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VARIATIONAL BAYES’ METHOD FOR FUNCTIONS WITH
APPLICATIONS TO SOME INVERSE PROBLEMS

JUNXIONG JIA*, QIAN ZHAOT, ZONGBEN XU#, DEYU MENG$, AND YEE LEUNGY

Abstract. Bayesian approach, a useful tool for quantifying uncertainties, has been extensively
employed to solve the inverse problems of partial differential equations (PDEs). One of the main
difficulties in employing the Bayesian approach to such problems is how to extract information from
the posterior probability measure. Compared with conventional sampling-type methods, variational
Bayes’ method (VBM) has been intensively examined in the field of machine learning attributed to
its ability in extracting approximately the posterior information with lower computational cost. In
this paper, we generalize the conventional finite-dimensional VBM to the infinite-dimensional space
rigorously solve the inverse problems of PDEs. We further establish a general infinite-dimensional
mean-field approximate theory and apply it to the linear inverse problems under the Gaussian and
Laplace noise assumptions at the abstract level. The results of some numerical experiments substan-
tiate the effectiveness of the proposed approach.

Key words. inverse problems, variational Bayes’ method, mean-field approximation, machine
learning, inverse source problem
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1. Introduction. Motivated by the significant applications in medical imaging,
seismic explorations and many other domains, the field of inverse problems has un-
dergone an enormous development over the past few decades. In handling an inverse
problem, we usually meet ill-posed issue in the sense that the solution lacks stability
or even uniqueness [31, 49]. The regularization approach, including Tikhonov and
Total-Variation regularization, is one of the most popular approaches to alleviate this
ill-posed issue of inverse problems. In the regularization approach, statistical models
for data are mostly employed to justify the choice of data discrepancy and for select-
ing an appropriate regularization parameter. In addition, the statistical properties of
data can be investigated carefully, which can be useful for uncertainty quantification
[9]. However, statistical assumptions on the model parameters are rarely considered
in functional analytic regularization. For a complete review, we refer to Sections 2
and 3 in [4].

The Bayesian inverse approach provides a flexible framework that solves inverse
problems by transforming them into statistical inference problems, thereby making it
feasible to analyze the uncertainty of the solutions to the inverse problems. Inverse
problems are usually accompanied by a forward operator originating from some partial
differential equations (PDEs), thereby introducing difficulties to the direct use of the
finite-dimensional Bayes’ formula. The following two strategies can be employed to
solve this problem:

1. Discretize-then-Bayesianize: The PDEs are initially discretized to approxi-
mate the original problem in some finite-dimensional space, and the reduced
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approximate problem is then solved by using the Bayes’ method.

2. Bayesianize-then-discretize: The Bayes’ formula and algorithms are initially
constructed on infinite-dimensional space, and after the infinite-dimensional
algorithm is built, some finite-dimensional approximation is carried out.

The first strategy makes available all the Bayesian inference methods developed in the
statistical literature [35]. However, given that the original problems are defined on
infinite-dimensional space, several problems, such as non-convergence and dimensional
dependence, tend to emerge when using this strategy [16, 36]. By employing the
second strategy, the discretization-invariant property naturally holds given that the
Bayes’ formula and algorithms are properly defined on some separable Banach space
[19, 48]. In the following sections, we confine ourselves to the second strategy, that
is, postponing the discretization to the final step.

One of the essential issues for employing the Bayes’ inverse method is how to
extract information from the posterior probability measure. Previous studies have
adopted two major approaches to address such issue, namely, the point estimate
method and the sampling method. For the point estimate method, the maximum a
posteriori (MAP) estimate, which is intuitively equivalent to solving an optimization
problem, is often utilized. The intuitive equivalence relation has been rigorously
analyzed recently [2, 13, 18, 21, 27]. In some situations [32, 49], MAP estimates are
more desirable and computationally feasible than the entire posterior distribution.
However, point estimates cannot provide uncertainty quantification and are usually
recognized as incomplete Bayes’ method.

To extract all information encoded in the posterior distribution, sampling meth-
ods, such as the Markov chain Monte Carlo (MCMC), are often employed. In 2013,
Cotter et al. [16] proposed using the MCMC method for functions to ensure that
the convergence speed of the algorithm is robust under mesh refinement. Multiple
dimension-independent MCMC-type algorithms have also been proposed [17, 23]. Al-
though MCMC is highly-efficient as a sampling method, its computational cost is
unacceptable for many applications, including the full waveform inversion [24].

In this paper, we aim to propose a variational method that can perform uncer-
tainty analysis at a computational cost which is comparable to that for computing
the MAP estimates. For finite-dimensional problems, such types of methods, named
as variational Bayes’ methods (VBM), have been broadly investigated in the field of
machine learning [8, 41, 52, 53]. In addressing the inverse problems, Jin et al. [34, 33]
employed VBM to investigate a hierarchical formulation of the finite-dimensional in-
verse problems when the noise is distributed according to Gaussian or centered-t
distribution. Guhua et al. [26] generalized this method further to the case when the
noise is distributed according to skewed-t error distribution. Finite-dimensional VBM
has been recently applied to study the porous media flows in heterogeneous stochastic
media [51].

All the aforementioned investigations are conducted based on finite-dimensional
VBM. Therefore, only the first strategy as aforementioned can be employed to solve
the inverse problems. To the best of our knowledge, only two relevant works have
investigated VBM under the infinite-dimensional setting. Specifically, when the ap-
proximate probability measures are restricted to be Gaussian, Pinski et al. [44, 45]
employed a calculus-of-variations viewpoint to study the properties of Gaussian ap-
proximate sequences with Kullback-Leibler (KL) divergence as the a fitness measure.
Relying on the Robbins-Monro algorithm, they developed a novel algorithm for ob-
taining the approximate Gaussian measure. Until now, no study has been conducted
beyond such Gaussian approximate measure assumption. However, various approxi-
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mate probability measures have been frequently used for training deep neural networks
and solving finite-dimensional inverse problems [34, 33]. In this case, for applications
in inverse problems concerned with PDEs, a VBM with approximate measures other
than Gaussian should be necessarily constructed on infinite-dimensional space.

In the following, we focus on the classical mean-field approximation that is wide-
ly employed for the finite-dimensional case. This approximation originally stems
from the theory of statistical mechanics for treating many-body systems. Inspired
by finite-dimensional theory, we construct a general infinite-dimensional mean-field
approximate based VBM, which allows the use of general approximate probability
measures beyond Gaussian. Examples are also given to illustrate the flexibility of our
proposed approach. The contributions of our work can be summarized as follows:

e By introducing a reference probability measure and using the calculus of
variations, we establish a general mean-field approximate based VBM on
Hilbert spaces that provides a flexible framework for introducing techniques
developed on finite-dimensional space to infinite-dimensional space.

e We apply the proposed theory to a general linear inverse problem (the for-
ward map is assumed to be a bounded linear operator) with Gaussian and
Laplace noise assumptions. Precise assumptions can be found in Subsection
3.1. Through detailed calculations, we construct iterative algorithms for func-
tions. To the best of our knowledge, VBM with Laplace noise assumption has
not been previously employed for solving inverse problems, even those that
are restricted to finite-dimensional space.

e We solve the inverse source problems of Helmholtz equations with multi-
frequency data by using the proposed VBM with Gaussian and Laplace noise
assumptions. The algorithms not only provide a point estimate but also give
the standard deviations of the numerical solutions.

The outline of this paper is as follows. In Section 2, we construct the general
infinite-dimensional VBM based on the mean-field approximate assumption. In Sec-
tion 3, under the hierarchical formulation, we apply the proposed theory to an abstract
linear inverse problem with Gaussian and Laplace noise assumptions. In Section 4,
we present concrete numerical examples to illustrate the effectiveness of our proposed
approach. In Section 5, we summarize our findings and propose some directions for
further research. Due to the limited space, we did not provide all proofs in the main
text. All of the proofs are given in the supplemental materials.

2. General theory on infinite-dimensional space. In Subsection 2.1, we
provide the necessary background of our theory and prove some basic results con-
cerning with the existence of minimizers for finite product probability measures. In
Subsection 2.2, we present our infinite-dimensional variational Bayes’ approach.

2.1. Existence theory. In this subsection, we first recall some general facts
about the Kullback-Leibler (KL) approximation from the viewpoint of calculus of
variations, and then provide some new theorems for product of probability measures
that form the basis of our investigation. Let H be a separable Hilbert space endowed
with its Borel sigma algebra B(#), and let M(H) be the set of Borel probability
measures on H.

For inverse problems, we usually need to find a probability measure u on H, which
is called the posterior probability measure, specified by its density with respect to a
prior probability measure pg [48]. Let the Bayesian formula on the Hilbert space be
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defined by

d
(@) = Zluexp(—cb(x»,

(1)

where ®(z) : H — R is a continuous function, and exp ( — ®(z)) is integrable with
respect to 9. The constant Z,, is chosen to ensure that p is indeed a probability
measure.

Let A C M(H) be a set of “simpler” measures that can be efficiently calculated.
Our aim is to find the closest element v to p with respect to the KL divergence from
subset A. For any v € M(#H) that is absolutely continuous with respect to u, the KL
divergence is defined as

@ Dl = [ 1og () Fontan) =8 log (5@ ) ).

where the convention 0log 0 = 0 has been used. If v is not absolutely continuous with
respect to pu, then the KL divergence is defined as +oo. With this definition, this
paper examines the following minimization problem:

arg min Dky, (v||p).
(3) sm (v[)

There are some studies of the above general minimization problem (3) taken from
the perspective of the calculus of variations. We follow this line of investigations in this
section, and for the convenience of the readers, we present the following proposition,
which has been proven in [45].

ProOPOSITION 1. Let A be closed with respect to weak convergence. Then, given
w € M(H), assume that there exists v € A such that Dy (v||u) < co. It follows that
there exists a minimizer v € A solving

arg min Dgr, (v||p).
veA

As stated in the Introduction, we aim to construct a mean-field approximation
that usually takes the following factorized form for the finite-dimensional case

M
(4) gz, o) = HQ(%’),

where g(21,- -,z ) is the full probability density function, g(z;) is the probability
density function for z;, and z; € RYi(N; € N) for j = 1,2,--- , M. That is, we
assume that x1,--- ,x; are independent random variables. By carefully choosing the

random variables {x; }jj\il, this independence assumption will lead to computationally

efficient solutions when conjugate prior probabilities are employed. Additional details
can be found in Chapter 9 of [8] and in some recently published papers [33, 52, 53].
Inspired by formula (4), for a fixed positive constant M, we specify the Hilbert
space ‘H and subset A as
M M
(5) =[] A=][A

Jj=1 Jj=1
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where H;(j = 1,---, M) are a series of separable Hilbert space and A; C M(H,;).
Let v := Hf\il v* be a probability measure such that v(dz) = Hi\il vi(dz). With
these assumptions, the minimization problem in (3) can be rewritten as

M
(6) arg min Dgr, < H V| |u>
viEA; i=1
for suitable sets A; with ¢ = 1,2,--- , M. The general result shown in Proposition 1
indicates that the closedness of the subset A under weak convergence is crucial for the
existence of the approximate measure v. Therefore, we present the following lemma
that illustrates the closedness of A as defined in (5).

LEMMA 2. Fori=1,2,--- M, let A; C M(H;) be a series of sets closed under
weak convergence of probability measures. Define

(7) C = {y;:ﬁyﬂ'

J=1

vieA; forj=1,2,-- ,M}.

Then, the set C is closed under the weak convergence of probability measures.
From Lemma 2 and Proposition 1, we can prove the following existence result.
THEOREM 3. Fori = 1,2,--- M, let A; be closed with respect to weak conver-
gence. Given | € M(Hi‘il H;), we assume that there exists V' € A; fori=1,--- M
such that DKL(Hi]\il vi||n) < co. Then, there exists a minimizer Hf\il vt that solves
problem (6).

REMARK 4. In Theorem 3, we only illustrate the existence of the approzimate
measure v without uniqueness. When the approzimate measures are assumed to be
Gaussian, uniqueness has been obtained with the A-convex requirement of the poten-
tial ® appearing in the Bayes’ formula (1) [/5]. We cannot expect uniqueness gener-
ally even for most of the practical problems defined on the finite-dimensional space.
Therefore, we will not pursue the uniqueness results here.

The result shown in Theorem 3 does not tell us much about the manner in which
minimizing sequences approach the limit. After further deductions, we can precisely
characterize the convergence.

THEOREM 5. Let {v, = Hjle V%}Zozl be a sequence in HjleM(’Hj), and let
Uy = ]_[Jle vl e ]_[Jle M(H;) and p € M(H;‘il ;) be probability measures such that
for any n > 1, we have Dgr(vp||n) < oo and Dgr(vi|lp) < oo. Suppose that vy,
converges weakly to v, and vl < vl for j =1,2,--- M and that
(8) Dgr(vallp) = Drr(vel|p).

Then, V) converges to vl in the total variation norm forj=1,2,--- M.

Combining Theorems 3 and 5, we immediately obtain the following result.
COROLLARY 6. For j = 1,2,--- M, let A; C M(H;) be closed with respect to
weak convergence. Given i € /\/l(H]M=1 M), there exists v = Hjle S Hjle Aj with
Dgpr(v||u) < co. Let v, = H]M=1 vi € H]J\il A; satisfy
(9) Drr(vallp) — uel‘EAlifl " Drr(v|p).

Then, after passing to a subsequence, we have
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e v, converges weakly to v, = HJAil vl e HJAil M(H;) that realizes the infimum
in (9);
e cach V) converges weakly to vl for j=1,2,--- M.
In addition, for j =1,2,--- /M, if vl < vl for all n, each vl converges to vl in the
total-variation norm.

REMARK 7. Because our results rely on conclusions given in [[5] that hold on
Polish spaces, it should be pointed out that all of the theoretical results presented in
this subsection actually hold on Polish spaces.

2.2. Mean-field approximation for functions. For finite-dimensional cases,
the mean-field approximation has been widely employed in the field of machine learn-
ing. On the basis of the results presented in Subsection 2.1, we construct a mean-field
approximation approach on infinite-dimensional space, which will be useful for solving
the inverse problems of PDEs.

In the previous work, e.g., Examples 3.8 and 3.9 in [45] and the general setting
described in [44], their idea is replacing the classical density functions by the density
functions with respect to the prior measure. In [44, 45], prior measures are taken to
be Gaussian measures, which take the role played by the Lebesgue measure in the
finite-dimensional setting, as a reference measure. Inspired by these studies, we may
assume that the approximate probability measure v introduced in (3) is equivalent to
1o defined by

dv 1
(@) = 5 exp (— B(@)

Zy
Compared with the finite-dimensional case, a natural way for introducing an inde-
pendence assumption is to assume that the potential @, (x) can be decomposed as

(10)

(11) exp ( Hexp —®I( gcj))

where © = (21, ,zp). However, this intuitive idea prevents us from incorporat-
ing those parameters contained in the prior probability measure into the hierarchical
Bayes’ model that is used in finite-dimensional cases [33, 53]. Given these consider-
ations, we propose the following assumption that introduces a reference probability
measure.

ASSUMPTIONS 8. Let us introduce a reference probability measure

M .
(12) pr(dz) = H 1 (dz;),

which is equivalent to the prior probability measure with the following relation being
true:

dpo 1 0
13 x — exp(—®"(2)).
(13) @) = - exp(~ (@)
For each j =1,2,--- , M, there is a predefined continuous function a;(e, a:j)l where

€ is a positive number and x; € H;. Concerning these functions, we assume that

IThese functions naturally appear when considering concrete examples, which will be specified
in Remark 15. In the last part of the supplementary materials, we provide a detailed illustration of
the Gaussian noise example, which may provide more intuitions.
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EHr[a;(e,-)] < 0o where € € [0,€)) with € is a small positive number (j =1,--- , M).
We also assume that the approximate probability measure v is equivalent to the refer-
ence measure p,. and that the Radon-Nikodym derivative of v with respect to u, takes
the following form

M

(14) j:r (z) = Zi exp ( -y ‘1>§(a?j)>-

j=1

Following Assumptions 8, we know that the approximate measure can be decom-
posed as v(dx) = H]M:1 v (dz;) with

dv? 1 -

Here, ZJ = EH: ( exp ( - (xj))) ensures that 1/ is indeed a probability measure.

REMARK 9. The reference measure introduced above can be easily specified for
concrete examples. Fix a component j, if x; belongs to some finite-dimensional Hilbert
space, we assume that the prior measure of x; has a density function p(-). Then we can
choose the reference measure of x; just equal to the prior measure. Formula (15) for
this component reduces to the classical finite-dimensional case. If x; belongs to some
Hilbert space with the prior measure contains some hyper-parameters, there may be
no universal strategies for choosing the reference measure. Here, we provide a simple
example to give some intuitions. Assume x; ~ N(0,C;) with Cr == (721 — A)™% (v is
a fized positive number) [20], we can choose the reference measure to be a Gaussian
measure N(0,C) with C := (I — A)~™%, which is equivalent to N'(0,C;) under some
appropriate conditions (rigorous results are given in Theorem 1 in [20]).

For convenience, let us introduce some notations. For j = 1,2,--- , M, let Z; be
defined as a Hilbert space that is embedded in H;. Denote C'y be a positive constant
related to N. Then, for j =1,2,--- , M, we introduce

1
Wl

sup ®%(zj) < Cy < oo for all N > 0},
1/N<z]l2, <N

2 T

/ exp (=@ (z;)) max(1,a;(e,z;))pl (dr;) < C < oo, for € € [O,eg)},
’}.l.

J

where C' is an arbitrary large positive constant, €} and a;(-,-) are defined as in As-
sumptions 8. With these preparations, we can define A; (j =1,2,---, M) as follows:

v is equivalent to p with (15) holds true, }

16 A =17 € M(H,;
(16) J {V (73) and 7 € R} N R?

Before using Theorem 3, we need to illustrate the closedness of A; (j =1,2,---, M)
under the weak convergence topology. Actually, we can prove the desired results
shown blow.

THEOREM 10. For j = 1,2,--- , M, we denote T}, = {z;|1/N < lzjllz, < N},
with N being an arbitrary positive constant. For each reference measure i, we assume
that sup p(T%) = 1. Then, each A; is closed with respect to weak convergence and

problem (6) possesses a solution H]M=1 vl with vl € Aj for j=1,2,--- , M.
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In the following theorem, we provide a special form of solution that helps us
obtain the optimal approximate measure via simple iterative updates.

THEOREM 11. Assume that the approzimate probability measure in problem (6)
satisfies Assumptions 8 and the assumptions presented in Theorem 10. Using the
same notations as in Theorem 10, in addition, we assume

(17) sup sup / (@%(z) + ®(z)) 1a(z) Huj(dxj) < o0,
@i €T% v/ e Ay T4 Hj ot
J#i
and
(18) sup / exp ( / (®°(z) + ®(z))1 40 (2) H v (dxj)> M;(x)pl (da;) < oo,
yj_iAj Hi Hj;éi M VE)
YED)

where A = {x|®°(z) + ®(x) > 0}, and M;(x) := max (1,a;(e,x;)) with i,j =

1,2,--- M. Then, problem (6) possesses a solution v = Hjle v e M(H) with
the following form

dv M ,
(19) dTLr ocexp(—;fbi(xi)>,
where
"x;) = Oz T v (dx; ons
(20) () /ij(crw)w( ))1;[ (de;) + Const
and
(21) vi(dz;) oc exp (— @F (x:)) py (das).

REMARK 12. For i = 1,2,---, M, conditions (17) and (18) ensure that each
components of the approzimate measure v and the reference probability measure .,
are equivalent. These two conditions can be verified in a straightforward manner
for specific examples relying on the integrability and boundedness conditions of ®f
contained in the definition of A; in (16) fori=1,2,--- /M.

REMARK 13. Formula (20) means that the logarithm of the optimal solution for
factor V3 can be obtained simply by considering the logarithm of the joint distribution
over all of the other variables and then taking the expectation with respect to all of
the other factors {v'} fived for i # j. This result is in accordance with the finite-
dimensional case illustrated in Subsection 2.8 of [52].

REMARK 14. Based on Theorem 11, we can therefore seek a solution by first
initializing all of the potentials 7 appropriately and then cycling through the potentials
and replacing each in turn with a revised estimate given by the right-hand side of (20)
evaluated by using the current estimates for all of the other potentials.

3. Applications to some general inverse problems. In Subsection 3.1, we
apply our general theory to an abstract linear inverse problem (ALIP). We assume
that the prior and noise probability measures are all Gaussian with some hyper-
parameters, and then we formulate hierarchical models that can be efficiently solved
by using the variational Bayes’ approach. In Subsection 3.2, we assume that the noise
is distributed according to the Laplace distribution. Through this assumption, we
can formulate algorithms that solve ALIP and are robust to outliers.
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3.1. Linear inverse problems with Gaussian noise. In this subsection, we
apply our general theory to an abstract linear inverse problem. A detailed investiga-
tion of the corresponding finite-dimensional case can be found in [34].

Let H, be some separable Hilbert space and N be a positive integer. We describe
the linear inverse problem as

(22) d=Hu+e,

where d € RN¢ is the measurement data, v € H,, is the sought-for solution, H is a
bounded linear operator from H,, to RV¢, and € is a Gaussian random vector with
zero mean and 7' I variance. We will focus on the hyper-parameter treatment within
hierarchical models and the challenges in efficiently exploring the posterior probability.

To formulate this problem under the Bayesian inverse framework, we introduce a
prior probability measure for the unknown function u. Let Cy be a symmetric, positive
definite and trace class operator defined on H,,, and let (e, ay) be an eigen-system
of the operator Cy such that Cyep = ager. Without loss of generality, we assume
that the eigenvectors {e,}72 ; are orthonormal and the eigenvalues {ax}72, are in a
descending order. In the following, for a function v € H,,, we denote u; := (u, e;) for
j=1,2,---. According to Subsection 2.4 in [19], we have

(23) Co=) aje;®e;,
=1

where ® denotes the tensor product on Hilbert space [37, 47]. As indicated in [16,
17, 23], we assume that the data are only informative on a finite number of directions
in H,. Under this assumption, we introduce a positive integer K, which represents
the number of dimensions that is informed by the data (i.e., the so-called intrinsic
dimensionality), which is different from the discretization dimensionality, i.e., the
number of mesh points used to represent the unknown variables. The value of K can
be specified with a heuristic approach [23]:

Xk < e} s

aq

where € is a prescribed threshold. Let A be a positive real number, then, we define

(24) K = min {k eN

K oo
(25) el = Z)\_lajej ®e;+ Z aje; @ ej,
j=1 j=K+1

which is obviously a symmetric, positive definite and trace-class operator. Numerical
results shown in [23] indicate that the above heuristic approach could provide accept-
able results when e is small enough for a lot of practical inverse problems. However, if
the data is particularly informative and far from the prior, this heuristic approach may
lead to a Bayesian inference model that does not adequately incorporate information
encoded in data. Concerned with this problem, we intend to give more detailed dis-
cussions in our future work. We refer to some recent studies [1, 14] that may provide
some useful ideas. Then, we assume

(26) w e g™ = N(uo, G5 (A).
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Let Gamma(a, ) be the Gamma probability measure defined on R with the prob-
ability density function pg expressed as

(27) pa(z;a,f) = %xaleﬁz,

where T'() is the usual Gamma function. Then, except for the function u, we as-
sume that the parameters A and 7 involved in the prior and noise probability mea-
sures are all random variables satisfying A ~ p) := Gamma(ag, o) and 7 ~ uf =
Gamma(ay, B1). With these preparations, we define the prior probability measure
employed for this problem as follows:

(28) po(du, dX, dr) = g™ (du)pg (dN) g (dr).-

Let u be the posterior probability measure for random variables u, A, and 7. According
to Theorems 15 and 16 proved in [19], this probability measure can be defined as

d 1
(29) dTZ(”’ A7) = g e ( — Sl Hu - d||2>,
where
(30) Z, = /H _— N1/ exp ( — %HHU — d||2),u0(du,d)\,d7').
u X X

To apply the general theory developed in Section 2, we specify the following
reference probability measure 2

(31) pr(du, dX, dr) = i (du) ) (dN) . (dr),

where ;% = N(ug,Cp) is a Gaussian probability measure, and p* and pul are chosen
to be py and uf, respectively.

In Assumption 8, we assume that the approximate probability measure is sepa-
rable with respect to the random variables u, A, and 7 with the form

(32) v(du, d), dr) = v*(du)v (d\)v" (dr).

In addition, we assume that its Radon-Nikodym derivative with respect to u, can be
written as

(33) dv (u, \,7) = Zi exp ( — P (u) — () — <I>:(T)>

dpur r
For the Radon-Nikodym derivative of pg with respect to u,., we have

dpo dpg™ o dpd . dug
\T) = (A

(34) = N/ exp ( = SICK O 2= wo)| + 565w - U0)||2>

K
1 _
:)\K/Qexp<—2 g (uj—u()j)Q()\—l)ozj 1),

Jj=1

2In practical machine learning applications, especially for large-scale scenarios, researchers often
assume the approximating measures are independent in each component (a fully diagonal approxi-
mation to the posterior) that further reduce of computational burden. This, however, also tends to
decrease the computation accuracy due to the neglecting of existing correlations between different
components of u. We thus preserve such correlation in our method to alleviate the possible negative
influence of ignoring such beneficial knowledge.
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which implies that ®° introduced in Assumption 8 takes the following form:

l\NH
Mw

(35) 0 (u, \, 7) —upj)*(A — Dozt — —log)\

J
le

REMARK 15. It should be noted that RY is not a Hilbert space. However, the
general theory is constructed on some separable Hilbert spaces. This issue can be
resolved by considering X' := log A\ and 7’ := log 7 instead of X and 7. Through this
simple transformation, the space of hyper-parameters becomes R which is a Hilbert
space. The calculations presented here also hold true when considering X' and 7’ as
hyper-parameters. Actually, we can derive that eN and e” are distributed according to
the same Gamma distributions as X and 7. Choosing a, (e, u),ax (e, X'), and a, (e, 7')
appropriately, we can verify the conditions proposed in Theorem 11 (critical steps are
provided in the supplementary materials). In the following, we still use A\ and T as
hyper-parameters. With this a little abusive use of the general theory (can be rigorously
verified through the above simple transformation), the reader may see more clearly the
connections between the finite- and infinite-dimensional theory.

We now calculate ®,(u), ®5()), and ®7(7) according to the general results as
shown in Theorem 11.
Calculate @7 (u): A direct application of formula (20) yields

// < g — ug;)? 71)043‘_1+g“Hu7d||2

K N,
(36) -5 log A — Td log 7') V7 (dr)v*(d)\) + Const

K
1 1
:57-*||Hu —d||* + §(A* -1) Za;l(uj — up;)* + Const,

j=1
where
(37) T =E"[r] = / 7 (dr) and A =E" [\ = / A ().

0 0
On the basis of equality (36), we derive
K
dv® T AF—1 _

(38) W(u)cxexp(—QHHu—dHZ— 5 Zozjl(uj—uoj)Q).

j=1

We define

N

(39) Z ajej ®ej+ Z ajej & ej.

Jj=1 j=K+1

Then, according to Example 6.23 in [48], we know that the probability measure v* is
a Gaussian measure N (u*,C) with

(40) Cl'= 7 H*H+Co(\)™" and u* = C(7*H*d + Co(\*) “up).

This manuscript is for review purposes only.
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450 Calculate ®%(\) and ®7(7): According to formula (20), we have

o K
DL(N) :/O / (; Z(u] - uoj)zajfl)\ - glog A) v (du)v™ (dr) 4+ Const
451 (41) ’ X =t

1 u _ K
:§E” <;(u] - uoj)zozj 1> A— 5 log A 4 Const,

453  which implies that

dVA 1 u K _
454 (42) W()\) o< ME/Z exp ( - §E” (2:(11j - uoj)Qaj 1))\).

455 Jj=1

456 Given that A is a scalar random variable, we can write the density function as bellow:

gy B et g
457 (43 pY: = A%0 —BoA
1;8 (43) pa(X; &, Bo) T(co) exp(—Ho),
459  where
) ~ K 2 1 v = 2 -1
460 (44) Qg = g + 5 and Bo = 50 + i]E (Uj — qu) aj .
461 j=1

462 Similar to the above calculations of ®%(\), we derive

wrr)= [ (G- al = S rour ) ax) + Const
163 (45) 0 JHu

_1 v 2 Nd
464 _QE (1w —d|*)7 710gT+Const,

465 which implies

d T
166 (46) v

467 dpg

1
u)aT%%xp(_QE/QHu_ﬂPﬁ>

468 Therefore, v™ is a Gamma distribution Gamma(a;, 31) with

N, ~ 1_u
169 (47) Gr=o+ 50 and B =+ B (|Hu—d|).
47
471 According to the statements in Remark 14, we provide an iterative algorithm

472 based on formulas (40), (43), (44), and (47) in Algorithm 1. Next, we provide a brief
473 discussion of the computational details and the cost of this algorithm. For small- or
474  medium-scale problems, we may construct the finite-dimensional approximate oper-
175 ators H and H* explicitly [34]. However, for large-scale problems, it is impossible
476 to build finite-dimensional approximations explicitly. Actually, for running the itera-
477 tions, we only need to compute the mean estimates u; and some quantities related to
178 v such as B (||[Hu — d||?). For obtaining mean estimates, we can use a matrix-free
479 conjugate gradient (CG) method [10, 25, 43] to solve the following problem

489 (48) (e H*H + Co(M) ™ ur, = 7 H*d + Co(Ax) "o,
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VARIATIONAL INFERENCE FOR FUNCTIONS 13

Algorithm 1 Variational approximation for the case of Gaussian noise

1: Give an initial guess p (up and A), 1) (ap and Bo) and g (o and ).
Specify the tolerance tol and set k = 1.
2: repeat
3 Set k=k+1 R
3: Calculate A, = EYi-1[)], 7, = E¥-1[7]
4 Calculate v} by
Col = mH H 4+ Co(M) ™Y, wp = Cr(meH*d + Co( M) ug).
5: Calculate v} and v by

V,i‘ = Garrmm(o?o,ﬁN(’)“)7 Vi = Gamma(dl,ﬁf),

where
K 2 1 = 2 —1
~ k_ vy P -
Go=oao+ 5, B =0+ E% (;@ uoj)?e; )
- N ~ 1 Y
041:041+7d, ﬂf:ﬂl+§]E k(| Hu — d||?).

6: until max (|lug — wr—1l/llurll, [Me = Me—tll/ 1Nl 172 = 7e—all /I 72 ll) < tol
7: Return v} (du)v; (d\)vf (dr) as the solution.

where no explicit forms of H*H and H* need to be constructed. As demonstrated in
[10, 43], the CG iterations may be terminated when sufficient reduction is made in
the norm of the gradient and the prior operator may also be used to precondition the
CG iterations. For the term E¥* (||[Hu — d||?), by a straightforward generalization of
the finite dimensional case [34] (Proposition 1.18 in [46] and (c) of Theorem VI.25 in
[47] are used), we know that the core difficulty is to compute the following quantity

(49) Tr((7Co (M) 2H* HCo (M) /2 + Id) ™ Co( M) /2 H* HCo(Mi,)/?),

where Tr(+) denotes the operator trace. For a lot of practical applications, the operator
H*H is a compact operator. Then the analysis provided in Subsections 5.2 and 5.4
in [10] may applicable in the current setting, which implies that only a small number
of eignvalues (independent of the dimension of the discretized parameter field) is
required to be evaluated. We intend to investigate efficient implementations for large-
scale problems in our future work.

3.2. Linear inverse problems with Laplace noise. As revealed by previous
studies on low-rank matrix factorization [53], the Gaussian noise tends to be sensitive
to outliers. Compared with the Gaussian distribution, the Laplace distribution is a
heavy-tailed distribution that can better fit heavy noises and outliers. In this sub-
section, we develop VBM for the linear inverse problem (22) with the Laplace noise
assumption.

For the noise vector € = (e1, €, -+ ,en,)? € RV, we assume that each component
¢; follows the Laplace distribution with zero mean

(50) €; ~ Laplace (0, \/Z)

This manuscript is for review purposes only.
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with 7 € RT. The probability density function of the above Laplace distribution is
denoted by pr(€;]0,/7/2) that takes the following form:

(51) (10, /7/2) = exp( e )

However, the Laplace distribution cannot be easily employed for posterior infer-
ence within the variational Bayes’ inference framework [53]. A commonly utilized
strategy will be employed to reformulate the Laplace distribution as a Gaussian scale
mixture with exponential distributed prior to the variance, as discussed in [3, 53]. Let
pe(z|7) be the density function of an exponential distribution, that is,

(52) pi(=I7) = L exp ( )

Then, we have

(53)

—~

|0, 2)pe (2|7)dz

= / PN
0
By substituting (50) into the above equation, we obtain

(54) L (ei]0, /7 / (€10, 2:)pm(z]7)dz,

where pn(€;]0,2;) is the density function of a Gaussian measure on R with a zero
mean and z; variance. Thus, we can impose a two-level hierarchical prior instead of
a single-level Laplace prior on each ¢; as

(55) e; ~ N(0, 2), z; ~ Exponential(7).

Let w; = z;'. Given that z; ~ Exponential(r), we know that w; ~ uy* with pg"
being a probability distribution with the following probability density function:

(56) 71_exp<— ! )12

TW; ) Wy
Let W be a diagonal matrix with diagonal w = {w1,we, - ,wn,}, and let
Ng
(57) py = H s
i=1

For the prior probability measure of u, similar to Subsection 3.1, we set this measure
as for the Gaussian noise case, that is,

(58) U ~ ,ug’)‘ = N(uo,Cé((/\)), A~ ug‘ = Gamma(«yg, fo).
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By combining (57) and (58), we obtain the full prior probability measure as
(59) po(du, X, dw) = g™ (dw) g (AN) ) (dw).

For the reference probability measure, we set p,(du, d\, dw) = p(du)p) (dX)p? (dw),
where p = N (ug,Co), 1} = py, and p? = p¥. By similar calculations as shown in
(34), we obtain

_ K
— ;) (A — Da; - 0} log .

w\»—*
Mx

(60) ®%(u, A, )

J=1

For the posterior probability measure, by assumptions on the noises (55)-(57), we
have

dp 1 1
(61) (v = 5 W 2exp (= GIWH - )P
o

dpio
which implies ®(u, A\, w) = 3|WY2(Hu — d)||> — % log [W|. Similar to the Gaussian
noise case, we specify the approximate probability measure as

dv
dpy

1

(62) (uh ) = - exp (= @) = B0~ ) ).
T

With these preparations, we are ready to calculate the three potentials in (62).

As discussed in Remark 15, we use A > 0 as a hyper-parameter, which is not in

accordance with our general theory. However, it can be made rigorous by considering
A =1In ) as the hyper-parameter.

Calculate ®!: Following formula (20), we can derive

1
// Z uOJ 1)a;1+§||W1/2(Hu — d)||*dv*dv™ +Const
(63 L 1
Za “0j)2+§||W*(Hu—d)||2+Const,
j=1

where \* = E*” [\] and W* = diag(E"" [w;], E*" [ws], - - - ,E*" [wn,]). From the equal-
ity (63), we easily conclude that

dv* 1, A1
s ocenp (= IV 2 )l - XY e s - g)?)

Jj=1

(64)

which implies that u is distributed according to a Gaussian measure with a co-
variance operator and a mean value specified as C~' = H*W*H + Co(A\*)~! and
= C(H*W*d + Co(/\*)_luO).
Calculate ®%: Following formula (20), we can derive

K
// Z — ugj;) j_l)\ — 5 log Adv*dv® + Const
1

=3 V“(Z —u0])2 _I)A—log)\—i—Const
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Therefore, we have

K

dv? 1 -
(66) P e (= 18 (St - w2,

j=1
which implies that v* is a Gamma distribution denoted by Gammal(éo, o) with

K

(67) ao = ag+ K/2, Bo=Po+ %Eyu (Z(Uj - uoj)20<j1).

Jj=1

Calculate ®!: Following formula (20), we derive

1 1
o7 (w) :// §HW1/2(HU —d)|]* - ilog |W|dv*dv* + Const

(68) N L
=3 ;EV [(Hu — d)%] w; — 5 Z log w; + Const,

j=1

which implies

Na
de 1/2 1 LU
(69) Ry (- 38" (- auy).

Because w is a finite dimensional random variable, we find

AL 1 1 1\ 1
w 1/2 v 2
oo o< Loy esp = 32 (a0 = ) Zemm (= 2 )
j:l J
(70) v 1 1
— — ZE"" [(Hu — d)*|w; — — }
ocjljl Tw?/2 exp ( 5 [(Hu — d)F]w, ij)dw

In other words, v* is an inverse Gaussian distribution denoted by [[;2, IG(mw;, ()
with

2 2
) My = \/TEV“ [(Hu - d)2]’ ‘=7

J

Specify the parameter 7: From (55), we know the parameter 7 is directly
related to noise variance parameter z; = w; ! Therefore, this parameter should be
adjusted carefully to obtain reasonable results. Empirical Bayes [8] provides an off-
the-shelf tool to be adaptively tuned based on the noise information extracted from
the data by updating it through 7 = Nid Zj\;‘ll m;jl + ¢~!. Using this elaborate tool,
7 can be properly adapted to real data variance.

Similar to the Gaussian noise case, an iterative algorithm, namely Algorithm
2, is constructed based on the above calculations. For large-scale problems, similar
discussions of Algorithm 1 can be applied here. The only difference is that (49) is
replaced by the following quantity:

(72) Tr((16Co(Ai) /2 H* Wi, HCo (M) /2 + 1d) = Co( M) V2 H* Wi HCo (M) /?).

The quantity (72) can be calculated in the similar way as (49).
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Algorithm 2 Variational approximation for the case of Laplace noise

1: Give an initial guess ug”\ (ug and ), py (ao and By), pf and 7.
Specify the tolerance tol and set k = 1.

2: repeat
3: Set k=k+1 R
3: Calculate A, = EVi-1[)], W, = diag(E"" [w1], EV" [wo], - -+ ,E*" [wn,]) and

N, —1\— —
Tk = N%i Zj:dl (mﬁ;j D7+ (CGeer)
4: Calculate v} by

Ck_l = H*'W,.H + Co(/\k)_l, up = Cy, (H*Wkd + CQ()\k)_luO).
5: Calculate v and v by

Na
vp = Gammal(ag, BY), v = H IG(mﬁj’Ck)a
Jj=1

K
~ 1w - ~
B :ﬁo+2E”k<§ (uj — u;)*0; 1>, Go = oo + K/2,

Jj=1

mk = 2 ¢ _2
Wi TkEylg[(Hufd)?]7 b Tk.

6: until max (|Jug — we—1 ||/ llurll, [Ae = Me—tll/ [Nl 176 = T ll/ll 7)< tol
7: Return v} (du)v; (d\)v (dw) as the solution.

4. Concrete numerical examples.

4.1. Inverse source problem for Helmholtz equation. The inverse source
problem (ISP) studied in this section is borrowed from [6, 7, 15, 30], which determines
the unknown current density function from measurements of the radiated fields at
multiple wavenumbers.

Consider the Helmholtz equation

(73) Av+ K21+ g(x))v =us in RN

where Ny, = 1,2 is the space dimension, x is the wavenumber, v is the radiated scalar
field, and the source current density function wus(x) is assumed to have a compact
support. For the one-dimensional case, let the radiated field v satisfy the absorbing
boundary condition: d,v = ikv. For the two-dimensional case, let the radiated field
v satisfy the Sommerfeld radiation condition: 0,v —ixv = o(r='/2) as r = |x| — oc.
In addition, we employ an uniaxial perfect match layer (PML) technique to truncate
the whole plane into a bounded rectangular domain when Ng = 2. For details on the
uniaxial PML technique, see [5, 32] and references therein. Let D be the domain with
absorbing layers, and €2 be the physical domain without absorbing layers.

The ISP aims to determine the source function us from the boundary measure-
ments of the radiated field on the boundary 0 for a series of wavenumbers. For
clarity, we summarize the problem as follows:

Available data For 0 < r; < kg < --- < kn; < 00 (Ny € NT), and measurement
points z!', 22, .- 2N € 9Q, we denote

d' = {v(z',K;)|i=1,2,--+ Ny, and j = 1,2,--- , Ny ).
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The available data set is d := df + ¢, where € is the measurement error.
Unknown function The source density function us needs to be determined.
Generally, we let F,; be the forward operator that maps us to the solution v when
the wavenumber is xk , and let M be the measurement operator mapping v to the
available data. With these notations, the problem can be written abstractly as

(74) de = Hﬁ(us) + €k,

where H,, := M o F, is the forward operator, and €, is the random noise.

To avoid inverse crime, we use a fine mesh to generate data and a rough mesh
for the inversion. For the one-dimensional problem, meshes with mesh numbers of
1000 and 600 are used for the data generation and inversion, respectively. For the
two-dimensional problem, we will provide details in the sequel.

When the dimension of the parameters is relatively low, the proposed Algorithms
1 and 2 are similar to the one build for the finite-dimensional case. Detailed com-
parisons with the MCMC algorithm have been given in [33, 34], which reflect that
highly accurate inferences can be generated. Hence we will not present a comparison
with the MCMC algorithm in the sequel for a relatively low dimensional case. For the
infinite-dimensional Bayesian method with hyper-parameters, the noncentered algo-
rithms are a more appropriate choice as illustrated in [1]. Using the proposed general
framework for the noncentered parameterize strategy and providing a comparison
with the method proposed in [1] could be an interesting future research problem.

It should be indicated that the finite element method is implemented by employing
the open software FEniCS (Version 2018.1.0). For additional information on FEniCS,
see [39]. All programs were run on a personal computer with Intel(R) Core(TM)
i7-7700 at 3.60 GHz (CPU), 32 GB (memory), and Ubuntu 18.04.2 LTS (OS).

4.2. One-dimensional ISP. For clarity, we list the specific choices for some
parameters introduced in Section 3 as follows:
e The operator Cy is chosen to be (Id — d,,) ! and taken e = 1073. Here, the
Laplace operator is defined on 2 with the zero Dirichlet boundary condition.
e The wavenumber series are specified as x; = j with j = %, 1, %, 2,---,50.

e Let domain 2 be an interval [0,1], with 02 = {0,1}. And the available
data are assumed to be {v(z’,k;)|i = 1,2, 2! = 0, 2 = 1, and j =
1,2,---,100}.

e The initial values required by Algorithm 1 are chosen as ug = 0,9 = a1 =
1,80 = 107,31 = 10~°. The initial values required by Algorithm 2 are
chosen as ug = 0,0 = 1,80 = 1071, 7 =10"".

e The function ¢(z) in the Helmholtz equation is taken to be constant zero.

e The ground truth source function ug is defined as

ug(z) = 0.5exp(—300(z — 0.4)?) + 0.5 exp(—300(z — 0.6)?).

According to the studies presented in [38], for this simple one-dimensional case,
we will not take a recursive strategy but combine instead all data together with the
forward operator denoted by H and defined by H = (H,,, Hy,, " , Hx,0o)T - Based on
these settings, we provide some basic theoretical properties of the prior and posterior
sampling functions as follows:

e The prior probability measure for u, is Gaussian with the covariance operator
CE(X) with A € RT. According to Theorem 12 illustrated in [19], we know
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that if u, is drawn from the prior measure, and then the following holds
t,2 1 0.t 1
us € WH*(2) fort<§, and us € C**(Q) fort<§,

where W2(Q) is the usual Sobolev space with ¢ times derivative belonging
to L?(Q), and C%! is the conventional Hélder space.
e For Algorithm 1, every posterior mean estimate wuy has the following form:

Up = (TkH*H —I—Co(/\k)_l)_lTkH*d.

Given that H maps a function in L?(£2) to R2%°, we know that H*d is at least
a function belonging to L?. Considering the specific choices of Cy, we have
ur € W22(Q). For Algorithm 2, we can derive similar conclusions.

REMARK 16. By employing the “Bayesianize-then-discretize” method, we can an-
alyze the prior and posterior sampling functions rigorously. It is one of the advantages
of employing our proposed infinite-dimensional VBM.

Gaussian noise case: Let df be the data without noise. Then, we construct
noisy data by setting d = df + ¢¢ with ¢ = 1073 and ¢ is a random variable sampled
from the standard normal distribution.

0.6

— Estimation — Estimation
05 0.5 A
) 'l‘| == Truth §yv == Truth
0.41 | 0.4 \I
031 031
Us 0.2 0.2
0.1 0.1
0.0 0.0
-0.14 -0.14
00 02 04 .06 08 1.0 00 02 04 _ 06 08 1.0
x x
(a) Estimation obtained by Algorithm 1 (b) Estimation obtained by Algorithm 2

Fi1c. 1. The truth and estimated functions when the data are polluted by Gaussian noise. (a):
the estimated function obtained by Algorithm 1 is denoted by the blue solid line, and the truth is
denoted by the red dashed line; (b): the estimated function obtained by Algorithm 2 is denoted by
the blue solid line, and the truth is denoted by the red dashed line. In both plots the shaded areas
represent the pointwise mean plus and minus two standard deviations from the mean (corresponding
roughly to the 95% confidence region).

Relative error in L,*°-norm

— Error of Algorithm 1
Error of Algorithm 2

0.6

0.4

Relative error

03

0.2

0 5 10 15 20
Number of iterations

Fic. 2. Relative errors of the estimated means in the L°°-norm of Algorithms 1 and 2.
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In Figure 1, we depict the truth and estimated sources obtained by Algorithms 1
and 2, respectively. Visually, both algorithms provide reasonable results. In addition,
we demarcate the 95% confidence region by the shaded area to display the uncertain-
ties estimated by these two algorithms. The truth falls entirely into the confidence
region given by Algorithm 1, and the truth lies mostly within the confidence region
given by Algorithm 2. This may indicate that for the Gaussian noise case, Algorithm
1 can provide a more reliable estimation, which is in accordance with our assumptions.

To give a more elaborate comparison, we present the relative errors of the esti-
mated means in the L°°-norm of the two algorithms in Figure 2. The relative error
of the conditional mean estimate used here is defined as follows

relative error = ||u — us| Lo /|| us|| Lo,

where u is the estimated function generated by our algorithm and us is the true
source function. The blue solid line and orange dashed line denote the relative errors
obtained by Algorithms 1 and 2, respectively. Obviously, these two algorithms can
provide comparable results after convergence. However, Algorithm 1 converges much
faster than Algorithm 2, which is reasonable because the weight parameters used for
detecting impulsive noises may reduce the convergence speed.

The parameter T given by Algorithm 1 provides an estimate of the noise variance
through ¢ = v7=1. The true value of ¢ is 0.001 in our numerical example. To
generate a repeatable results, we specify the random seeds in numpy to some certain
numbers by numpy.random.seed(i) with ¢ specified as some designated integers. The
estimated ¢ is equal to 0.000953,0.001101,0.001022, 0.001003, and 0.001041 when the
random seeds are specified as 1,2,3,4, and 5, respectively, thereby illustrating the
effectiveness of our proposed algorithm.

Laplace noise case: As for the Gaussian noise case, let df be the noise-free
measurement. The noisy data are generated as follows:

&= d;(, with probability 1 — r,
' d;r + €£, with probability r,

where ¢ follows the uniform distribution U[—1, 1], and (e, ) controls the noise pattern,
r is the corruption percentage, and € is the corruption magnitude. In the following,
we take r = 0.5 and € = 0.1. We plot the clean and noisy data in Figure 3, which
illustrates that the clean data are heavily polluted.

Clean data and data with implusive noise

0.3 [ --- Noisy data

02 Clean data

0.1

|
0.0{ Il
hf Ty

Magnitude

-0.1 i)
-0.2 [

034 |

0 25 50 75 100 125 150 175 200
Measurement points

Fic. 3. Clean and noisy data. The orange solid line represents the clean data, and the blue
dashed line represents the data with impulsive noise.
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0.5 — Estimation
0.4 == Truth
0.3
0.2
Us
0.1
0.0
-0.1
0.1 ‘ ‘ ‘ ‘ ‘
0.0 0.2 0.4 T 0.6 0.8 1.0 0.0 0.2 0.4 T 0.6 0.8 1.0
(a) Estimation obtained by Algorithm 1 (b) Estimation obtained by Algorithm 2

F1G. 4. The truth and estimated functions when the data are polluted by impulsive noise. (a):
The estimated function obtained by Algorithm 1 is denoted by the blue solid line, and the truth is
denoted by the red dashed line; (b): The estimated function obtained by Algorithm 2 is denoted by
the blue solid line, and the truth is denoted by the red dashed line. The shaded areas in both panels
represent the pointwise mean plus and minus two standard deviations from the mean (corresponding
roughly to the 95% confidence region).
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F1G. 5. (a): Relative errors in the L>°-norm obtained by Algorithm 2; (b): Weight, noisy, and
clean data at the data points with impulsive noise (only points with impulsive noise, not all points).

In Figure 4, we show the estimated functions obtained by Algorithms 1 and 2
in the left and right panels, respectively. Obviously, based on the Gaussian noise
assumption, Algorithm 1 cannot provide a reasonable estimate, and the estimated
confidence region may be unreliable. However, based on the Laplace noise assumption,
Algorithm 2 provides an accurate estimate. Given that Algorithm 1 fails to converge
to a reasonable estimation, we only provide the relative errors in the L°°-norm of
Algorithm 2 on the left panel of Figure 5. From these relative errors, we can find
that Algorithm 2 rapidly converges even if the data are heavily polluted by noise.
The right panel of Figure 5 plots the noisy and clean data points at those data points
where noises are added. We plot the weight vector at the corresponding data points.
From this figure, we can clearly see that the elements of the weight vector are all with
small values, which is in accordance with our theory. The weight vectors at the noisy
data points are adjusted to small values during the iteration. This reveals the outlier
removal mechanism of Algorithm 2.

4.3. Two-dimensional ISP. In this subsection, we solve the two-dimensional
ISP. Directly computing the covariance operator for the two-dimensional problem is
difficult due to the large memory requirements and computational inefficiency. Here,
we employ a simple method that employs a rough mesh approximation to compute
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the covariance. The source function us; can be expanded under basis functions as
follows:

(75) us(x) = Z Usi i (T).
i=1

Given that these basis functions can be taken as the finite element basis, the source
function can be approximated as

Ny
(76) us(x) = Z ugi i ().
i=1

The covariances involved in Algorithms 1 and 2 are all computed by taking a small
Ny in (76). For many applications such as medical imaging, we may compute the
operator H*H (not depending on the source function) with a small N; before the
inversion. To evaluate accurately as the wavenumber increases, we compute the mean
function by gradient descent with a fine mesh discrete PDE solver and then project the
source function to the rough mesh for computing variables relying on the covariance
operators.

Unlike the one-dimensional case, we employ the sequential method used in [6] that
provides a more stable recovery for multi-frequency inverse problems. Specifically,
for 0 = ko < k1 < --» < KN, < oo and each problem d., = Hy, (us) + €., (i =
1,---,Ny), we assume the prior measure is ugf‘ = N (;_1,C(N\)) with @;_; denoting
the conditional mean estimate when the wavenumber is k;—1 (4o is assumed to be
some initial guess u?). For the Gaussian noise case with i = 1,2, - - , Ny, we have the
following Bayesian formula

du’

77
(77) dpioi

.
(w2, 7) ox exp (= 21 Ho () = |

where po;(du, d\, dr) = pi™ (du)pd (dX) pg (dr) with pd, uf are defined as in Subsec-
tion 3.1 and p’ is the posterior measure when wavenumber is equal to #;. The posterior
measure u"~/ will be employed to quantify the uncertainties of the final estimate. For
a similar sequential formulation as above, we refer to Subsection 6.4.1 in [38]. It is
not hard to formulate a sequential approach for the Laplace noise case. The details
are omitted for conciseness. The iteration details are presented in Algorithm 3, in
which || - [[¢x(x) denotes the Cameron-Martin norm corresponding to the Gaussian
measure A'(0,CZ(N)). In the following, when we say that Algorithm 1 is employed,
we actually means that Algorithm 3 is employed in combination with Algorithm 1.
Similarly, when we say that Algorithm 2 is employed, we mean that Algorithm 3 is
employed in combination with Algorithm 2.

REMARK 17. It should be pointed out that the simple “rough mesh approximation”
method employed in Algorithm 3 is only applicable to problems with a simple form
(e.g., a localized source) on simple geometry. This method is not suitable for deal-
ing with more complex problems in three-dimension or even in two-dimension where a
large Ny is needed (e.g., high-resolution recovery with data of high wavenumbers). Our
aim is to give an illustration of the proposed method. For more advanced techniques
designed for large-scale problems, [10] can be referred to, which provides a scalable
approach for the infinite-dimensional Bayesian approach with linear approrimations.
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Algorithm 3 VBM for two-dimensional ISP with multi-frequencies

1: Give an initial guess of the unknown source us, denoted by u?.

2: For ¢ from 1 to Ny (iterate from low wavenumber to high wavenumber)

3: Specify the prior measure of u, as uf&* = N (ui"!,C(N)). Running itera-
tions of Algorithms 1 or 2 for £ until some stopping criterion is satisfied.
For k = 1, rough approximate of H and source is employed; For k > 1, the
gradient descent method is employed to solve

. Tk i—
uf = argmln?HHm(us) = die, |12+ s —ug 1\|2§(Ak)7

s Ug
which generate a conditional mean estimate on a fine mesh. In all of the
iterations, rough approximate Hessian has been used to update distributions
of hyper-parameters A, 7 (Algorithm 1) or w (Algorithm 2).
5: End for
6: Return the approximate probability measure v.

The fully nonlinear case has been investigated by using a stochastic Newton MCM-
C method in [[3]. Then, Metropolize-then-discretize and discretize-then-Metropolize
have been analyzed carefully for large-scale problems [12]. In 2019, an approzimate
sampling method based on some randomized MAP estimates has been investigated in
detail [50]. All these studies provide valuable ideas of designing algorithms of large-
scale inverse problems. For more studies in this direction, we refer to [11, 28, 40].

REMARK 18. In Algorithm 3, we use approximations on a rough mesh for the first
iteration of every wavenumber, which may provide an initial inaccurate adjustment
for the parameters employed in Algorithms 1 and 2. In our numerical experiments,
we only take three iterations for the third step to obtain an estimation.

REMARK 19. To employ sampling-type methods such as the MCMC' algorithm,
researchers often parameterize the unknown source function carefully to reduce the
dimension, e.g., assume that the sources are point sources, then parameterize the
source function by numbers, locations, and amplitudes [22]. For employing MCMC
algorithm [16, 25] in our setting, the computational complexity is unacceptable for two
reasons: Calculation with many wavenumbers are needed for multi-frequency problems
and a large number of samples need to be generated for each wavenumber; For each
problem (77), we did not assume any parametric form of the source function which
makes the parameters of source equal to the dimension of the discretization (much
more parameters than the usually used parametric form). However, the proposed
Algorithm 3 only takes several times of computational time compared with the classical
iterative algorithms [6, 7, 29] to provide estimations of uncertainties.

Before going further, we list the specific choices for some parameters introduced
in Section 3 as follows:

e The operator Cy is chosen as (—A + Id)~2. Here, the Laplace operator is
defined on  with the zero Dirichlet boundary condition.

e Take the discrete truncate level N; = 1681 and the number of measurement
points Ny, = 200. The basis functions {¢;}52, are specified as second-order
finite element basis functions.

e For Algorithm 3 combined with Algorithm 1, the wavenumber series are spec-
ified as k; = § with j =1,3,5,---,35. For Algorithm 3 combined with Algo-
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rithm 2, the wavenumber series are specified as k; = j with j =1,2,3,---,35.
e The scatterer function ¢(z) is defined as follows:

Q(x17x2) :03(4 _ 31,1)26(79(:10171)279(93272/3)2)
_ (0.6(1‘1 —1) = 9(z; — 1)3 _ 35($2 _ 1)5) e(—9(ﬂc1—1)2_9(m2—1)2)
_ 0‘03679(90172/3)279(1271)2,

which is the function used in Subsection 2.6 in [6].
e The true source function u, is defined as follows:

u(z) = 0.5¢~100((1-0.7)%+(z2~1)?) + 0.3~ 100((z1-1.3)*+(x2—-1)*)

e To avoid the inverse crime, a mesh with mesh number 125000 is employed for
generating the data. For the inversion, two types of meshes are employed: a
mesh with mesh number 28800 is employed when the wavenumbers are below
20, and a mesh with mesh number 41472 is employed when the wavenumbers
are greater than 20.

The case of Gaussian noise: Let df be the data without noise. The synthetic
noisy data d are generated by d; = df + o€, where o = maXlngNm{ldj"}Lnoise with
Ly oise denoting the relative noise level and £; denoting the standard normal random
variables. In our experiments, we take Lyse = 0.05, that is 5% of noises are added.

048 048
042 042
036 0.36
030 0.30
024 0.24
0.18 0.18
0.12 0.12
0.06 0.06
0.00 0.00
X1
(a) Truth (b) Posterior mean
100% 20 ; 3
0.176
- s 0.160
5 0.144 5
5 0% 0,128-§
Ag . 1.0 0.112 _e
= 0.096.8
@ 40% 0.080 £
03 0.064
20% 13.03% 0.048
0 10 20 30 %0 o5 10 15 20 00
Wavenumber X1
(¢) Relative error in L>-norm (d) Standard deviation

Fic. 6. (a): The true source function; (b): The posterior mean estimate obtained by Algorithm
1; (¢): Relative error of the estimated means in L°-norm obtained by Algorithm 1; (d): Estimated
standard deviation obtained by Algorithm 1.

In Figure 6, we show the inference results obtained by Algorithm 1. We show

the true source function on the top left and the posterior mean estimate on the top
right. Visually, the estimate is similar to the truth, and only some small fluctuations
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in the background are observed. In the bottom left, we show the relative errors of
the estimated means obtained by Algorithm 1 as the wavenumber increases, which
is in accordance with the results obtained by classical iterative approaches. In the
bottom right, we show the estimated standard deviation obtained by Algorithm 1
that quantifies the uncertainties of the posterior mean estimation. We see that the
uncertainties are small on the boundary where data are collected. The areas with the
largest uncertainties are in the middle, which is a reasonable result since that area
can be recovered only when data generated by high wavenumbers are employed.

The case of Laplace noise: For the Laplace noise case, let d be the noise-free
measurement. The noisy data are generated as

with probability 1 — r,

dl + €, with probability r,
where £ follows the uniform distribution U[—1,1], (¢,7) controls the noise pattern,
r is the corruption percentage, and € is the corruption magnitude defined by ¢ =

maxi<;< Nm{\d;|}Lnoise with Lpoise denoting the relative noise level. In our experi-
ments, we take Lygse = 1 and r = 0.2 or 0.5.

x10~4
L5 — Clean data
10 Noisy data
o
2 o0s 1 A
E WEUIVE VW TIAY
& 00 L[| n:\' Wi A' y /\ i
= os \ dx‘\;‘ 'v \/ H\/ \/ \
-1.0

0 25 50 75 100 125 150 175 200
Number of points

F1a. 7. Clean and noisy data obtained when the wavenumber is 34. The blue solid line represents
the clean data, and the dashed orange line represents the noisy data with r = 0.5.
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Fic. 8. (a): The true source function; (b): The posterior mean estimate provided by Algorithm
2 from noisy data with r = 0.2 (20% of data are polluted); (c): The posterior mean estimate provided
by Algorithm 2 from noisy data with r = 0.5 (50% of data are polluted).

The noisy and clean data when the wavenumber is 34 and » = 0.5 are shown in
Figure 7. Obviously, the data are heavily contaminated by noise. Figure 8 shows the
true source function and the posterior mean estimates generated by Algorithm 2 when
r = 0.2 and r = 0.5 on the left, middle, and right panels, respectively. No essential
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Fi1c. 9. Standard deviation of the numerical solution obtained by Algorithm 3 combined with
Algorithm 2. (a): Estimated standard deviation when r = 0.2 (20% of data are polluted); (b):
Estimated standard deviation when r = 0.5 (50% of data are polluted).

100% 98.60% 100% 98.52%

80% 78.59% 80%

60.67%

60% 60% 58.94%

Relative error
Relative error

42.88%

40% 40%

23.86%
20.72%
20% 20% ’

12.93% 13.96%

0 10 20 30 0 10 20 30
Wavenumber Wavenumber

(@) Relative error in [~-norm when r=0.2 (b) Relative error in [~norm when r=0.5

Fi1Gc. 10. Relative errors of the estimated means in L°°-norm of Algorithm 3 combined with
Algorithm 2. (a): Relative errors for r = 0.2; (b): Relative errors for r = 0.5.

differences can be observed between the posterior mean estimates when r = 0.2 and
r = 0.5. However, the Bayes’ method not only provides point estimates (e.g., posterior
mean estimates) but also delivers the reliability of the obtained estimations. Figure
9 shows the standard deviations provided by Algorithm 2 when r = 0.2 and r = 0.5
on the left and right panels, respectively. The standard deviations are smaller when
r = 0.2, which is reasonable given that 80% of the data are clean and only 50% of the
data are clean when r» = 0.5. Figure 10 shows the relative errors in L°°-norm obtained
by Algorithm 2 with » = 0.2,0.5 on the left and right panels, respectively. Under both
settings, the relative errors of the posterior mean estimates rapidly decrease.

REMARK 20. The wavenumber series in the present paper are mot chosen care-
fully in an optimal way. There are some studies focused on the strategies for select-
ing appropriate wavenumbers to give an accurate estimate under the framework of
reqularization methods for geophysical inverse problems [}2]. Here, we choose more
wavenumbers for the Laplace noise model based on a simple intuitive idea. More data
are required when more hyper-parameters need to be inferred (The Laplace noise model
has more parameters than the Gaussian noise model).

5. Conclusion. In this paper, we have generalized the finite-dimensional mean-
field approximate based variational Bayes’ method (VBM) to infinite-dimensional
space, which provides a mathematical foundation for applying VBM to the inverse
problems of PDEs. A general theory for the existence of minimizers has been estab-
lished, and by introducing the concept of reference probability measure, the mean-field
approximate theory has been constructed for functions. The established general theo-
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ry is then applied to abstract linear inverse problems with Gaussian and Laplace noise
assumptions. Numerical examples for the inverse source problems of Helmholtz equa-
tions are investigated in details to highlight the effectiveness of the proposed theory
and algorithms.

There are numerous interesting problems that are worthy of being further in-
vestigated. Introducing a more reasonable setting of the intrinsic dimension will be
important. The recently published paper [14] provides some promising ideas. For the
infinite-dimensional Bayesian method with hyper-parameters, noncentered parame-
terization [1] could be a more appropriate choice. Using the proposed theory under
the noncentered parameterization is a problem worthy of further investigation.

Acknowledgments. The authors would like to thank the anonymous referees
for their comments and suggestions, which helped to improve the paper significantly.
We also thank Ms. Ying Feng for her thorough polishing of this paper. This work was
partially supported by the NSFC under grant Nos. 11871392, 62076196, 11690011,
61721002, U1811461, and the key project of NSFC under grant No. 12031003.

REFERENCES

[1] S. Acapiou, J. M. BARDSLEY, O. PAPASPILIOPOULOS, AND A. M. STUART, Analysis of the Gibbs
sampler for hierarchical inverse problems, SIAM/ASA J. Uncertainty Quantification, 2
(2014), pp. 511-544.

[2] S. Acapriou, M. BURGER, M. DAsHTI, AND T. HELIN, Sparsity-promoting and edge-preserving
mazimum a posteriori estimators in non-parametric Bayesian inverse problems, Inverse
Probl., 34 (2018), p. 045002.

[3] D. F. ANDREWS AND C. L. MALLOWS, Scale miztures of normal distributions, J. R. Stat. Soc.
B, 36 (1974), pp. 99-102.

[4] S. ARRIDGE, P. Maass, O. OKTEM, AND C.-B. SCHONLIEB, Solving inverse problems using
data-driven models, Acta Numer., 28 (2019), pp. 1-174.

Bao, S. N. Cuow, P. L1, AND H. ZHOU, Numerical solution of an inverse medium scattering
problem with a stochastic source, Inverse Probl., 26 (2010), p. 074014.

Bao, P. L1, J. LIN, AND F. TRIKI, Inverse scattering problems with multi-frequencies, Inverse
Probl., 31 (2015), p. 093001.

Bao, S. Lu, W. RUNDELL, AND B. XU, A recursive algorithm for multi-frequency acoustic
inverse source problems, SIAM J. Numer. Anal., 53 (2015), pp. 1608-1628.

M. BisHOP, Pattern Recognition and Machine Learning, Springer-Verlag, New York, NY,
USA, 20086.

BissaNTz, T. HOHAGE, A. MUNK, AND F. RUYMGAART, Convergence rates of general requ-
larization method for statistical inverse problems and applications, SIAM J. Numer. Anal.,
45 (2007), pp. 2610-2636.

[10] T. Bul-THANH, O. GHATTAS, J. MARTIN, AND G. STADLER, A computational framework for
infinite-dimensional Bayesian inverse problems part I: The linearized case, with applica-
tion to global seismic inversion, SIAM J. Sci. Comput., 35 (2013), pp. A2494-A2523.

[11] T. Bul-THANH AND M. A. GIrROLAMI, Solving large-scale PDE-constrained Bayesian inverse
problems with Riemann manifold Hamiltonian Monte Carlo, Inverse Probl., 30.

[12] T. Bul-THANH AND Q. P. NGUYEN, FEM-based discretization-invariant MCMC methods for
PDE-constrained Bayesian inverse problems, Inverse Probl. Imag., 10 (2016), pp. 943-975.

[13] M. BURGER AND F. LUCKA, Mazimum a posteriori estimates in linear inverse problems with
log-concave priors are proper Bayes estimators, Inverse Probl., 30 (2014), p. 114004.

[14] P. CHEN, K. Wu, J. CHEN, T. OLEARY-ROSEBERRY, AND O. GHATTAS, Projected Stein vari-
ational Newton: A fast and scalable Bayesian inference method in high dimensions, in
Advances in Neural Information Processing Systems 32, 2019, pp. 15130-15139.

[15] J. CHENG, V. ISAKOV, AND S. Lu, Increasing stability in the inverse source problem with many
frequencies, J. Differ. Equations, 260 (2016), pp. 4786-4804.

[16] S. L. COTTER, G. O. ROBERTS, A. M. STUART, AND D. WHITE, MCMC methods for functions:
modifying old algorithms to make them faster, Stat. Sci., 28 (2013), pp. 424-446.

[17] T. Cui, K. J. H. Law, AND Y. M. MARZOUK, Dimension-independent likelihood-informed
MCMC, J. Comput. Phys., 304 (2016), pp. 109-137.

=
z o 0 a @

This manuscript is for review purposes only.



28 J. JIA, Q. ZHAO, Z. XU, D. MENG, Y. LEUNG

932 [18] M. Dasuri, K. J. Law, A. M. STUART, AND J. Voss, MAP estimators and their consistency

933 in Bayesian nonparametric inverse problems, Inverse Probl., 29 (2013), p. 095017.

934 [19] M. DasHTI AND A. M. STUART, The Bayesian approach to inverse problems, Handbook of
935 Uncertainty Quantification, (2017), pp. 311-428.

936 [20] M. M. Dunvropr, M. A. IGLESIAS, AND A. M. STUART, Hierarchical Bayesian level set inversion,
937 Stat. Comput., 27 (2017), pp. 1555-1584.

938  [21] M. M. DunLop AND A. W. STUART, MAP estimators for piecewise continuous inversion,
939 Inverse Probl., 32 (2016), p. 105003.
940  [22] S. ENGEL, D. HAFEMEYER, C. MUNCH, AND D. SCHADEN, An application of sparse measure

941 valued Bayesian inverse to acoustic sound source identification, Inverse Probl., 35 (2019),
942 p. 075005.

943 [23] Z. FENG AND J. L1, An adaptive independence sampler MCMC algorithm for Bayesian infer-
944 ences of functions, SIAM J. Sci. Comput., 40 (2018), pp. A1310-A1321.

945 [24] A. FICHTNER, Full Seismic Waveform Modelling and Inversion, Springer, 2011.

946 [25] G. H. GoLuB AND C. F. VAN LoAD, Matriz Computations, 4 ed., 2014.

947 [26] N. GuHa, X. Wu, Y. EFENDIEV, B. JIN, AND B. K. MALICK, A variational Bayesian approach
948 for inverse problems with skew-t error distribution, J. Comput. Phys., 301 (2015), pp. 377—
949 393.

950  [27] T. HELIN AND M. BURGER, Mazimum a posteriori probability estimates in infinite-dimensional
951 Bayesian inverse problems, Inverse Probl., 31 (2015), p. 085009.

952 [28] T. Isaac, N. PETRA, G. STADLER, AND O. GHATTAS, Scalable and efficient algorithms for
953 the propagation of uncertainty from data through inference to prediction for large-scale
954 problems, with application to flow of the Antarctic ice sheet, J. Comput. Phys., 296 (2015),
955 pp. 348-368.

956 [29] V. Isakov AND S. Lu, Increasing stability in the inverse source problem with attenuation and
957 many frequencies, STAM J. Appl. Math., 78 (2018), pp. 1-18.

958  [30] V.IsAKOV AND S. Lu, Inverse source problems without (pseudo) convezity assumptions, Inverse
959 Probl. Imag., 12 (2018), pp. 955-970.

960  [31] K. ITo AND B. JIN, Inverse Problems: Tikhonov Theory and Algorithms, World Scientific,
961 2015.

962 [32] J. Jia, B. Wu, J. PENG, AND J. GAO, Recursive linearization method for inverse medium scat-
963 tering problems with complex mizture Gaussian error learning, Inverse Probl., 35 (2019),
964 p. 075003.

965  [33] B. JIN, A variational Bayesian method to inverse problems with implusive noise, J. Comput.
966 Phys., 231 (2012), pp. 423-435.

967  [34] B. JIN AND J. Zou, Hierarchical Bayesian inference for ill-posed problems via variational
968 method, J. Comput. Phys., 229 (2010), pp. 7317-7343.

969  [35] J. P. Karrio AND E. SOMERSALO, Statistical and Computational Inverse Problems, Springer
970 Science & Business Media, Berlin, 2005.

971 [36] M. LAssAs AND S. SILTANEN, Can one use total variation prior for edge-preserving Bayesian
972 inversion?, Inverse Probl., 20 (2004), p. 1537.

973 [37] P. D. LaX, Functional Analysis, Wiley-Interscience, 2002.

974 [38] S. W. X. LiM, Bayesian inverse problems and seismic inversion, PhD thesis, University of
975 Oxford, 2016.

976 [39] A.Loca, K. A. MARDAL, AND G. N. WELLS, Automated Solution of Differential Equations by

977 the Finite Element Method, Springer, 2012.

978  [40] J. MARTIN, L. C. WirLcox, C. BURSTEDDE, AND O. GHATTAS, A stochastic newton mcmc
979 method for large-scale statistical inverse problems with application to seismic inversion,
980 SIAM J. Sci. Comput., 34 (2012), pp. A1460-A1487.

981 [41] A. G. D. G. MATTHEWS, Scalable Gaussian process inference using variational methods, PhD
982 thesis, University of Cambridge, 9 2016.

983 [42] G. PaN, L. LiaNG, AND T. M. HABASHY, A numerical study of 3D frequency-domain elastic
984 full-waveform inversion, Geophysics, 84 (2019), pp. R99-R108.

985  [43] N. PETRA, J. MARTIN, G. STADLER, AND O. GHATTAS, A computational framework for infinite-
986 dimensional Bayesian inverse problems, part II: Stochastic Newton MCMC with applica-
987 tion to ice sheet flow inverse problems, SIAM J. Sci. Comput., 36 (2014), pp. A1525-A1555.
988  [44] F. J. PiNskI, G. SIMPSON, A. M. STUART, AND H. WEBER, Algorithms for Kullback-Leibler
989 approzimation of probability measures in infinite dimensions, SIAM J. Sci. Comput., 37
990 (2015), pp. A2733-A2757.

991 [45] F. J. Pinski, G. SIMPSON, A. M. STUART, AND H. WEBER, Kullback-Leibler approximation
992 for probability measures on infinite dimensional space, STAM J. Math. Anal., 47 (2015),
993 pp. 4091-4122.

This manuscript is for review purposes only.



994
995
996
997
998
999
1000
1001

VARIATIONAL INFERENCE FOR FUNCTIONS 29

. D. PrATO, An Introduction to Infinite-Dimensional Analysis, Springer, 2006.

. REED AND B. SIMON, Functional Analysis I: Methods of Modern Mathematical Physics,
Elsevier (Singapore) Pte Ltd, revised and enlarged edition ed., 2003.

. M. STUART, Inverse problems: A Bayesian perspective, Acta Numer., 19 (2010), pp. 451—
559.

. TARANTOLA, Inverse Problem Theory and Methods for Model Parameter Estimation, SIAM,
2005.

. WANG, T. BUI-THANH, AND O. GHATTAS, A randomized mazximum a posteriori method for
posterior sampling of high dimensional nonlinear Bayesian inverse problems, SIAM J. Sci.
Comput., 40 (2018), pp. A142-A171.

. YANG, N. GuHA, Y. EreNDIEV, AND B. K. MALLICK, Bayesian and variational Bayesian
approaches for flows in heterogeneous random media, J. Comput. Phys., 345 (2017), p-
p. 275-293.

. ZHANG, J. BUTEPAGE, H. KJELLSTROM, AND S. MANDT, Advances in variational inference,
IEEE T. Pattern Anal., (2018), pp. 1-1.

. ZHAO, D. MENG, Z. Xu, W. Zuo, AND Y. YAN, l1-norm low-rank matriz factorization by
variational Bayesian method, IEEE T. Neur. Net. Lear., 26 (2015), pp. 825-839.

This manuscript is for review purposes only.



	Introduction
	General theory on infinite-dimensional space
	Existence theory
	Mean-field approximation for functions

	Applications to some general inverse problems
	Linear inverse problems with Gaussian noise
	Linear inverse problems with Laplace noise

	Concrete numerical examples
	Inverse source problem for Helmholtz equation
	One-dimensional ISP
	Two-dimensional ISP

	Conclusion
	References

