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Abstract. Local discriminative representation is needed in many med-
ical image analysis tasks such as identifying sub-types of lesion or seg-
menting detailed components of anatomical structures. However, the
commonly applied supervised representation learning methods require
a large amount of annotated data, and unsupervised discriminative rep-
resentation learning distinguishes different images by learning a global
feature, both of which are not suitable for localized medical image anal-
ysis tasks. In order to avoid the limitations of these two methods, we
introduce local discrimination into unsupervised representation learning
in this work. The model contains two branches: one is an embedding
branch which learns an embedding function to disperse dissimilar pix-
els over a low-dimensional hypersphere; and the other is a clustering
branch which learns a clustering function to classify similar pixels into
the same cluster. These two branches are trained simultaneously in a
mutually beneficial pattern, and the learnt local discriminative repre-
sentations are able to well measure the similarity of local image regions.
These representations can be transferred to enhance various downstream
tasks. Meanwhile, they can also be applied to cluster anatomical struc-
tures from unlabeled medical images under the guidance of topologi-
cal priors from simulation or other structures with similar topological
characteristics. The effectiveness and usefulness of the proposed method
are demonstrated by enhancing various downstream tasks and clustering
anatomical structures in retinal images and chest X-ray images.

Keywords: Unsupervised representation learning · Local discrimina-
tion · Topological priors

1 Introduction

In medical image analysis, transferring pre-trained encoders as initial models is
an effective practice, and supervised representation learning is widely applied,
while it usually depends on a large amount of annotated data and the learnt
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features might be less efficient for new tasks differing from original training task
[4]. Thus, some researchers turn to study unsupervised representation learning
[9, 17], and particularly unsupervised discriminative representation learning was
proposed to measure similarity of different images [7, 16, 18]. However, these
methods mainly learn the instance-wise discrimination based on global seman-
tics, and cannot characterize the similarities of local regions in image. Hence,
they are less efficient for many medical image analysis tasks, such as lesion de-
tection, structure segmentation, identifying distinctions between different struc-
tures, in which local discriminative features are needed to be captured. In order
to make unsupervised representation learning suitable for these tasks, we in-
troduce local discrimination into unsupervised representation learning in this
work.

It is known that medical images of humans contain similar anatomical struc-
tures, and thus pixels can be classifying into several clusters based on their con-
text. Based on such observations, a local discriminative embedding space can be
learnt, in which pixels with similar context will distribute closely and dissimilar
pixels can be dispersed. In this work, a model containing two branches is con-
structed following a backbone network, in which an embedding branch is used to
generate pixel-wise embedding features and a clustering branch is used to gener-
ate pseudo segmentations. Through jointly updating these two branches, pixels
belonging to the same cluster will have similar embedding features and different
clusters will have dissimilar ones. In this way, local discriminative features can
be learnt in an unsupervised way, which can be used for evaluating similarity of
local image regions.

The proposed method is further applied to several typical medical image
analysis tasks respectively in fundus images and chest X-ray images: (1) The
learnt features are utilized in 9 different downstream tasks via transfer learning,
including segmentations of retinal vessel, optic disk (OD) and lungs, detection
of haemorrhages and hard exudates, etc., to enhance the performances of these
tasks. (2) Inspired by specialists’ ability of recognizing anatomical structures
based on prior knowledge, we utilize the learnt features to cluster local regions
of the same anatomical structure under the guidance of topological priors, which
are generated by simulation or from other structures with similar topology.

2 Related work

Instance discrimination learning method [16, 7, 1, 18] is an unsupervised repre-
sentation learning framework providing a good initialization for downstream
tasks and it can be considered as an extension of exemplar convolution neural
network (CNN) [4]. The main conception of instance discrimination is to build an
encoder to dispersedly embed training samples over a hypersphere [16]. Specifi-
cally speaking, a CNN is trained to project each image onto a low-dimensional
unit hypersphere, in which the similarity between images can be evaluated by
cosine similarity. In this embedding space, dissimilar images are forced to be
separately distributed and similar images are forced to be closely distributed.
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Thus, the encoder can make instance-level discrimination. Wu et al. [16] intro-
duce a memory bank to store historical feature vectors for each image. Then the
probability of image being recognized as i-th example can be expressed by inner
product of the embedding vector and vectors stored in the memory bank. And
the discrimination ability of encoder is obtained by learning to correctly classify
image instance into the corresponding record in the memory bank. However, the
vectors stored in the memory bank are usually outdated caused by discontinu-
ous updating. To address this problem, Ye et al. [18] propose a framework with
siamese network which introduces augmentation invariant into the embedding
space to cluster similar images to realize real-time comparison.

The ingenious design enables instance discrimination effectively utilize unla-
beled images to train a generalized feature extractor for downstream tasks and
shrink the gap between unsupervised and supervised representation learning [7].
However, summarizing a global feature for image instance miss local details,
which are crucial for medical image tasks, and the high similarity of global se-
mantics between images of same body part makes instance-wise discrimination
less practical. Therefore, it is more convinced to focus on local discrimination of
medical images. Meanwhile, medical images of the same body part can be divided
into several clusters due to the similar anatomical structures, which inspires us
to propose a framework to cluster similar pixels to learn local discrimination.

3 Methods

The illustration of our unsupervised framework is shown in Figure 1. This model
has two main components. The first is learning a local discriminative represen-
tation, which aims to project pixels into a l2-normalized low-dimensional space,
i.e. a K-D unit hypersphere, and pixels with similar context should be closely
distributed and dissimilar pixels should be far away from each other on this
embedding space. The learnt local discriminative representation can be taken as
a good feature extractor for downstream tasks. The second is introducing prior

Fig. 1. Illustration of our proposed learning model.
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Fig. 2. Illustration of local discrimination learning.

knowledge of topological structure and relative location into local discrimination,
where the prior knowledge will be fused into the model to make the distribution
of pseudo segmentations closer to the distribution of priors. By combining pri-
ors of structures with local discrimination, regions of the expected anatomical
structure can be clustered.

3.1 Local discrimination learning

As medical images of the same body region contain same anatomical structures,
image pixels can be classified into several clusters, each of which corresponds to
a specific kind of structure. Therefore, local discrimination learning is proposed
to train representations to embed each pixel onto a hypersphere, on which pix-
els with similar context will be encoded closely. To achieve this, two branches,
including an embedding branch to encode each pixel and a clustering branch to
generate pseudo segmentations to cluster pixels, are built following a backbone
network and trained in a mutually beneficial manner.

Notation: We denote fθ as the deep neural network, where θ is the parameters
of network. The unlabeled image examples are denoted as X = {x1, ..., xN}
where xi ∈ RH,W . After feeding xi into the network, we can get embedding
features vi and probability map ri, i.e., vi, ri = fθ(xi), where vi(h,w) ∈ RK is
the K-dimensional encoded vector for position (h,w) of image xi and ri(h,w) ∈
RM is a vector representing the probability of classifying pixel xi(h,w) into M
clusters. And rmi(h,w) denotes the probability of classifying pixel xi(h,w) into
the m-th cluster. We force ||ri(h,w)||1 = 1 and ||vi(h,w)||2 = 1 by respectively
setting l1 and l2 normalization in clustering branch and embedding branch.

Jointly train clustering branch and embedding branch: After getting
embedding features and pseudo segmentations, the center embedding feature cm
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of m-th cluster can be formulated as followed:

cm =

∑
i,h,w rmi(h,w)vi(h,w)

||
∑
i,h,w rmi(h,w)vi(h,w)||2

(1)

Where l2 normalization is used to make cm on the hypersphere. Thus, the simi-
larity between cm and vi(w, h) can be evaluated by cosine similarity as followed:

t(cm, vi(w, h)) = cTmvi(w, h) (2)

To make pixels of same cluster closely distributed and pixels of different clusters
dispersedly distributed, there should be high similarity between vi(w, h) and
corresponding center embedding features cm, and low similarity between cm and
cn(m 6= n) as well. Thus, the loss function can be formulated as followed:

lossld = − 1

MNHW

∑
m,i,h,w

rmi(h,w)t(cm, vi(w, h)) +
1

M(M − 1)

∑
m,n 6=m

cTmcn

(3)

More constraints: We also add entropy loss and area loss to make high con-
fidence of predictions and avoid blank outputs for some clusters. The losses are
as followed:

lossentropy = − 1

MNHW

∑
m,i,h,w

rmi(h,w)logrmi(h,w) (4)

areami =
∑
h,w

rmi(h,w) (5)

lossarea =
1

NM

∑
m,i

relu(
1

4M
HW − areami) (6)

Where relu is rectified linear units [5], lossarea will impose punishment if the
area of pseudo segmentation is smaller than 1

4MHW .

3.2 Prior-guided anatomical structure clustering

Commonly, specialists can easily identify anatomical structures based on corre-
sponding prior knowledge, including relative location, topological structure, and
even based on knowledge of similar structures. Therefore, DNN’s ability of recog-
nizing structures based on local discrimination and topological priors is studied
in this part. Reference images, which are binary masks of similar structures, real
data or simulation and show knowledge of location and topological structure, is
introduced to the network to force the clustering branch to obtain corresponding
structures as shown in Figure 3.
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Fig. 3. Based on prior knowledge and local discrimination to recognize structures.

We denote the distribution of m-th cluster as Pm and the distribution of cor-
responding references as Qm. The goal of optimization is to minimize Kullback-
Leibler (KL) divergence between them, and it can be formulated as followed:

min
fθ

KL(Pm||Qm) =
∑
i

Pm(rmi)log
Pm(rmi)

Qm(rmi)
(7)

To minimize the KL divergence between Pm and Qm, adversarial learning [6]
is utilized to encourage the produced pseudo segmentation to be similar as the
reference mask. During training, a discriminator D is set to discriminate pseudo
segmentation rm and reference mask sm, while fθ aims to cheat D. The loss
function for D and adversarial loss for fθ are defined as followed:

lossD = lossbce(D(sm), 1) + lossbce(D(rm), 0) (8)

lossbce(ŷ, y) = − 1

N

∑
i

(yilogŷi + (1− yi)log(1− ŷi)) (9)

lossadv = lossbce(D(rm), 1) (10)

Reference masks: (1) From similar structures: Similar structures share similar
geometry and topology. Therefore, we can utilize segmentation annotations from
similar structures to guide the segmentation of target, e.g., annotations of vessel
in OCTA can be utilized for the clustering of retinal vessel in fundus images. (2)
From real data: Corresponding annotations of target structure can be directly set
as the prior knowledge. (3) Simulation: Based on the comprehension, experts can
draw the pseudo masks to show the information of relative location, topology,
etc. For example, based on retinal vessel mask, the approximate location of OD
and fovea can be identified. Then, ellipses can be placed at these positions to
represent OD and fovea based on their geometry priors.
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4 Experiments and Discussion

The experiments can be divided into two parts to show the effectiveness of our
proposed unsupervised local discrimination learning and prove the feasibility of
combining local discrimination and topological priors to cluster target structures.

4.1 Network architectures and initialization

The backbone is a U-net consisted with a VGG-liked encoder and a decoder.
The encoder is a tiny version of VGG-16 without fully connection layers (FCs),
whose channel number is quarter of VGG-16. The decoder is composed with 4
convolution blocks, each of which is made up of two convolution layers. The final
features of decoder will be concatenated with the features generated by the first
convolution block of encoder for the further processing of the clustering branch
and the embedding branch. Embedding branch is formed of 2 convolution layers
with 32 channels and a l2 normalization layer to project each pixel onto a 32-
D hypersphere. Clustering branch is consisted with 2 convolution layers with 8
channels followed by a l1 normalization layer.

To minimize the KL divergence between the pseudo segmentation distribu-
tion and the references distribution, a discriminator is created. The discriminator
is a simple classifier with 7 convolution layers and 2 FCs. The channel numbers
of convolution layers are 16, 32, 32, 32, 32, 64, 64 and the first 5 layers are fol-
lowed by a max-pooling layer to halve the image size. FCs’ channels are 32 and
1, and the final FC is followed by a Sigmoid layer.

Patch discrimination to initialize the network: It is hard to simultane-
ously train the clustering branch and the embedding branch from scratch. Thus,
we firstly jointly pre-train the backbone and the embedding branch by patch dis-
crimination, which is an improvement of instance discrimination [18]. The main
idea is that the embedding branch should project similar patches (patches under
various augmentations) onto close positions on the hypersphere. The embedding
features vi will be firstly processed by an adaptive average pooling layer (APP)
to generate spatial features, each of which represents feature of corresponding
patches of image xi. We denote si(j) as the embedding vector for xi(j) (j-th
patch of xi), where ||si(j)||2 = 1 by applying a l2 normalization. ŝi(j) denotes
the embedding vector of corresponding augmentation patch x̂i(j). The probabil-
ity of region x̂i(j) being recognized as region xi(j) can be defined as followed:

P (ij|x̂i(j)) =
exp(sTi (j)ŝi(j)/τ)∑
k,l exp(sTk (l)ŝi(j)/τ)

, (11)

Assuming all patches being recognized as xi(j) is independent, then the joint
probability of x̂i(j) being recognized as xi(j) and xk(l)(k 6= i or l 6= j) not being
recognized as xi(j) is as followed:

Pij = P (ij|x̂i(j))
∏

k 6=i or l 6=j

(1− P (ij|x̂k(l))). (12)
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The negative log likelihood and loss function are formulated as followed:

Jij = − logP (ij|x̂i(j))−
∑

k 6=i or l 6=j

log(1− P (ij|x̂k(l))). (13)

losspd =
∑
i,j

Jij (14)

We also introduce mixup [19] to make the representations more robust. Based
on mixup, virtual sample x̃i = λxa + (1 − λ)xb is firstly generated by linear
interpolation of xa and xb, where λ ∈ (0, 1). The embedded representation for
patch x̃i(j) is s̃i(j), and we expect it is similar to the mixup feature zi(j). The
loss is defined as followed:

zi(j) =
λsa(j) + (1− λ)sb(j)

||λsa(j) + (1− λ)sb(j)||2
. (15)

P̃ (ij|s̃i(j)) =
exp(zTi (j)s̃i(j)/τ)∑
k,l exp(zTk (l)s̃i(j)/τ)

. (16)

J̃ij = − log P̃ (ij|s̃i(j))−
∑

k 6=i or l 6=j

log(1− P̃ (ij|s̃k(l))), (17)

lossmixup =
∑
i,j

J̃ij (18)

When pre-training this model, we set the training loss as losspd + lossmixup.
The output size of APP is set as 4 × 4 to split each image into 16 patches.
And each batch contains 16 groups of images and 8 corresponding mixup im-
ages, and each of group contains 2 augmentations of one image. The augmenta-
tion methods contain RandomResizedCrop, RandomGrayscale, ColorJitter,
RandomHorizontalF lip, Rotation90 in pytorch. The optimizer is Adam with
initial learning rate (lr) of 0.001, which will be half if the validation loss does
not decrease over 3 epochs. The maximum training epoch is 20.

4.2 Experiments for learning local discrimination

Datasets and preprocessing: Our method is evaluated in two medical scenes.
Fundus images: The model will be firstly trained on diabetic retinopathy (DR)
detection dataset of kaggle [3]4 (30k for training, 5k for validation). Then, the
pre-trained encoder is transferred to 8 segmentation tasks: (1) Retinal vessel:
DRIVE [13] (20 for training, 20 for testing), STARE [8] (10 for training, 10 for
testing) and CHASEDB1 [10] (20 training, 8 testing). (2) OD and cup: Drishti-
GS [12] (50 for training, 50 for testing). ID (OD) [11] (54 for training, 27 for
testing). (3) Lesions: Haemorrhages dataset (Hae) and hard exudates dataset
(HE) from IDRID [11]. Chest X-ray: The encoder is pre-trained on ChestX-
ray8 [15] (100k for training and 12k for validation) and transferred to lung
segmentation [2] (69 for training, 69 for testing). All images of above datasets
are resized to 512× 512.
4 https://www.kaggle.com/c/diabetic-retinopathy-detection/data
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Table 1. Comparison of results of downstream segmentation tasks.

Retinal vessel Optic disc and cup Lesions X-ray

encoder DRIVE STARE CHASE GS(cup) GS(OD) ID(OD) Hae HE Lung

Random 80.76 76.26 78.30 77.76 95.41 89.11 37.76 57.44 96.34
Supervised 81.06 80.59 78.56 86.94 96.40 93.56 51.11 61.34 −
Wu et al. 74.98 66.15 68.31 84.59 94.58 88.70 26.34 48.67 96.27
Ye et al. 80.87 81.22 79.85 87.30 97.40 94.68 46.79 59.40 96.63

LD 82.15 83.42 80.35 89.30 96.53 95.59 46.72 65.77 97.51

Implementation details: (1) Local discriminative representation learning:
The model is firstly initialized by pre-trained model of patch discrimination.
Then the training loss is set as losspd + lossmixup + 10lossld + lossentropy +
5lossarea. Each batch has 6 groups of images, each of which contains 2 augmen-
tations of one image, and 3 mixup images. The maximum training epoch is 80
and the optimizer is Adam with lr = 0.001.

(2) Transferring: The encoder of downstream tasks is initialized by the learnt
feature extractor of local discrimination. The decoder is composed with 5 con-
volution blocks, each of which contains 2 convolution layers and is followed by

a up-pooling layer. The loss is set as lossdsc = 2|p×g|
|g|+|p| . This model will be firstly

trained in 100 epochs in frozen pattern with Adam with lr = 0.001, and then be
trained in fine-tune pattern with lr = 0.0001 in the following 100 epochs.

(3) Comparative methods: Random: The network is trained from scratch.
Supervised: Supervised by the manual score of DR, the encoder will be firstly
trained by making classification. Wu et al. [16] and Ye et al. [18]: Instance
discrimination methods proposed in [16] and [18]. LD: The proposed method.

Results: The evaluation metric is mean Dice-Sørensen coefficient (DSC):DSC =
2|P×G|
|P |+|G| , where P is the binary results of predictions and G is the ground truth.

Quantitative evaluations for downstream tasks are shown in Table 1, and we can
have following observations:

1) The generalization ability of the trained local discriminative representation
is demonstrated by the leading performance in the 6 fundus tasks and lung
segmentation. Compared with models trained from scratch, models initialized
by our pre-trained encoder can respectively gain improvements of 1.39%, 7.16%,
2.05%, 11.54%, 1.12%, 6.48%, 8.96%, 8.33% and 1.17% in DSC for all 9 tasks.

2) Compared with instance discrimination methods by Wu et al. [16] and Ye
et al. [18], the proposed local discrimination is capable to learn finer features
and is more suitable for unsupervised representation learning of medical images.

3) The proposed unsupervised method is free from labeled images and the
learnt representation is more generalized, while supervised representation learn-
ing relies on expensive manual annotations and learns specialized representa-
tions. As shown in Table 1, our method shows better performance than super-
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Fig. 4. Some examples of reference masks and predicted results: The first row show
some reference images and the second row show the predictions.

vised representation learning, whose target is to classification DR, and the only
exception is on segmenting haemorrhages which is the key evidence for DR.

4.3 Experiments for clustering structures based on prior knowledge

Implementation details: In this part, we respectively fuse reference images
from real data, similar structures and simulations into local discrimination to
investigate the ability of clustering anatomical structures. A dataset with 3110
high-quality fundus images from [14] and 1482 frontal X-rays from [15] are uti-
lized as the training data. The reference images can be constructed in 3 ways:
(1) From real references: ALL 40 retinal vessel masks of DRIVE are utilized as
the references for clustering pixels of vessel. (2) From similar structures: Similar
structures share similar priors, thus, 10 OCTA vessel masks are utilized as the
references for retinal vessel of fundus. (3) Simulation: We directly draw 20 simu-
lated lung masks to guide lung segmentation. Meanwhile, based on vessel masks
of DRIVE, we place ellipses at approximate center location of OD and fovea to
generate pseudo masks. Some reference masks are shown in Figure 4.

fθ needs to jointly learn local discrimination and cheat D, thus, it will be
updated by minimizing the following loss:

lossfθ = losspd + lossmixup + 10lossld + lossentropy + 5lossarea + 2lossadv (19)

The optimizer for fθ is Adam with lr = 0.001. The discriminator is optimized by
minimizing lossD and the optimizer is Adam with lr = 0.0005. It is worth noting
that during the clustering training of OD and fovea, all masks of real vessel, fovea
and OD are concatenated and fed into D to provide enough information and fθ
is firstly pre-trained to cluster retinal vessel. The maximum training epoch is 80.

Results: Visualization examples are shown in Figure 4. Quantitative evalua-
tions are as followed: (1) Retinal vessel segmentation is evaluated in the test
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data of STARE. And the DSC are respectively 66.25% and 57.35% for models
based on real references and based on OCTA annotations. (2) The segmentation
of OD is evaluated in the test data of Drishti-GS and gains DSC of 83.60%.
(3) The segmentation of fovea is evaluated in the test data of STARE. Because
the region of fovea is fuzzy, we measure the mean distance between the real cen-
ter of fovea and the predicted center. The mean distance is 7.63pixels. (4) The
segmentation of lung is evaluated in NLM [2] and the DSC is 81.20%.

Based on above results, we can have following observations:
1) In general, topological priors generated from simulation or similar struc-

tures in a different modality is effective to guide the clustering of target regions.
2) However, real masks contain more detailed information and are able to

provide more precise guidance. For example, compared with vessel segmentations
based on OCTA annotations, which missing the thin blood vessels due to the
great thickness of OCTA mask, segmentations based on real masks can recognize
thin vessels due to the details provided and the constraint of clustering pixels
with similar context.

3) For anatomical structures with fuzzy intensity pattern, such as fovea, com-
bining local similarity and structure priors is able to guide precise recognition.

5 Conclusion

In this paper, we propose an unsupervised framework to learn local discrimina-
tive representation for medical images. By transferring the learnt feature extrac-
tor, downstream tasks can be improved to decrease the demand for expensive
annotations. Furthermore, similar structures can be clustered by fusing prior
knowledge into the learning framework. The experimental results show that our
methods have best performance on 7 out of 9 tasks in fundus and chest X-
ray images, demonstrating the great generalization of the learnt representation.
Meanwhile, the feasibility of clustering structures based on prior knowledge and
unlabeled images is demonstrated by combining local discrimination and topo-
logical priors from real data, similar structures or even simulations to segment
anatomical structures including retinal vessel, OD, fovea and lung.
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13. Staal, J., Abràmoff, M.D., Niemeijer, M., Viergever, M.A., Van Ginneken, B.:
Ridge-based vessel segmentation in color images of the retina. IEEE transactions
on medical imaging 23(4), 501–509 (2004)

14. Wang, R., Chen, B., Meng, D., Wang, L.: Weakly-supervised lesion detection from
fundus images. IEEE transactions on medical imaging pp. 1501–1512 (2018)

15. Wang, X., Peng, Y., Lu, L., Lu, Z., Bagheri, M., Summers, R.M.: Chestx-ray8:
Hospital-scale chest x-ray database and benchmarks on weakly-supervised classi-
fication and localization of common thorax diseases. In: Proceedings of the IEEE
conference on computer vision and pattern recognition. pp. 2097–2106 (2017)

16. Wu, Z., Xiong, Y., Yu, X.S., Lin, D.: Unsupervised feature learning via non-
parametric instance discrimination. Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition pp. 3733–3742 (2018)

17. Xie, X., Chen, J., Li, Y., Shen, L., Ma, K., Zheng, Y.: Instance-aware self-
supervised learning for nuclei segmentation. In: International Conference on Medi-
cal Image Computing and Computer-Assisted Intervention. pp. 341–350. Springer
(2020)

18. Ye, M., Zhang, X., Yuen, P.C., Chang, S.F.: Unsupervised embedding learning via
invariant and spreading instance feature. In: Proceedings of the IEEE Conference
on computer vision and pattern recognition. pp. 6210–6219 (2019)

19. Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: Beyond empirical risk
minimization. In: International Conference on Learning Representations (2018)


