || 13.21 | 174.2 | 345.2 | 123.8 || 13.45 | 178.2 | 348.2 | 124.5 || 13.43 | 175.2 | 345.6 | 131.4
9 MPSNR || 24.64 | 30.55 | 36.42 | 37.36 || 21.21 | 36.31 | 41.98 | 37.97 || 23.20 | 31.96 | 36.00 | 34.07 || 24.24 | 43.42 | 48.05 | 41.67
10 -0.40 | MSSIM || 0.914 | 0.954 | 0.987 | 0.992 || 0.837 | 0.982 | 0.995 | 0.992 || 0.895 | 0.972 | 0.991 | 0.987 || 0.887 | 0.995 | 0.998 | 0.995
| ERGAS |[210.3|106.4 | 55.24 | 54.4 ||396.0 | 75.5 |41.76 | 63.9 || 314.4|111.1|70.88 | 92.8 || 337.7| 42.9 |23.85 | 51.7

TIMES || 12.16 | 175.6 | 380.8 | 121.5 || 12.21 | 174.2 | 385.8 | 120.8 || 11.45 | 168.2 | 387.6 | 120.5 || 11.43 | 175.2 | 385.6 | 123.4
12 MPSNR || 22.17 | 19.04 | 23.67 | 27.40 || 21.56 | 19.26 | 24.33 | 29.23 |[ 22.46 | 19.13 | 24.07 | 28.65 || 23.23 | 19.34 | 24.49 | 30.59
13 G=0.20| MSSIM [ 0.817 | 0.648 | 0.745 | 0.878 || 0.666 | 0.382 | 0478 | 0.759 || 0.779 | 0.587 | 0.676 | 0.859 || 0.726 | 0.373 | 0.462 | 0.772
14 Y ERGAS || 275.4 | 404.5 | 236.9 | 152.6 || 374.5 | 486.2 | 270.8 | 158.3 || 328.6 | 489.9 | 277.2 | 163.5 || 374.7 | 594.2 | 327.9 | 164.6
15 TIMES || 11.78 | 163.5 |349.6 | 119.7 || 13.21 | 174.2 | 351.8 | 123.8 || 13.45 | 178.2 | 352.6 | 124.5 || 13.43 | 175.2 | 345.4 | 131.4
16 MPSNR || 18.46 | 13.24 | 18.34 | 24.26 || 18.21 | 13.34 | 18.63 | 25.81 || 19.09 | 13.29 | 19.23 | 25.44 || 20.13 | 13.38 | 19.28 | 26.88
17 G0.40| MSSIM |10.642 0375|0509 | 0.755 || 0.499 | 0.183 | 0.248 | 0.562 || 0.627 | 0.346 | 0.447 | 0.729 || 0.560 | 0.164 | 0.227 | 0.568
U1 ERGAS || 420.1{790.0 | 438.7 | 219.2 || 547.5 | 961.6 | 522.6 | 231.4 || 479.0 | 961.7 | 526.4 | 235.5 || 534.1 | 1181 | 640.7 | 249.3

18 TIMES || 13.94 | 165.9 | 345.4 | 119.2 || 12.21 | 163.2 | 350.6 | 117.8 || 13.15 | 168.2 | 354.4 | 119.5 || 13.43 | 165.2 | 348.4 | 118.4
19 MPSNR || 25.21 | 23.59 | 27.83 | 30.12 || 23.87 | 24.21 | 29.13 | 31.88 || 24.89 | 23.83 | 28.54 | 30.93 || 25.47 | 24.44 | 29.53 | 33.31
$=0.10 | MSSIM || 0.898 | 0.812 | 0.875 | 0.936 || 0.766 | 0.615 | 0.719 | 0.866 || 0.849 | 0.764 | 0.838 | 0.920 || 0.787 | 0.611 | 0.711 | 0.863

21 S=0.10 | ERGAS || 196.1 | 238.6 | 146.1 | 111.8 || 288.9 | 274.4 | 155.6 | 117.3 || 253.6 | 284.1 | 165.3 | 126.2 || 290.9 | 329.6 | 183.2 | 120.4
22 TIMES || 11.82 | 162.3 |369.8 | 121.1 |[ 11.38 | 160.8 | 391.0 | 124.1 || 12.34 | 171.1 | 390.8 | 122.6 || 13.78 | 172.8 | 380.1 | 125.6
23 MPSNR || 20.87 | 17.15 | 22.15 | 25.86 || 20.22 | 17.56 | 22.69 | 26.82 || 21.29 | 17.35 | 22.49 | 26.53 || 22.45 | 17.70 | 22.83 | 27.67
$=0.20 | MSSIM || 0.751 | 0.544 | 0.679 | 0.833 || 0.578 | 0.298 | 0.409 | 0.646 || 0.708 | 0.488 | 0.612 | 0.776 || 0.599 | 0.281 | 0.387 | 0.613
S=0.20 | ERGAS || 320.0 | 503.4 | 282.9 | 183.5 || 435.5 | 591.7 | 327.4 | 205.4 || 374.8 | 601.5 | 333.4 | 208.7 || 408.8 | 718.3 | 397.8 | 227.1
25 TIMES || 11.84 | 162.1 |342.1 | 121.5 || 11.34 | 160.1 | 351.8 | 124.5 || 13.34 | 172.1 | 312.6 | 123.6 || 13.43 | 175.2 | 349.2 | 131.4

5=0.20

oNOYTULT D WN =

(a) Original (b) CTV-RPCA (c) RPCA (d) TRPCA (e) -CTV
Fig. 6. From upper to lower: Restored images of the cloth data under sparse noise S=0.2, the feather data under mixture noise with S=0.1 and
58 G=0.1, thread spools data under mixture noise with S=0.2 and G=0.2, and jelly beans data under mixture noise with S=0.2 and G=0.2 by different
59 competing methods.
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TABLE 4
Hyperspectral image inpainting quantitative results of all competing methods under different sampling rates. Each value is the mean of ten
experiments. The best result on each line is highlighted in bold. 1 / | indicates that better results are with larger/smaller metric values.

Datasets SR 1% 3%

5% 10% 20%

Methods || NN [TNN | Ours [| NN [ TNN | Ours

NN [TINN [ Ours || NN [TNN [Ours [[ NN [TNN | Ours

PSNR1 [113.08 [20.62 | 22.76 || 17.59 | 25.42 | 29.12
SSIM 1 || 0.088 | 0.503 | 0.602 || 0.494 | 0.784 | 0.883

24.67 | 27.65 (3291 || 38.13 | 31.25 | 44.67 || 47.46 | 36.26 | 51.34
0.804 | 0.859 | 0.951 || 0.981 | 0.930 | 0.996 || 0.998 | 0.973 | 0.999

n]?egl:l FSIM 1 [/ 0.555 | 0.765 | 0.785 || 0.781 | 0.888 | 0.929 || 0.905 | 0.923 | 0.969 || 0.990 | 0.959 | 0.997 || 0.998 | 0.983 | 0.999

ERGAS | || 826.7 | 341.4 | 283.1 || 525.7 | 199.6 | 141.7 || 258.6 | 156.6 | 90.45 || 54.19 | 106.2 | 24.37 || 17.35 | 63.21 | 11.29

MSAM | || 1.011 | 0.290 | 0.230 || 0.420 | 0.208 | 0.143 || 0.216 | 0.175 | 0.102 || 0.045 | 0.132 | 0.029 || 0.022 | 0.087 | 0.016

PSNR? || 6.71 [18.63 | 24.75 || 11.96 | 25.15 | 31.78 || 21.40 | 27.59 | 37.19 || 35.75 | 31.49 | 48.16 || 54.49 | 36.76 | 66.68

Indian SSIM 1 || 0.051 | 0.408 | 0.814 || 0.210 | 0.697 | 0.952 || 0.523 | 0.783 | 0.981 || 0.941 | 0.878 | 0.997 || 0.998 | 0.949 | 1.000
Pines FSIM 1 [/0.397 | 0.533 | 0.757 || 0.413 | 0.715 | 0.912 || 0.641 | 0.782 | 0.966 || 0.940 | 0.866 | 0.996 || 0.997 | 0.939 | 1.000

ERGAS | || 1075 | 303.2 | 145.7 || 590.4 | 150.1 | 67.16
MSAM | |/0.890 | 0.218 | 0.085 || 0.303 | 0.107 | 0.036

202.8 | 116.8 | 38.40 || 44.18 | 79.79 | 12.60 || 7.31 |47.73 | 1.84
0.122{ 0.081 | 0.020 || 0.024 | 0.054 | 0.006 || 0.003 | 0.031 | 0.001

'.'1.1»"'-
|||I

Original: PSNR/SSIM Observed: 13.36/0.2920

Original: PSNR/SSIM Observed: 14.88/0.1613

NN: 20.86/0.5053

NN: 20.80/0.7507

N e S
S L~
r ol

3DCTV: 36.94/0. 9787

TNN: 26.12/0. 8626 3DCTV: 26.64/0. 8764

Fig. 7. Recovered images of all competing methods with bands 49-29-7 as R-G-B under Indian Pines and DC mall datasets.

better remove noise and preserve the texture details of the
noisy image, which is consistent with the analysis of Table
B

6 IMAGE INPAINTING EXPERIMENTS VIA 3DCTV

Similar to the nuclear norm, which inclines to be suitable
for dealing with general low-rank data, 3DCTV is also
suitable for dealing with general joint low-rank and locally
smooth data, regardless of the specific application. Since this
paper studies the RPCA problem, it does not involve other
applications of 3DCTV. Here, we have selected two com-
monly used hyperspectral datasets, i.e., DC mall and Indian
Pines, to illustrate the effectiveness 3DCTV on the image
inpainting task. The experimental results under different
sampling ratios (SR) are listed in Table 4. Furthermore, we
also provide the visual results under sampling ratio 5% in
Fig. 7. It can be easily observed that the proposed 3DCTV
regularized model can achieve a compelling performance
as compared with two other popular regularizers, namely
nuclear norm (NN) and tensor nuclear norm (TNN). We
think such experiments could show a wider range of po-
tential usefulness of the proposed regularizer to other data
recovery tasks.
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