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Abstract. Bayesian approach, a useful tool for quantifying uncertainties, has been extensively4
employed to solve the inverse problems of partial differential equations (PDEs). One of the main5
difficulties in employing the Bayesian approach to such problems is how to extract information from6
the posterior probability measure. Compared with conventional sampling-type methods, variational7
Bayes’ method (VBM) has been intensively examined in the field of machine learning attributed to8
its ability in extracting approximately the posterior information with lower computational cost. In9
this paper, we generalize the conventional finite-dimensional VBM to the infinite-dimensional space10
rigorously solve the inverse problems of PDEs. We further establish a general infinite-dimensional11
mean-field approximate theory and apply it to the linear inverse problems under the Gaussian and12
Laplace noise assumptions at the abstract level. The results of some numerical experiments substan-13
tiate the effectiveness of the proposed approach.14
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1. Introduction. Motivated by the significant applications in medical imaging,18

seismic explorations and many other domains, the field of inverse problems has un-19

dergone an enormous development over the past few decades. In handling an inverse20

problem, we usually meet ill-posed issue in the sense that the solution lacks stability21

or even uniqueness [31, 49]. The regularization approach, including Tikhonov and22

Total-Variation regularization, is one of the most popular approaches to alleviate this23

ill-posed issue of inverse problems. In the regularization approach, statistical models24

for data are mostly employed to justify the choice of data discrepancy and for select-25

ing an appropriate regularization parameter. In addition, the statistical properties of26

data can be investigated carefully, which can be useful for uncertainty quantification27

[9]. However, statistical assumptions on the model parameters are rarely considered28

in functional analytic regularization. For a complete review, we refer to Sections 229

and 3 in [4].30

The Bayesian inverse approach provides a flexible framework that solves inverse31

problems by transforming them into statistical inference problems, thereby making it32

feasible to analyze the uncertainty of the solutions to the inverse problems. Inverse33

problems are usually accompanied by a forward operator originating from some partial34

differential equations (PDEs), thereby introducing difficulties to the direct use of the35

finite-dimensional Bayes’ formula. The following two strategies can be employed to36

solve this problem:37

1. Discretize-then-Bayesianize: The PDEs are initially discretized to approxi-38

mate the original problem in some finite-dimensional space, and the reduced39
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approximate problem is then solved by using the Bayes’ method.40

2. Bayesianize-then-discretize: The Bayes’ formula and algorithms are initially41

constructed on infinite-dimensional space, and after the infinite-dimensional42

algorithm is built, some finite-dimensional approximation is carried out.43

The first strategy makes available all the Bayesian inference methods developed in the44

statistical literature [35]. However, given that the original problems are defined on45

infinite-dimensional space, several problems, such as non-convergence and dimensional46

dependence, tend to emerge when using this strategy [16, 36]. By employing the47

second strategy, the discretization-invariant property naturally holds given that the48

Bayes’ formula and algorithms are properly defined on some separable Banach space49

[19, 48]. In the following sections, we confine ourselves to the second strategy, that50

is, postponing the discretization to the final step.51

One of the essential issues for employing the Bayes’ inverse method is how to52

extract information from the posterior probability measure. Previous studies have53

adopted two major approaches to address such issue, namely, the point estimate54

method and the sampling method. For the point estimate method, the maximum a55

posteriori (MAP) estimate, which is intuitively equivalent to solving an optimization56

problem, is often utilized. The intuitive equivalence relation has been rigorously57

analyzed recently [2, 13, 18, 21, 27]. In some situations [32, 49], MAP estimates are58

more desirable and computationally feasible than the entire posterior distribution.59

However, point estimates cannot provide uncertainty quantification and are usually60

recognized as incomplete Bayes’ method.61

To extract all information encoded in the posterior distribution, sampling meth-62

ods, such as the Markov chain Monte Carlo (MCMC), are often employed. In 2013,63

Cotter et al. [16] proposed using the MCMC method for functions to ensure that64

the convergence speed of the algorithm is robust under mesh refinement. Multiple65

dimension-independent MCMC-type algorithms have also been proposed [17, 23]. Al-66

though MCMC is highly-efficient as a sampling method, its computational cost is67

unacceptable for many applications, including the full waveform inversion [24].68

In this paper, we aim to propose a variational method that can perform uncer-69

tainty analysis at a computational cost which is comparable to that for computing70

the MAP estimates. For finite-dimensional problems, such types of methods, named71

as variational Bayes’ methods (VBM), have been broadly investigated in the field of72

machine learning [8, 41, 52, 53]. In addressing the inverse problems, Jin et al. [34, 33]73

employed VBM to investigate a hierarchical formulation of the finite-dimensional in-74

verse problems when the noise is distributed according to Gaussian or centered-t75

distribution. Guhua et al. [26] generalized this method further to the case when the76

noise is distributed according to skewed-t error distribution. Finite-dimensional VBM77

has been recently applied to study the porous media flows in heterogeneous stochastic78

media [51].79

All the aforementioned investigations are conducted based on finite-dimensional80

VBM. Therefore, only the first strategy as aforementioned can be employed to solve81

the inverse problems. To the best of our knowledge, only two relevant works have82

investigated VBM under the infinite-dimensional setting. Specifically, when the ap-83

proximate probability measures are restricted to be Gaussian, Pinski et al. [44, 45]84

employed a calculus-of-variations viewpoint to study the properties of Gaussian ap-85

proximate sequences with Kullback-Leibler (KL) divergence as the a fitness measure.86

Relying on the Robbins-Monro algorithm, they developed a novel algorithm for ob-87

taining the approximate Gaussian measure. Until now, no study has been conducted88

beyond such Gaussian approximate measure assumption. However, various approxi-89
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mate probability measures have been frequently used for training deep neural networks90

and solving finite-dimensional inverse problems [34, 33]. In this case, for applications91

in inverse problems concerned with PDEs, a VBM with approximate measures other92

than Gaussian should be necessarily constructed on infinite-dimensional space.93

In the following, we focus on the classical mean-field approximation that is wide-94

ly employed for the finite-dimensional case. This approximation originally stems95

from the theory of statistical mechanics for treating many-body systems. Inspired96

by finite-dimensional theory, we construct a general infinite-dimensional mean-field97

approximate based VBM, which allows the use of general approximate probability98

measures beyond Gaussian. Examples are also given to illustrate the flexibility of our99

proposed approach. The contributions of our work can be summarized as follows:100

• By introducing a reference probability measure and using the calculus of101

variations, we establish a general mean-field approximate based VBM on102

Hilbert spaces that provides a flexible framework for introducing techniques103

developed on finite-dimensional space to infinite-dimensional space.104

• We apply the proposed theory to a general linear inverse problem (the for-105

ward map is assumed to be a bounded linear operator) with Gaussian and106

Laplace noise assumptions. Precise assumptions can be found in Subsection107

3.1. Through detailed calculations, we construct iterative algorithms for func-108

tions. To the best of our knowledge, VBM with Laplace noise assumption has109

not been previously employed for solving inverse problems, even those that110

are restricted to finite-dimensional space.111

• We solve the inverse source problems of Helmholtz equations with multi-112

frequency data by using the proposed VBM with Gaussian and Laplace noise113

assumptions. The algorithms not only provide a point estimate but also give114

the standard deviations of the numerical solutions.115

The outline of this paper is as follows. In Section 2, we construct the general116

infinite-dimensional VBM based on the mean-field approximate assumption. In Sec-117

tion 3, under the hierarchical formulation, we apply the proposed theory to an abstract118

linear inverse problem with Gaussian and Laplace noise assumptions. In Section 4,119

we present concrete numerical examples to illustrate the effectiveness of our proposed120

approach. In Section 5, we summarize our findings and propose some directions for121

further research. Due to the limited space, we did not provide all proofs in the main122

text. All of the proofs are given in the supplemental materials.123

2. General theory on infinite-dimensional space. In Subsection 2.1, we124

provide the necessary background of our theory and prove some basic results con-125

cerning with the existence of minimizers for finite product probability measures. In126

Subsection 2.2, we present our infinite-dimensional variational Bayes’ approach.127

2.1. Existence theory. In this subsection, we first recall some general facts128

about the Kullback-Leibler (KL) approximation from the viewpoint of calculus of129

variations, and then provide some new theorems for product of probability measures130

that form the basis of our investigation. Let H be a separable Hilbert space endowed131

with its Borel sigma algebra B(H), and let M(H) be the set of Borel probability132

measures on H.133

For inverse problems, we usually need to find a probability measure µ on H, which134

is called the posterior probability measure, specified by its density with respect to a135

prior probability measure µ0 [48]. Let the Bayesian formula on the Hilbert space be136

This manuscript is for review purposes only.
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defined by137

dµ

dµ0
(x) =

1

Zµ
exp

(
− Φ(x)

)
,(1)138

139

where Φ(x) : H → R is a continuous function, and exp
(
− Φ(x)

)
is integrable with140

respect to µ0. The constant Zµ is chosen to ensure that µ is indeed a probability141

measure.142

Let A ⊂M(H) be a set of “simpler” measures that can be efficiently calculated.143

Our aim is to find the closest element ν to µ with respect to the KL divergence from144

subset A. For any ν ∈M(H) that is absolutely continuous with respect to µ, the KL145

divergence is defined as146

DKL(ν||µ) =

∫
H

log

(
dν

dµ
(x)

)
dν

dµ
(x)µ(dx) = Eµ

[
log

(
dν

dµ
(x)

)
dν

dµ
(x)

]
,(2)147

148

where the convention 0 log 0 = 0 has been used. If ν is not absolutely continuous with149

respect to µ, then the KL divergence is defined as +∞. With this definition, this150

paper examines the following minimization problem:151

arg min
ν∈A

DKL(ν||µ).(3)152
153

There are some studies of the above general minimization problem (3) taken from154

the perspective of the calculus of variations. We follow this line of investigations in this155

section, and for the convenience of the readers, we present the following proposition,156

which has been proven in [45].157

Proposition 1. Let A be closed with respect to weak convergence. Then, given158

µ ∈M(H), assume that there exists ν ∈ A such that DKL(ν||µ) <∞. It follows that159

there exists a minimizer ν ∈ A solving160

arg min
ν∈A

DKL(ν||µ).161
162

As stated in the Introduction, we aim to construct a mean-field approximation163

that usually takes the following factorized form for the finite-dimensional case164

q(x1, · · · , xM ) =

M∏
j=1

q(xj),(4)165

166

where q(x1, · · · , xM ) is the full probability density function, q(xj) is the probability167

density function for xj , and xj ∈ RNj (Nj ∈ N) for j = 1, 2, · · · ,M . That is, we168

assume that x1, · · · , xM are independent random variables. By carefully choosing the169

random variables {xj}Mj=1, this independence assumption will lead to computationally170

efficient solutions when conjugate prior probabilities are employed. Additional details171

can be found in Chapter 9 of [8] and in some recently published papers [33, 52, 53].172

Inspired by formula (4), for a fixed positive constant M , we specify the Hilbert173

space H and subset A as174

H =

M∏
j=1

Hj , A =

M∏
j=1

Aj ,(5)175

176
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where Hj(j = 1, · · · ,M) are a series of separable Hilbert space and Aj ⊂ M(Hj).177

Let ν :=
∏M
i=1 ν

i be a probability measure such that ν(dx) =
∏M
i=1 ν

i(dx). With178

these assumptions, the minimization problem in (3) can be rewritten as179

arg min
νi∈Ai

DKL

( M∏
i=1

νi
∣∣∣∣µ)(6)180

181

for suitable sets Ai with i = 1, 2, · · · ,M . The general result shown in Proposition 1182

indicates that the closedness of the subset A under weak convergence is crucial for the183

existence of the approximate measure ν. Therefore, we present the following lemma184

that illustrates the closedness of A as defined in (5).185

Lemma 2. For i = 1, 2, · · · ,M , let Ai ⊂ M(Hi) be a series of sets closed under186

weak convergence of probability measures. Define187

C :=

{
ν :=

M∏
j=1

νj
∣∣∣∣ νj ∈ Aj for j = 1, 2, · · · ,M

}
.(7)188

189

Then, the set C is closed under the weak convergence of probability measures.190

From Lemma 2 and Proposition 1, we can prove the following existence result.191

Theorem 3. For i = 1, 2, · · · ,M , let Ai be closed with respect to weak conver-192

gence. Given µ ∈M(
∏M
i=1Hi), we assume that there exists νi ∈ Ai for i = 1, · · · ,M193

such that DKL(
∏M
i=1 ν

i||µ)<∞. Then, there exists a minimizer
∏M
i=1 ν

i that solves194

problem (6).195

Remark 4. In Theorem 3, we only illustrate the existence of the approximate196

measure ν without uniqueness. When the approximate measures are assumed to be197

Gaussian, uniqueness has been obtained with the λ-convex requirement of the poten-198

tial Φ appearing in the Bayes’ formula (1) [45]. We cannot expect uniqueness gener-199

ally even for most of the practical problems defined on the finite-dimensional space.200

Therefore, we will not pursue the uniqueness results here.201

The result shown in Theorem 3 does not tell us much about the manner in which202

minimizing sequences approach the limit. After further deductions, we can precisely203

characterize the convergence.204

Theorem 5. Let
{
νn =

∏M
j=1 ν

j
n

}∞
n=1

be a sequence in
∏M
j=1M(Hj), and let205

ν∗ =
∏M
j=1 ν

j
∗ ∈

∏M
j=1M(Hj) and µ ∈M(

∏M
j=1Hj) be probability measures such that206

for any n ≥ 1, we have DKL(νn||µ) < ∞ and DKL(ν∗||µ) < ∞. Suppose that νn207

converges weakly to ν∗ and νjn � νj∗ for j = 1, 2, · · · ,M and that208

DKL(νn||µ)→ DKL(ν∗||µ).(8)209210

Then, νjn converges to νj∗ in the total variation norm for j = 1, 2, · · · ,M .211

Combining Theorems 3 and 5, we immediately obtain the following result.212

Corollary 6. For j = 1, 2, · · · ,M , let Aj ⊂ M(Hj) be closed with respect to213

weak convergence. Given µ ∈M(
∏M
j=1Hj), there exists ν =

∏M
j=1 ν

j ∈
∏M
j=1Aj with214

DKL(ν||µ) <∞. Let νn =
∏M
j=1 ν

j
n ∈

∏M
j=1Aj satisfy215

DKL(νn||µ)→ inf
ν∈

∏M
j=1Aj

DKL(ν||µ).(9)216
217

Then, after passing to a subsequence, we have218
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6 J. JIA, Q. ZHAO, Z. XU, D. MENG, Y. LEUNG

• νn converges weakly to ν∗ =
∏M
j=1 ν

j
∗ ∈

∏M
j=1M(Hj) that realizes the infimum219

in (9);220

• each νjn converges weakly to νj∗ for j = 1, 2, · · · ,M .221

In addition, for j = 1, 2, · · · ,M , if νjn � νj∗ for all n, each νjn converges to νj∗ in the222

total-variation norm.223

Remark 7. Because our results rely on conclusions given in [45] that hold on224

Polish spaces, it should be pointed out that all of the theoretical results presented in225

this subsection actually hold on Polish spaces.226

2.2. Mean-field approximation for functions. For finite-dimensional cases,227

the mean-field approximation has been widely employed in the field of machine learn-228

ing. On the basis of the results presented in Subsection 2.1, we construct a mean-field229

approximation approach on infinite-dimensional space, which will be useful for solving230

the inverse problems of PDEs.231

In the previous work, e.g., Examples 3.8 and 3.9 in [45] and the general setting232

described in [44], their idea is replacing the classical density functions by the density233

functions with respect to the prior measure. In [44, 45], prior measures are taken to234

be Gaussian measures, which take the role played by the Lebesgue measure in the235

finite-dimensional setting, as a reference measure. Inspired by these studies, we may236

assume that the approximate probability measure ν introduced in (3) is equivalent to237

µ0 defined by238

dν

dµ0
(x) =

1

Zν
exp

(
− Φν(x)

)
.(10)239

240

Compared with the finite-dimensional case, a natural way for introducing an inde-241

pendence assumption is to assume that the potential Φν(x) can be decomposed as242

exp (−Φν(x)) =

M∏
j=1

exp
(
−Φjν(xj)

)
,(11)243

244

where x = (x1, · · · , xM ). However, this intuitive idea prevents us from incorporat-245

ing those parameters contained in the prior probability measure into the hierarchical246

Bayes’ model that is used in finite-dimensional cases [33, 53]. Given these consider-247

ations, we propose the following assumption that introduces a reference probability248

measure.249

Assumptions 8. Let us introduce a reference probability measure250

µr(dx) =

M∏
j=1

µjr(dxj),(12)251

252

which is equivalent to the prior probability measure with the following relation being253

true:254

dµ0

dµr
(x) =

1

Z0
exp(−Φ0(x)).(13)255

256

For each j = 1, 2, · · · ,M , there is a predefined continuous function aj(ε, xj)
1 where257

ε is a positive number and xj ∈ Hj. Concerning these functions, we assume that258

1These functions naturally appear when considering concrete examples, which will be specified
in Remark 15. In the last part of the supplementary materials, we provide a detailed illustration of
the Gaussian noise example, which may provide more intuitions.
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Eµjr [aj(ε, ·)] <∞ where ε ∈ [0, εj0) with εj0 is a small positive number (j = 1, · · · ,M).259

We also assume that the approximate probability measure ν is equivalent to the refer-260

ence measure µr and that the Radon-Nikodym derivative of ν with respect to µr takes261

the following form262

dν

dµr
(x) =

1

Zr
exp

(
−

M∑
j=1

Φrj(xj)

)
.(14)263

264

Following Assumptions 8, we know that the approximate measure can be decom-265

posed as ν(dx) =
∏M
j=1 ν

j(dxj) with266

dνj

dµjr
=

1

Zjr
exp

(
− Φrj(xj)

)
.(15)267

268

Here, Zjr = Eµjr
(

exp
(
− Φrj(xj)

))
ensures that νj is indeed a probability measure.269

Remark 9. The reference measure introduced above can be easily specified for270

concrete examples. Fix a component j, if xj belongs to some finite-dimensional Hilbert271

space, we assume that the prior measure of xj has a density function p(·). Then we can272

choose the reference measure of xj just equal to the prior measure. Formula (15) for273

this component reduces to the classical finite-dimensional case. If xj belongs to some274

Hilbert space with the prior measure contains some hyper-parameters, there may be275

no universal strategies for choosing the reference measure. Here, we provide a simple276

example to give some intuitions. Assume xj ∼ N (0, Cτ ) with Cτ := (τ2I−∆)−α (α is277

a fixed positive number) [20], we can choose the reference measure to be a Gaussian278

measure N (0, C) with C := (I − ∆)−α, which is equivalent to N (0, Cτ ) under some279

appropriate conditions (rigorous results are given in Theorem 1 in [20]).280

For convenience, let us introduce some notations. For j = 1, 2, · · · ,M , let Zj be281

defined as a Hilbert space that is embedded in Hj . Denote CN be a positive constant282

related to N . Then, for j = 1, 2, · · · ,M , we introduce283

R1
j =

{
Φrj

∣∣∣ sup
1/N≤‖xj‖Zj≤N

Φrj(xj) ≤ CN <∞ for all N > 0

}
,284

R2
j =

{
Φrj

∣∣∣ ∫
Hj

exp
(
−Φrj(xj)

)
max(1, aj(ε, xj))µ

j
r(dxj) ≤ C <∞, for ε ∈ [0, εj0)

}
,285

286

where C is an arbitrary large positive constant, εj0 and aj(·, ·) are defined as in As-287

sumptions 8. With these preparations, we can define Aj (j = 1, 2, · · · ,M) as follows:288

Aj =

{
νj ∈M(Hj)

∣∣∣∣ νj is equivalent to µjr with (15) holds true,

and Φrj ∈ R1
j ∩ R2

j

}
.(16)289

290

Before using Theorem 3, we need to illustrate the closedness of Aj (j = 1, 2, · · · ,M)291

under the weak convergence topology. Actually, we can prove the desired results292

shown blow.293

Theorem 10. For j = 1, 2, · · · ,M , we denote T jN = {xj | 1/N ≤ ‖xj‖Zj ≤ N},294

with N being an arbitrary positive constant. For each reference measure µjr, we assume295

that supN µ
j
r(T

j
N ) = 1. Then, each Aj is closed with respect to weak convergence and296

problem (6) possesses a solution
∏M
j=1 ν

j with νj ∈ Aj for j = 1, 2, · · · ,M .297
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8 J. JIA, Q. ZHAO, Z. XU, D. MENG, Y. LEUNG

In the following theorem, we provide a special form of solution that helps us298

obtain the optimal approximate measure via simple iterative updates.299

Theorem 11. Assume that the approximate probability measure in problem (6)300

satisfies Assumptions 8 and the assumptions presented in Theorem 10. Using the301

same notations as in Theorem 10, in addition, we assume302

sup
xi∈T iN

sup
νj∈Aj
j 6=i

∫
∏
j 6=iHj

(
Φ0(x) + Φ(x)

)
1A(x)

∏
j 6=i

νj(dxj) <∞,(17)303

304

and305

sup
νj∈Aj
j 6=i

∫
Hi

exp

(
−
∫
∏
j 6=iHj

(Φ0(x) + Φ(x))1Ac(x)
∏
j 6=i

νj(dxj)

)
Mi(x)µir(dxi) <∞,(18)306

307

where A := {x |Φ0(x) + Φ(x) ≥ 0}, and Mi(x) := max (1, ai(ε, xi)) with i, j =308

1, 2, · · · ,M . Then, problem (6) possesses a solution ν =
∏M
j=1 ν

j ∈ M(H) with309

the following form310

dν

dµr
∝ exp

(
−

M∑
i=1

Φri (xi)

)
,(19)311

312

where313

Φri (xi) =

∫
∏
j 6=iHj

(
Φ0(x) + Φ(x)

)∏
j 6=i

νj(dxj) + Const(20)314

315

and316

νi(dxi) ∝ exp
(
− Φri (xi)

)
µir(dxi).(21)317318

Remark 12. For i = 1, 2, · · · ,M , conditions (17) and (18) ensure that each319

components of the approximate measure ν and the reference probability measure µr320

are equivalent. These two conditions can be verified in a straightforward manner321

for specific examples relying on the integrability and boundedness conditions of Φri322

contained in the definition of Ai in (16) for i = 1, 2, · · · ,M .323

Remark 13. Formula (20) means that the logarithm of the optimal solution for324

factor νj can be obtained simply by considering the logarithm of the joint distribution325

over all of the other variables and then taking the expectation with respect to all of326

the other factors {νi} fixed for i 6= j. This result is in accordance with the finite-327

dimensional case illustrated in Subsection 2.3 of [52].328

Remark 14. Based on Theorem 11, we can therefore seek a solution by first329

initializing all of the potentials Φrj appropriately and then cycling through the potentials330

and replacing each in turn with a revised estimate given by the right-hand side of (20)331

evaluated by using the current estimates for all of the other potentials.332

3. Applications to some general inverse problems. In Subsection 3.1, we333

apply our general theory to an abstract linear inverse problem (ALIP). We assume334

that the prior and noise probability measures are all Gaussian with some hyper-335

parameters, and then we formulate hierarchical models that can be efficiently solved336

by using the variational Bayes’ approach. In Subsection 3.2, we assume that the noise337

is distributed according to the Laplace distribution. Through this assumption, we338

can formulate algorithms that solve ALIP and are robust to outliers.339

This manuscript is for review purposes only.



VARIATIONAL INFERENCE FOR FUNCTIONS 9

3.1. Linear inverse problems with Gaussian noise. In this subsection, we340

apply our general theory to an abstract linear inverse problem. A detailed investiga-341

tion of the corresponding finite-dimensional case can be found in [34].342

Let Hu be some separable Hilbert space and Nd be a positive integer. We describe343

the linear inverse problem as344

d = Hu+ ε,(22)345346

where d ∈ RNd is the measurement data, u ∈ Hu is the sought-for solution, H is a347

bounded linear operator from Hu to RNd , and ε is a Gaussian random vector with348

zero mean and τ−1I variance. We will focus on the hyper-parameter treatment within349

hierarchical models and the challenges in efficiently exploring the posterior probability.350

To formulate this problem under the Bayesian inverse framework, we introduce a351

prior probability measure for the unknown function u. Let C0 be a symmetric, positive352

definite and trace class operator defined on Hu, and let (ek, αk) be an eigen-system353

of the operator C0 such that C0ek = αkek. Without loss of generality, we assume354

that the eigenvectors {ek}∞k=1 are orthonormal and the eigenvalues {αk}∞k=1 are in a355

descending order. In the following, for a function u ∈ Hu, we denote uj := 〈u, ej〉 for356

j = 1, 2, · · · . According to Subsection 2.4 in [19], we have357

C0 =

∞∑
j=1

αjej ⊗ ej ,(23)358

359

where ⊗ denotes the tensor product on Hilbert space [37, 47]. As indicated in [16,360

17, 23], we assume that the data are only informative on a finite number of directions361

in Hu. Under this assumption, we introduce a positive integer K, which represents362

the number of dimensions that is informed by the data (i.e., the so-called intrinsic363

dimensionality), which is different from the discretization dimensionality, i.e., the364

number of mesh points used to represent the unknown variables. The value of K can365

be specified with a heuristic approach [23]:366

K = min

{
k ∈ N

∣∣∣∣ αkα1
< ε

}
,(24)367

368

where ε is a prescribed threshold. Let λ be a positive real number, then, we define369

CK0 (λ) :=

K∑
j=1

λ−1αjej ⊗ ej +

∞∑
j=K+1

αjej ⊗ ej ,(25)370

371

which is obviously a symmetric, positive definite and trace-class operator. Numerical372

results shown in [23] indicate that the above heuristic approach could provide accept-373

able results when ε is small enough for a lot of practical inverse problems. However, if374

the data is particularly informative and far from the prior, this heuristic approach may375

lead to a Bayesian inference model that does not adequately incorporate information376

encoded in data. Concerned with this problem, we intend to give more detailed dis-377

cussions in our future work. We refer to some recent studies [1, 14] that may provide378

some useful ideas. Then, we assume379

u ∼ µu,λ0 = N (u0, CK0 (λ)).(26)380
381

This manuscript is for review purposes only.



10 J. JIA, Q. ZHAO, Z. XU, D. MENG, Y. LEUNG

Let Gamma(α, β) be the Gamma probability measure defined on R+ with the prob-382

ability density function pG expressed as383

pG(x;α, β) =
βα

Γ(α)
xα−1e−βx,(27)384

385

where Γ(·) is the usual Gamma function. Then, except for the function u, we as-386

sume that the parameters λ and τ involved in the prior and noise probability mea-387

sures are all random variables satisfying λ ∼ µλ0 := Gamma(α0, β0) and τ ∼ µτ0 :=388

Gamma(α1, β1). With these preparations, we define the prior probability measure389

employed for this problem as follows:390

µ0(du, dλ, dτ) = µu,λ0 (du)µλ0 (dλ)µτ0(dτ).(28)391
392

Let µ be the posterior probability measure for random variables u, λ, and τ . According393

to Theorems 15 and 16 proved in [19], this probability measure can be defined as394

dµ

dµ0
(u, λ, τ) =

1

Zµ
τNd/2 exp

(
− τ

2
‖Hu− d‖2

)
,(29)395

396

where397

Zµ =

∫
Hu×R+×R+

τNd/2 exp

(
− τ

2
‖Hu− d‖2

)
µ0(du, dλ, dτ).(30)398

399

To apply the general theory developed in Section 2, we specify the following400

reference probability measure 2401

µr(du, dλ, dτ) = µur (du)µλr (dλ)µτr (dτ),(31)402403

where µur = N (u0, C0) is a Gaussian probability measure, and µλr and µτr are chosen404

to be µλ0 and µτ0 , respectively.405

In Assumption 8, we assume that the approximate probability measure is sepa-406

rable with respect to the random variables u, λ, and τ with the form407

ν(du, dλ, dτ) = νu(du)νλ(dλ)ντ (dτ).(32)408409

In addition, we assume that its Radon-Nikodym derivative with respect to µr can be410

written as411

dν

dµr
(u, λ, τ) =

1

Zr
exp

(
− Φru(u)− Φrλ(λ)− Φrτ (τ)

)
.(33)412

413

For the Radon-Nikodym derivative of µ0 with respect to µr, we have414

dµ0

dµr
(u, λ, τ) =

dµu,λ0

dµur
(u)

dµλ0
dµλr

(λ)
dµτ0
dµτr

(τ)

= λK/2 exp

(
− 1

2
‖(CK0 (λ))−1/2(u− u0)‖2 +

1

2
‖C−1/20 (u− u0)‖2

)
= λK/2 exp

(
− 1

2

K∑
j=1

(uj − u0j)2(λ− 1)α−1j

)
,

(34)415

416

2In practical machine learning applications, especially for large-scale scenarios, researchers often
assume the approximating measures are independent in each component (a fully diagonal approxi-
mation to the posterior) that further reduce of computational burden. This, however, also tends to
decrease the computation accuracy due to the neglecting of existing correlations between different
components of u. We thus preserve such correlation in our method to alleviate the possible negative
influence of ignoring such beneficial knowledge.
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which implies that Φ0 introduced in Assumption 8 takes the following form:417

Φ0(u, λ, τ) =
1

2

K∑
j=1

(uj − u0j)2(λ− 1)α−1j −
K

2
log λ.(35)418

419

Remark 15. It should be noted that R+ is not a Hilbert space. However, the420

general theory is constructed on some separable Hilbert spaces. This issue can be421

resolved by considering λ′ := log λ and τ ′ := log τ instead of λ and τ . Through this422

simple transformation, the space of hyper-parameters becomes R which is a Hilbert423

space. The calculations presented here also hold true when considering λ′ and τ ′ as424

hyper-parameters. Actually, we can derive that eλ
′

and eτ
′

are distributed according to425

the same Gamma distributions as λ and τ . Choosing au(ε, u), aλ′(ε, λ
′), and aτ ′(ε, τ

′)426

appropriately, we can verify the conditions proposed in Theorem 11 (critical steps are427

provided in the supplementary materials). In the following, we still use λ and τ as428

hyper-parameters. With this a little abusive use of the general theory (can be rigorously429

verified through the above simple transformation), the reader may see more clearly the430

connections between the finite- and infinite-dimensional theory.431

We now calculate Φru(u), Φrλ(λ), and Φrτ (τ) according to the general results as432

shown in Theorem 11.433

Calculate Φru(u): A direct application of formula (20) yields434

Φru(u) =

∫ ∞
0

∫ ∞
0

(
1

2

K∑
j=1

(uj − u0j)2(λ− 1)α−1j +
τ

2
‖Hu− d‖2

− K

2
log λ− Nd

2
log τ

)
ντ (dτ)νλ(dλ) + Const

=
1

2
τ∗‖Hu− d‖2 +

1

2
(λ∗ − 1)

K∑
j=1

α−1j (uj − u0j)2 + Const,

(36)435

436

where437

τ∗ = Eν
τ

[τ ] =

∫ ∞
0

τντ (dτ) and λ∗ = Eν
λ

[λ] =

∫ ∞
0

λνλ(dλ).(37)438
439

On the basis of equality (36), we derive440

dνu

dµur
(u) ∝ exp

(
− τ∗

2
‖Hu− d‖2 − λ∗ − 1

2

K∑
j=1

α−1j (uj − u0j)2
)
.(38)441

442

We define443

C0(λ∗) =

K∑
j=1

(λ∗)−1αjej ⊗ ej +

∞∑
j=K+1

αjej ⊗ ej .(39)444

445

Then, according to Example 6.23 in [48], we know that the probability measure νu is446

a Gaussian measure N (u∗, C) with447

C−1 = τ∗H∗H + C0(λ∗)−1 and u∗ = C
(
τ∗H∗d+ C0(λ∗)−1u0

)
.(40)448449

This manuscript is for review purposes only.



12 J. JIA, Q. ZHAO, Z. XU, D. MENG, Y. LEUNG

Calculate Φrλ(λ) and Φrτ (τ): According to formula (20), we have450

Φrλ(λ) =

∫ ∞
0

∫
Hu

(
1

2

K∑
j=1

(uj − u0j)2α−1j λ− K

2
log λ

)
νu(du)ντ (dτ) + Const

=
1

2
Eν

u

( K∑
j=1

(uj − u0j)2α−1j
)
λ− K

2
log λ+ Const,

(41)451

452

which implies that453

dνλ

dµλr
(λ) ∝ λK/2 exp

(
− 1

2
Eν

u

( K∑
j=1

(uj − u0j)2α−1j
)
λ

)
.(42)454

455

Given that λ is a scalar random variable, we can write the density function as bellow:456

ρG(λ; α̃0, β̃0) =
β̃α̃0
0

Γ(α̃0)
λα̃0−1 exp(−β̃0λ),(43)457

458

where459

α̃0 = α0 +
K

2
and β̃0 = β0 +

1

2
Eν

u

( K∑
j=1

(uj − u0j)2α−1j
)
.(44)460

461

Similar to the above calculations of Φrλ(λ), we derive462

Φrτ (τ) =

∫ ∞
0

∫
Hu

(
τ

2
‖Hu− d‖2 − Nd

2
log τ

)
νu(du)νλ(dλ) + Const

=
1

2
Eν

u

(‖Hu− d‖2)τ − Nd
2

log τ + Const,

(45)463

464

which implies465

dντ

dµτr
(τ) ∝ τ

Nd
2 exp

(
− 1

2
Eν

u

(‖Hu− d‖2)τ

)
.(46)466

467

Therefore, ντ is a Gamma distribution Gamma(α̃1, β̃1) with468

α̃1 = α1 +
Nd
2

and β̃1 = β1 +
1

2
Eν

u

(‖Hu− d‖2).(47)469
470

According to the statements in Remark 14, we provide an iterative algorithm471

based on formulas (40), (43), (44), and (47) in Algorithm 1. Next, we provide a brief472

discussion of the computational details and the cost of this algorithm. For small- or473

medium-scale problems, we may construct the finite-dimensional approximate oper-474

ators H and H∗ explicitly [34]. However, for large-scale problems, it is impossible475

to build finite-dimensional approximations explicitly. Actually, for running the itera-476

tions, we only need to compute the mean estimates uk and some quantities related to477

νuk such as Eνuk (‖Hu− d‖2). For obtaining mean estimates, we can use a matrix-free478

conjugate gradient (CG) method [10, 25, 43] to solve the following problem479

(τkH
∗H + C0(λk)−1)uk = τkH

∗d+ C0(λk)−1u0,(48)480481

This manuscript is for review purposes only.



VARIATIONAL INFERENCE FOR FUNCTIONS 13

Algorithm 1 Variational approximation for the case of Gaussian noise

1: Give an initial guess µu,λ0 (u0 and λ), µλ0 (α0 and β0) and µτ0 (α1 and β1).
Specify the tolerance tol and set k = 1.

2: repeat
3: Set k = k + 1
3: Calculate λk = Eν

λ
k−1 [λ], τk = Eν

τ
k−1 [τ ]

4: Calculate νuk by

C−1k = τkH
∗H + C0(λk)−1, uk = Ck

(
τkH

∗d+ C0(λk)−1u0
)
.

5: Calculate νλk and ντk by

νλk = Gamma(α̃0, β̃
k
0 ), ντk = Gamma(α̃1, β̃

k
1 ),

where

α̃0 = α0 +
K

2
, β̃k0 = β0 +

1

2
Eν

u
k

( K∑
j=1

(uj − u0j)2α−1j
)
,

α̃1 = α1 +
Nd
2
, β̃k1 = β1 +

1

2
Eν

u
k (‖Hu− d‖2).

6: until max
(
‖uk − uk−1‖/‖uk‖, ‖λk − λk−1‖/‖λk‖, ‖τk − τk−1‖/‖τk‖

)
≤ tol

7: Return νuk (du)νλk (dλ)ντk (dτ) as the solution.

where no explicit forms of H∗H and H∗ need to be constructed. As demonstrated in482

[10, 43], the CG iterations may be terminated when sufficient reduction is made in483

the norm of the gradient and the prior operator may also be used to precondition the484

CG iterations. For the term Eνuk (‖Hu − d‖2), by a straightforward generalization of485

the finite dimensional case [34] (Proposition 1.18 in [46] and (c) of Theorem VI.25 in486

[47] are used), we know that the core difficulty is to compute the following quantity487

Tr
(
(τkC0(λk)1/2H∗HC0(λk)1/2 + Id)−1C0(λk)1/2H∗HC0(λk)1/2

)
,(49)488489

where Tr(·) denotes the operator trace. For a lot of practical applications, the operator490

H∗H is a compact operator. Then the analysis provided in Subsections 5.2 and 5.4491

in [10] may applicable in the current setting, which implies that only a small number492

of eignvalues (independent of the dimension of the discretized parameter field) is493

required to be evaluated. We intend to investigate efficient implementations for large-494

scale problems in our future work.495

3.2. Linear inverse problems with Laplace noise. As revealed by previous496

studies on low-rank matrix factorization [53], the Gaussian noise tends to be sensitive497

to outliers. Compared with the Gaussian distribution, the Laplace distribution is a498

heavy-tailed distribution that can better fit heavy noises and outliers. In this sub-499

section, we develop VBM for the linear inverse problem (22) with the Laplace noise500

assumption.501

For the noise vector ε = (ε1, ε2, · · · , εNd)T ∈ RNd , we assume that each component502

εi follows the Laplace distribution with zero mean503

εi ∼ Laplace

(
0,

√
τ

2

)
(50)504

505
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with τ ∈ R+. The probability density function of the above Laplace distribution is506

denoted by pL(εi|0,
√
τ/2) that takes the following form:507

pL(εi|0,
√
τ/2) =

√
2

τ
exp

(
− |εi|√

τ/2

)
.(51)508

509

However, the Laplace distribution cannot be easily employed for posterior infer-510

ence within the variational Bayes’ inference framework [53]. A commonly utilized511

strategy will be employed to reformulate the Laplace distribution as a Gaussian scale512

mixture with exponential distributed prior to the variance, as discussed in [3, 53]. Let513

pE(z|τ) be the density function of an exponential distribution, that is,514

pE(z|τ) =
1

τ
exp

(
− z

τ

)
.(52)515

516

Then, we have517

pL

(
x
∣∣0,√τ

2

)
=

1

2

√
2

τ
exp

(
−
√

2

τ
|x|
)

=

∫ ∞
0

1√
2πz

exp

(
− x2

2z

)
1

τ
exp

(
− z

τ

)
dz

=

∫ ∞
0

pN (x|0, z)pE(z|τ)dz.

(53)518

519

By substituting (50) into the above equation, we obtain520

pL(εi|0,
√
τ/2) =

∫ ∞
0

pN (εi|0, zi)pE(zi|τ)dzi,(54)521
522

where pN (εi|0, zi) is the density function of a Gaussian measure on R with a zero523

mean and zi variance. Thus, we can impose a two-level hierarchical prior instead of524

a single-level Laplace prior on each εi as525

εi ∼ N (0, zi), zi ∼ Exponential(τ).(55)526527

Let wi = z−1i . Given that zi ∼ Exponential(τ), we know that wi ∼ µwi0 with µwi0528

being a probability distribution with the following probability density function:529

1

τ
exp

(
− 1

τwi

)
1

w2
i

.(56)530
531

Let W be a diagonal matrix with diagonal w = {w1, w2, · · · , wNd}, and let532

µw0 =

Nd∏
i=1

µwi0 .(57)533

534

For the prior probability measure of u, similar to Subsection 3.1, we set this measure535

as for the Gaussian noise case, that is,536

u ∼ µu,λ0 = N (u0, CK0 (λ)), λ ∼ µλ0 = Gamma(α0, β0).(58)537
538
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By combining (57) and (58), we obtain the full prior probability measure as539

µ0(du, dλ, dw) = µu,λ0 (du)µλ0 (dλ)µw0 (dw).(59)540
541

For the reference probability measure, we set µr(du, dλ, dw) = µur (du)µλr (dλ)µwr (dw),542

where µur = N (u0, C0), µλr = µλ0 , and µwr = µw0 . By similar calculations as shown in543

(34), we obtain544

Φ0(u, λ, τ) =
1

2

K∑
j=1

(uj − u0j)2(λ− 1)α−1j −
K

2
log λ.(60)545

546

For the posterior probability measure, by assumptions on the noises (55)-(57), we547

have548

dµ

dµ0
(u, λ,w) =

1

Zµ
|W |1/2 exp

(
− 1

2
‖W 1/2(Hu− d)‖2

)
,(61)549

550

which implies Φ(u, λ,w) = 1
2‖W

1/2(Hu − d)‖2 − 1
2 log |W |. Similar to the Gaussian551

noise case, we specify the approximate probability measure as552

dν

dµr
(u, λ,w) =

1

Zr
exp

(
− Φru(u)− Φrλ(λ)− Φrw(w)

)
.(62)553

554

With these preparations, we are ready to calculate the three potentials in (62).555

As discussed in Remark 15, we use λ > 0 as a hyper-parameter, which is not in556

accordance with our general theory. However, it can be made rigorous by considering557

λ′ = lnλ as the hyper-parameter.558

Calculate Φru: Following formula (20), we can derive559

Φru(u) =

∫∫
1

2

K∑
j=1

(uj − u0j)2(λ− 1)α−1j +
1

2
‖W 1/2(Hu− d)‖2dνλdνw+Const

=
λ∗ − 1

2

K∑
j=1

α−1j (uj − u0j)2 +
1

2
‖W ∗(Hu− d)‖2 + Const,

(63)560

561

where λ∗ = Eνλ [λ] and W ∗ = diag(Eνw [w1],Eνw [w2], · · · ,Eνw [wNd ]). From the equal-562

ity (63), we easily conclude that563

dνu

dµur
(u) ∝ exp

(
− 1

2
‖(W ∗)1/2(Hu− d)‖2 − λ∗ − 1

2

K∑
j=1

α−1j (uj − u0j)2
)
,(64)564

565

which implies that u is distributed according to a Gaussian measure with a co-566

variance operator and a mean value specified as C−1 = H∗W ∗H + C0(λ∗)−1 and567

u∗ = C
(
H∗W ∗d+ C0(λ∗)−1u0

)
.568

Calculate Φrλ: Following formula (20), we can derive569

Φrλ(λ) =

∫∫
1

2

K∑
j=1

(uj − u0j)2α−1j λ− K

2
log λdνudνw + Const

=
1

2
Eνu

( K∑
j=1

(uj − u0j)2α−1j
)
λ− K

2
log λ+ Const.

(65)570

571
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Therefore, we have572

dνλ

dµλr
(λ) ∝ λK/2 exp

(
− 1

2
Eν

u

( K∑
j=1

(uj − u0j)2α−1j
)
λ

)
,(66)573

574

which implies that νλ is a Gamma distribution denoted by Gamma(α̃0, β̃0) with575

α̃0 = α0 +K/2, β̃0 = β0 +
1

2
Eν

u

( K∑
j=1

(uj − u0j)2α−1j
)
.(67)576

577

Calculate Φrw: Following formula (20), we derive578

Φrw(w) =

∫∫
1

2
‖W 1/2(Hu− d)‖2 − 1

2
log |W |dνudνλ + Const

=
1

2

Nd∑
j=1

Eν
u[

(Hu− d)2i
]
wi −

1

2

Nd∑
j=1

logwi + Const,

(68)579

580

which implies581

dνw

dµwr
(w) ∝

Nd∏
j=1

w
1/2
j exp

(
− 1

2
Eν

u[
(Hu− d)2j

]
wj

)
.(69)582

583

Because w is a finite dimensional random variable, we find584

dνw ∝
Nd∏
j=1

w
1/2
j exp

(
− 1

2
Eν

u[
(Hu− d)2j

]
wj

)
1

τ
exp

(
− 1

τwj

)
1

w2
j

dw

∝
Nd∏
j=1

1

τw
3/2
j

exp

(
− 1

2
Eν

u[
(Hu− d)2j

]
wj −

1

τwj

)
dw.

(70)585

586

In other words, νw is an inverse Gaussian distribution denoted by
∏Nd
j=1 IG(mwj , ζ)587

with588

mwj =

√
2

τEνu
[
(Hu− d)2j

] , ζ =
2

τ
.(71)589

590

Specify the parameter τ : From (55), we know the parameter τ is directly591

related to noise variance parameter zi = w−1i . Therefore, this parameter should be592

adjusted carefully to obtain reasonable results. Empirical Bayes [8] provides an off-593

the-shelf tool to be adaptively tuned based on the noise information extracted from594

the data by updating it through τ = 1
Nd

∑Nd
j=1m

−1
wj + ζ−1. Using this elaborate tool,595

τ can be properly adapted to real data variance.596

Similar to the Gaussian noise case, an iterative algorithm, namely Algorithm597

2, is constructed based on the above calculations. For large-scale problems, similar598

discussions of Algorithm 1 can be applied here. The only difference is that (49) is599

replaced by the following quantity:600

Tr
(
(τkC0(λk)1/2H∗WkHC0(λk)1/2 + Id)−1C0(λk)1/2H∗WkHC0(λk)1/2

)
.(72)601602

The quantity (72) can be calculated in the similar way as (49).603
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Algorithm 2 Variational approximation for the case of Laplace noise

1: Give an initial guess µu,λ0 (u0 and λ), µλ0 (α0 and β0), µw0 and τ .
Specify the tolerance tol and set k = 1.

2: repeat
3: Set k = k + 1
3: Calculate λk = Eν

λ
k−1 [λ], Wk = diag

(
Eνw [w1],Eνw [w2], · · · ,Eνw [wNd ]

)
and

τk = 1
Nd

∑Nd
j=1(mk−1

wj )−1 + (ζk−1)−1.
4: Calculate νuk by

C−1k = H∗WkH + C0(λk)−1, uk = Ck
(
H∗Wkd+ C0(λk)−1u0

)
.

5: Calculate νλk and νwk by

νλk = Gamma(α̃0, β̃
k
0 ), νwk =

Nd∏
j=1

IG(mk
wj , ζk),

β̃k0 =β0 +
1

2
Eν

u
k

( K∑
j=1

(uj − u0j)2α−1j
)
, α̃0 = α0 +K/2,

mk
wj =

√
2

τkEν
u
k

[
(Hu− d)2j

] , ζk =
2

τk
.

6: until max
(
‖uk − uk−1‖/‖uk‖, ‖λk − λk−1‖/‖λk‖, ‖τk − τk−1‖/‖τk‖

)
≤ tol

7: Return νuk (du)νλk (dλ)νwk (dw) as the solution.

4. Concrete numerical examples.604

4.1. Inverse source problem for Helmholtz equation. The inverse source605

problem (ISP) studied in this section is borrowed from [6, 7, 15, 30], which determines606

the unknown current density function from measurements of the radiated fields at607

multiple wavenumbers.608

Consider the Helmholtz equation609

∆v + κ2(1 + q(x))v = us in RNs ,(73)610611

where Ns = 1, 2 is the space dimension, κ is the wavenumber, v is the radiated scalar612

field, and the source current density function us(x) is assumed to have a compact613

support. For the one-dimensional case, let the radiated field v satisfy the absorbing614

boundary condition: ∂rv = iκv. For the two-dimensional case, let the radiated field615

v satisfy the Sommerfeld radiation condition: ∂rv − iκv = o(r−1/2) as r = |x| → ∞.616

In addition, we employ an uniaxial perfect match layer (PML) technique to truncate617

the whole plane into a bounded rectangular domain when Ns = 2. For details on the618

uniaxial PML technique, see [5, 32] and references therein. Let D be the domain with619

absorbing layers, and Ω be the physical domain without absorbing layers.620

The ISP aims to determine the source function us from the boundary measure-621

ments of the radiated field on the boundary ∂Ω for a series of wavenumbers. For622

clarity, we summarize the problem as follows:623

Available data For 0 < κ1 < κ2 < · · · < κNf < ∞ (Nf ∈ N+), and measurement
points x1, x2, · · · , xNm ∈ ∂Ω, we denote

d† :=
{
v(xi, κj) | i = 1, 2, · · · , Nm, and j = 1, 2, · · · , Nf

}
.
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The available data set is d := d† + ε, where ε is the measurement error.624

Unknown function The source density function us needs to be determined.625

Generally, we let Fκ be the forward operator that maps us to the solution v when626

the wavenumber is κ , and let M be the measurement operator mapping v to the627

available data. With these notations, the problem can be written abstractly as628

dκ = Hκ(us) + εκ,(74)629630

where Hκ :=M◦Fκ is the forward operator, and εκ is the random noise.631

To avoid inverse crime, we use a fine mesh to generate data and a rough mesh632

for the inversion. For the one-dimensional problem, meshes with mesh numbers of633

1000 and 600 are used for the data generation and inversion, respectively. For the634

two-dimensional problem, we will provide details in the sequel.635

When the dimension of the parameters is relatively low, the proposed Algorithms636

1 and 2 are similar to the one build for the finite-dimensional case. Detailed com-637

parisons with the MCMC algorithm have been given in [33, 34], which reflect that638

highly accurate inferences can be generated. Hence we will not present a comparison639

with the MCMC algorithm in the sequel for a relatively low dimensional case. For the640

infinite-dimensional Bayesian method with hyper-parameters, the noncentered algo-641

rithms are a more appropriate choice as illustrated in [1]. Using the proposed general642

framework for the noncentered parameterize strategy and providing a comparison643

with the method proposed in [1] could be an interesting future research problem.644

It should be indicated that the finite element method is implemented by employing645

the open software FEniCS (Version 2018.1.0). For additional information on FEniCS,646

see [39]. All programs were run on a personal computer with Intel(R) Core(TM)647

i7-7700 at 3.60 GHz (CPU), 32 GB (memory), and Ubuntu 18.04.2 LTS (OS).648

4.2. One-dimensional ISP. For clarity, we list the specific choices for some649

parameters introduced in Section 3 as follows:650

• The operator C0 is chosen to be (Id− ∂xx)−1 and taken ε = 10−3. Here, the651

Laplace operator is defined on Ω with the zero Dirichlet boundary condition.652

• The wavenumber series are specified as κj = j with j = 1
2 , 1,

3
2 , 2, · · · , 50.653

• Let domain Ω be an interval [0, 1], with ∂Ω = {0, 1}. And the available654

data are assumed to be {v(xi, κj) | i = 1, 2, x1 = 0, x2 = 1, and j =655

1, 2, · · · , 100}.656

• The initial values required by Algorithm 1 are chosen as u0 = 0, α0 = α1 =657

1, β0 = 10−1, β1 = 10−5. The initial values required by Algorithm 2 are658

chosen as u0 = 0, α0 = 1, β0 = 10−1, τ = 10−7.659

• The function q(x) in the Helmholtz equation is taken to be constant zero.660

• The ground truth source function us is defined as661

us(x) = 0.5 exp(−300(x− 0.4)2) + 0.5 exp(−300(x− 0.6)2).662663

According to the studies presented in [38], for this simple one-dimensional case,664

we will not take a recursive strategy but combine instead all data together with the665

forward operator denoted byH and defined byH = (Hκ1 , Hκ2 , · · · , Hκ100)T . Based on666

these settings, we provide some basic theoretical properties of the prior and posterior667

sampling functions as follows:668

• The prior probability measure for us is Gaussian with the covariance operator669

CK0 (λ) with λ ∈ R+. According to Theorem 12 illustrated in [19], we know670
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that if us is drawn from the prior measure, and then the following holds671

us ∈W t,2(Ω) for t <
1

2
, and us ∈ C0,t(Ω) for t <

1

2
,672

673

where W t,2(Ω) is the usual Sobolev space with t times derivative belonging674

to L2(Ω), and C0,t is the conventional Hölder space.675

• For Algorithm 1, every posterior mean estimate uk has the following form:676

uk = (τkH
∗H + C0(λk)−1)−1τkH

∗d.677678

Given that H maps a function in L2(Ω) to R200, we know that H∗d is at least679

a function belonging to L2. Considering the specific choices of C0, we have680

uk ∈W 2,2(Ω). For Algorithm 2, we can derive similar conclusions.681

Remark 16. By employing the “Bayesianize-then-discretize” method, we can an-682

alyze the prior and posterior sampling functions rigorously. It is one of the advantages683

of employing our proposed infinite-dimensional VBM.684

Gaussian noise case: Let d† be the data without noise. Then, we construct685

noisy data by setting d = d† + σξ with σ = 10−3 and ξ is a random variable sampled686

from the standard normal distribution.687
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Fig. 1. The truth and estimated functions when the data are polluted by Gaussian noise. (a):
the estimated function obtained by Algorithm 1 is denoted by the blue solid line, and the truth is
denoted by the red dashed line; (b): the estimated function obtained by Algorithm 2 is denoted by
the blue solid line, and the truth is denoted by the red dashed line. In both plots the shaded areas
represent the pointwise mean plus and minus two standard deviations from the mean (corresponding
roughly to the 95% confidence region).
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Fig. 2. Relative errors of the estimated means in the L∞-norm of Algorithms 1 and 2.
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In Figure 1, we depict the truth and estimated sources obtained by Algorithms 1688

and 2, respectively. Visually, both algorithms provide reasonable results. In addition,689

we demarcate the 95% confidence region by the shaded area to display the uncertain-690

ties estimated by these two algorithms. The truth falls entirely into the confidence691

region given by Algorithm 1, and the truth lies mostly within the confidence region692

given by Algorithm 2. This may indicate that for the Gaussian noise case, Algorithm693

1 can provide a more reliable estimation, which is in accordance with our assumptions.694

To give a more elaborate comparison, we present the relative errors of the esti-695

mated means in the L∞-norm of the two algorithms in Figure 2. The relative error696

of the conditional mean estimate used here is defined as follows697

relative error = ‖u− us‖L∞/‖us‖L∞ ,698699

where u is the estimated function generated by our algorithm and us is the true700

source function. The blue solid line and orange dashed line denote the relative errors701

obtained by Algorithms 1 and 2, respectively. Obviously, these two algorithms can702

provide comparable results after convergence. However, Algorithm 1 converges much703

faster than Algorithm 2, which is reasonable because the weight parameters used for704

detecting impulsive noises may reduce the convergence speed.705

The parameter τ given by Algorithm 1 provides an estimate of the noise variance706

through σ =
√
τ−1. The true value of σ is 0.001 in our numerical example. To707

generate a repeatable results, we specify the random seeds in numpy to some certain708

numbers by numpy.random.seed(i) with i specified as some designated integers. The709

estimated σ is equal to 0.000953, 0.001101, 0.001022, 0.001003, and 0.001041 when the710

random seeds are specified as 1, 2, 3, 4, and 5, respectively, thereby illustrating the711

effectiveness of our proposed algorithm.712

Laplace noise case: As for the Gaussian noise case, let d† be the noise-free713

measurement. The noisy data are generated as follows:714

di =

{
d†i , with probability 1− r,

d†i + εξ, with probability r,
715

716

where ξ follows the uniform distribution U [−1, 1], and (ε, r) controls the noise pattern,717

r is the corruption percentage, and ε is the corruption magnitude. In the following,718

we take r = 0.5 and ε = 0.1. We plot the clean and noisy data in Figure 3, which719

illustrates that the clean data are heavily polluted.720
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Fig. 3. Clean and noisy data. The orange solid line represents the clean data, and the blue
dashed line represents the data with impulsive noise.

This manuscript is for review purposes only.



VARIATIONAL INFERENCE FOR FUNCTIONS 21

Estimation

Truth

Estimation

Truth

0.5

0.4

0.3

0.2

0.1

0.0

-0.1

0.5

0.4

0.3

0.2

0.1

0.0

-0.1

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Estimation obtained by Algorithm 1(a) Estimation obtained by Algorithm 2(b)

Fig. 4. The truth and estimated functions when the data are polluted by impulsive noise. (a):
The estimated function obtained by Algorithm 1 is denoted by the blue solid line, and the truth is
denoted by the red dashed line; (b): The estimated function obtained by Algorithm 2 is denoted by
the blue solid line, and the truth is denoted by the red dashed line. The shaded areas in both panels
represent the pointwise mean plus and minus two standard deviations from the mean (corresponding
roughly to the 95% confidence region).
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Fig. 5. (a): Relative errors in the L∞-norm obtained by Algorithm 2; (b): Weight, noisy, and
clean data at the data points with impulsive noise (only points with impulsive noise, not all points).

In Figure 4, we show the estimated functions obtained by Algorithms 1 and 2721

in the left and right panels, respectively. Obviously, based on the Gaussian noise722

assumption, Algorithm 1 cannot provide a reasonable estimate, and the estimated723

confidence region may be unreliable. However, based on the Laplace noise assumption,724

Algorithm 2 provides an accurate estimate. Given that Algorithm 1 fails to converge725

to a reasonable estimation, we only provide the relative errors in the L∞-norm of726

Algorithm 2 on the left panel of Figure 5. From these relative errors, we can find727

that Algorithm 2 rapidly converges even if the data are heavily polluted by noise.728

The right panel of Figure 5 plots the noisy and clean data points at those data points729

where noises are added. We plot the weight vector at the corresponding data points.730

From this figure, we can clearly see that the elements of the weight vector are all with731

small values, which is in accordance with our theory. The weight vectors at the noisy732

data points are adjusted to small values during the iteration. This reveals the outlier733

removal mechanism of Algorithm 2.734

4.3. Two-dimensional ISP. In this subsection, we solve the two-dimensional735

ISP. Directly computing the covariance operator for the two-dimensional problem is736

difficult due to the large memory requirements and computational inefficiency. Here,737

we employ a simple method that employs a rough mesh approximation to compute738
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the covariance. The source function us can be expanded under basis functions as739

follows:740

us(x) =

∞∑
i=1

usiϕi(x).(75)741

742

Given that these basis functions can be taken as the finite element basis, the source743

function can be approximated as744

us(x) ≈
Nt∑
i=1

usiϕi(x).(76)745

746

The covariances involved in Algorithms 1 and 2 are all computed by taking a small747

Nt in (76). For many applications such as medical imaging, we may compute the748

operator H∗H (not depending on the source function) with a small Nt before the749

inversion. To evaluate accurately as the wavenumber increases, we compute the mean750

function by gradient descent with a fine mesh discrete PDE solver and then project the751

source function to the rough mesh for computing variables relying on the covariance752

operators.753

Unlike the one-dimensional case, we employ the sequential method used in [6] that754

provides a more stable recovery for multi-frequency inverse problems. Specifically,755

for 0 = κ0 < κ1 < · · · < κNf < ∞ and each problem dκi = Hκi(us) + εκi(i =756

1, · · · , Nf ), we assume the prior measure is µu,λ0i = N (ūi−1, CK0 (λ)) with ūi−1 denoting757

the conditional mean estimate when the wavenumber is κi−1 (ū0 is assumed to be758

some initial guess u0s). For the Gaussian noise case with i = 1, 2, · · · , Nf , we have the759

following Bayesian formula760

dµi

dµ0i
(u, λ, τ) ∝ exp

(
− τ

2
‖Hκi(u)− dκi‖2

)
,(77)761

762

where µ0i(du, dλ, dτ) = µu,λ0i (du)µλ0 (dλ)µτ0(dτ) with µλ0 , µ
τ
0 are defined as in Subsec-763

tion 3.1 and µi is the posterior measure when wavenumber is equal to κi. The posterior764

measure µκNf will be employed to quantify the uncertainties of the final estimate. For765

a similar sequential formulation as above, we refer to Subsection 6.4.1 in [38]. It is766

not hard to formulate a sequential approach for the Laplace noise case. The details767

are omitted for conciseness. The iteration details are presented in Algorithm 3, in768

which ‖ · ‖CK0 (λ) denotes the Cameron-Martin norm corresponding to the Gaussian769

measure N (0, CK0 (λ)). In the following, when we say that Algorithm 1 is employed,770

we actually means that Algorithm 3 is employed in combination with Algorithm 1.771

Similarly, when we say that Algorithm 2 is employed, we mean that Algorithm 3 is772

employed in combination with Algorithm 2.773

Remark 17. It should be pointed out that the simple “rough mesh approximation”774

method employed in Algorithm 3 is only applicable to problems with a simple form775

(e.g., a localized source) on simple geometry. This method is not suitable for deal-776

ing with more complex problems in three-dimension or even in two-dimension where a777

large Nt is needed (e.g., high-resolution recovery with data of high wavenumbers). Our778

aim is to give an illustration of the proposed method. For more advanced techniques779

designed for large-scale problems, [10] can be referred to, which provides a scalable780

approach for the infinite-dimensional Bayesian approach with linear approximations.781
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Algorithm 3 VBM for two-dimensional ISP with multi-frequencies

1: Give an initial guess of the unknown source us, denoted by u0s.
2: For i from 1 to Nf (iterate from low wavenumber to high wavenumber)

3: Specify the prior measure of us as µu,λ0i = N (ui−1s , CK0 (λ)). Running itera-
tions of Algorithms 1 or 2 for k until some stopping criterion is satisfied.
For k = 1, rough approximate of H and source is employed; For k > 1, the
gradient descent method is employed to solve

uks := arg min
us

τk
2
‖Hκi(us)− dκi‖2 + ‖us − ui−1s ‖2CK0 (λk)

,

which generate a conditional mean estimate on a fine mesh. In all of the
iterations, rough approximate Hessian has been used to update distributions
of hyper-parameters λ, τ (Algorithm 1) or w (Algorithm 2).

5: End for
6: Return the approximate probability measure ν.

The fully nonlinear case has been investigated by using a stochastic Newton MCM-782

C method in [43]. Then, Metropolize-then-discretize and discretize-then-Metropolize783

have been analyzed carefully for large-scale problems [12]. In 2019, an approximate784

sampling method based on some randomized MAP estimates has been investigated in785

detail [50]. All these studies provide valuable ideas of designing algorithms of large-786

scale inverse problems. For more studies in this direction, we refer to [11, 28, 40].787

Remark 18. In Algorithm 3, we use approximations on a rough mesh for the first788

iteration of every wavenumber, which may provide an initial inaccurate adjustment789

for the parameters employed in Algorithms 1 and 2. In our numerical experiments,790

we only take three iterations for the third step to obtain an estimation.791

Remark 19. To employ sampling-type methods such as the MCMC algorithm,792

researchers often parameterize the unknown source function carefully to reduce the793

dimension, e.g., assume that the sources are point sources, then parameterize the794

source function by numbers, locations, and amplitudes [22]. For employing MCMC795

algorithm [16, 23] in our setting, the computational complexity is unacceptable for two796

reasons: Calculation with many wavenumbers are needed for multi-frequency problems797

and a large number of samples need to be generated for each wavenumber; For each798

problem (77), we did not assume any parametric form of the source function which799

makes the parameters of source equal to the dimension of the discretization (much800

more parameters than the usually used parametric form). However, the proposed801

Algorithm 3 only takes several times of computational time compared with the classical802

iterative algorithms [6, 7, 29] to provide estimations of uncertainties.803

Before going further, we list the specific choices for some parameters introduced804

in Section 3 as follows:805

• The operator C0 is chosen as (−∆ + Id)−2. Here, the Laplace operator is806

defined on Ω with the zero Dirichlet boundary condition.807

• Take the discrete truncate level Nt = 1681 and the number of measurement808

points Nm = 200. The basis functions {ϕj}∞j=1 are specified as second-order809

finite element basis functions.810

• For Algorithm 3 combined with Algorithm 1, the wavenumber series are spec-811

ified as κj = j with j = 1, 3, 5, · · · , 35. For Algorithm 3 combined with Algo-812
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rithm 2, the wavenumber series are specified as κj = j with j = 1, 2, 3, · · · , 35.813

• The scatterer function q(x) is defined as follows:814

q(x1, x2) =0.3(4− 3x1)2e(−9(x1−1)2−9(x2−2/3)2)815

−
(
0.6(x1 − 1)− 9(x1 − 1)3 − 35(x2 − 1)5

)
e(−9(x1−1)2−9(x2−1)2)816

− 0.03e−9(x1−2/3)2−9(x2−1)2 ,817818

which is the function used in Subsection 2.6 in [6].819

• The true source function us is defined as follows:820

us(x) = 0.5e−100((x1−0.7)2+(x2−1)2) + 0.3e−100((x1−1.3)2+(x2−1)2).821822

• To avoid the inverse crime, a mesh with mesh number 125000 is employed for823

generating the data. For the inversion, two types of meshes are employed: a824

mesh with mesh number 28800 is employed when the wavenumbers are below825

20, and a mesh with mesh number 41472 is employed when the wavenumbers826

are greater than 20.827

The case of Gaussian noise: Let d† be the data without noise. The synthetic828

noisy data d are generated by dj = d† + σξj , where σ = max1≤j≤Nm{|d
†
j |}Lnoise with829

Lnoise denoting the relative noise level and ξj denoting the standard normal random830

variables. In our experiments, we take Lnoise = 0.05, that is 5% of noises are added.
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Fig. 6. (a): The true source function; (b): The posterior mean estimate obtained by Algorithm
1; (c): Relative error of the estimated means in L∞-norm obtained by Algorithm 1; (d): Estimated
standard deviation obtained by Algorithm 1.

831

In Figure 6, we show the inference results obtained by Algorithm 1. We show832

the true source function on the top left and the posterior mean estimate on the top833

right. Visually, the estimate is similar to the truth, and only some small fluctuations834
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in the background are observed. In the bottom left, we show the relative errors of835

the estimated means obtained by Algorithm 1 as the wavenumber increases, which836

is in accordance with the results obtained by classical iterative approaches. In the837

bottom right, we show the estimated standard deviation obtained by Algorithm 1838

that quantifies the uncertainties of the posterior mean estimation. We see that the839

uncertainties are small on the boundary where data are collected. The areas with the840

largest uncertainties are in the middle, which is a reasonable result since that area841

can be recovered only when data generated by high wavenumbers are employed.842

The case of Laplace noise: For the Laplace noise case, let d† be the noise-free843

measurement. The noisy data are generated as844

di =

{
d†i , with probability 1− r,

d†i + εξ, with probability r,
845

846

where ξ follows the uniform distribution U [−1, 1], (ε, r) controls the noise pattern,847

r is the corruption percentage, and ε is the corruption magnitude defined by ε =848

max1≤j≤Nm{|d
†
j |}Lnoise with Lnoise denoting the relative noise level. In our experi-849

ments, we take Lnoise = 1 and r = 0.2 or 0.5.850
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Fig. 7. Clean and noisy data obtained when the wavenumber is 34. The blue solid line represents
the clean data, and the dashed orange line represents the noisy data with r = 0.5.
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(c)Truth Posterior mean when r=0.2 Posterior mean when r=0.5

Fig. 8. (a): The true source function; (b): The posterior mean estimate provided by Algorithm
2 from noisy data with r = 0.2 (20% of data are polluted); (c): The posterior mean estimate provided
by Algorithm 2 from noisy data with r = 0.5 (50% of data are polluted).

The noisy and clean data when the wavenumber is 34 and r = 0.5 are shown in851

Figure 7. Obviously, the data are heavily contaminated by noise. Figure 8 shows the852

true source function and the posterior mean estimates generated by Algorithm 2 when853

r = 0.2 and r = 0.5 on the left, middle, and right panels, respectively. No essential854
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(a) Standard deviation when r=0.2 (b)Standard deviation when r=0.5

Fig. 9. Standard deviation of the numerical solution obtained by Algorithm 3 combined with
Algorithm 2. (a): Estimated standard deviation when r = 0.2 (20% of data are polluted); (b):
Estimated standard deviation when r = 0.5 (50% of data are polluted).
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Fig. 10. Relative errors of the estimated means in L∞-norm of Algorithm 3 combined with
Algorithm 2. (a): Relative errors for r = 0.2; (b): Relative errors for r = 0.5.

differences can be observed between the posterior mean estimates when r = 0.2 and855

r = 0.5. However, the Bayes’ method not only provides point estimates (e.g., posterior856

mean estimates) but also delivers the reliability of the obtained estimations. Figure857

9 shows the standard deviations provided by Algorithm 2 when r = 0.2 and r = 0.5858

on the left and right panels, respectively. The standard deviations are smaller when859

r = 0.2, which is reasonable given that 80% of the data are clean and only 50% of the860

data are clean when r = 0.5. Figure 10 shows the relative errors in L∞-norm obtained861

by Algorithm 2 with r = 0.2, 0.5 on the left and right panels, respectively. Under both862

settings, the relative errors of the posterior mean estimates rapidly decrease.863

Remark 20. The wavenumber series in the present paper are not chosen care-864

fully in an optimal way. There are some studies focused on the strategies for select-865

ing appropriate wavenumbers to give an accurate estimate under the framework of866

regularization methods for geophysical inverse problems [42]. Here, we choose more867

wavenumbers for the Laplace noise model based on a simple intuitive idea. More data868

are required when more hyper-parameters need to be inferred (The Laplace noise model869

has more parameters than the Gaussian noise model).870

5. Conclusion. In this paper, we have generalized the finite-dimensional mean-871

field approximate based variational Bayes’ method (VBM) to infinite-dimensional872

space, which provides a mathematical foundation for applying VBM to the inverse873

problems of PDEs. A general theory for the existence of minimizers has been estab-874

lished, and by introducing the concept of reference probability measure, the mean-field875

approximate theory has been constructed for functions. The established general theo-876
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ry is then applied to abstract linear inverse problems with Gaussian and Laplace noise877

assumptions. Numerical examples for the inverse source problems of Helmholtz equa-878

tions are investigated in details to highlight the effectiveness of the proposed theory879

and algorithms.880

There are numerous interesting problems that are worthy of being further in-881

vestigated. Introducing a more reasonable setting of the intrinsic dimension will be882

important. The recently published paper [14] provides some promising ideas. For the883

infinite-dimensional Bayesian method with hyper-parameters, noncentered parame-884

terization [1] could be a more appropriate choice. Using the proposed theory under885

the noncentered parameterization is a problem worthy of further investigation.886
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