
IEEE TRANSACTIONS ON MULTIMEDIA, VOL. XX, NO. X, XXX 2024 1

Relational Experience Replay: Continual Learning
by Adaptively Tuning Task-wise Relationship

Quanziang Wang, Renzhen Wang, Yuexiang Li, Dong Wei, Hong Wang,
Kai Ma, Yefeng Zheng, Fellow, IEEE, Deyu Meng, Member, IEEE

Abstract—Continual learning is a promising machine learning
paradigm to learn new tasks while retaining previously learned
knowledge over streaming training data. Till now, rehearsal-based
methods, keeping a small part of data from old tasks as a memory
buffer, have shown good performance in mitigating catastrophic
forgetting for previously learned knowledge. However, most of
these methods typically treat each new task equally, which may
not adequately consider the relationship or similarity between old
and new tasks. Furthermore, these methods commonly neglect
sample importance in the continual training process and result
in sub-optimal performance on certain tasks. To address this
challenging problem, we propose Relational Experience Replay
(RER), a bi-level learning framework, to adaptively tune task-
wise relationships and sample importance within each task to
achieve a better ‘stability’ and ‘plasticity’ trade-off. As such,
the proposed method is capable of accumulating new knowledge
while consolidating previously learned old knowledge during
continual learning. Extensive experiments conducted on three
benchmark image datasets (CIFAR-10, CIFAR-100, and Tiny
ImageNet) and two text datasets (20News and DBpedia) show that
the proposed method can consistently improve the performance
of all baselines and surpass current state-of-the-art methods.

Index Terms—Continual learning, stability-plasticity dilemma,
bi-level optimization.

I. INTRODUCTION

DEEP neural networks have demonstrated remarkable per-
formance across a wide range of machine learning tasks,

including classification [1]–[3], semantic segmentation [4]–[6],
and object detection [7]–[9]. Nonetheless, these models often
face challenges in continual learning (CL) scenarios, where
knowledge accumulates incrementally from data generated by
a non-stationary distribution. Specifically, the models tend to
overwrite previously acquired knowledge whenever new tasks
come in, resulting in catastrophic forgetting [10], which poses
a significant challenge in continual learning.

Manuscript received May 22, 2023; revised Jan 10, 2024; accepted April
20, 2024. This work was supported the National Key R&D Program of China
(2022YFA1004100), and the China NSFC projects under contract 62306233,
12226004, 62272375. The Associate Editor coordinating the review of this
manuscript and approving it for publication was Professor Sanghoon Lee.
(Corresponding author: Renzhen Wang.)

Quanziang Wang and Renzhen Wang are with the School of Mathematics
and Statistics, Xi’an Jiaotong University, Xi’an 710049, P.R. China (e-mail:
quanziangwang@gmail.com, rzwang@xjtu.edu.cn).

Yuexiang Li, Dong Wei, Hong Wang, Kai Ma, and Yefeng Zheng
are with Tencent Jarvis Lab, Shenzhen 518052, P.R. China (e-mail: vi-
cyxli@tencent.com, donwei@tencent.com, kylekma@tencent.com, hazelh-
wang@tencent.com yefengzheng@tencent.com).

Deyu Meng is with the School of Mathematics and Statistics and Ministry
of Education Key Lab of Intelligent Networks and Network Security, Xi’an
Jiaotong University, Xi’an, Shaanxi, China, and Macao Institute of Systems
Engineering, Macau University of Science and Technology, Taipa, Macao (e-
mail: dymeng@mail.xjtu.edu.cn.

Fig. 1. Illustration of two main factors affecting stability and plasticity in
continual learning: (i) The relationship between the new and old tasks varies
dynamically. For example, the class ‘bird’ of task 2 is semantic-related to
the ‘airplane’ of task 1 due to the closer distance between these two clusters
in the latent space. (ii) The importance of data points within each class is
different for model training. The samples with blue borders, located around
the classification boundary, are more difficult/beneficial for the classification
than other samples.

Recently, various CL methods have been proposed to alle-
viate the catastrophic forgetting problem. Existing algorithms
for CL can be roughly divided into three categories [11]:
1) Model-based approaches [12]–[16], which dynamically
modify the architecture of the model to handle the new task
and use specific model structures for different tasks in the
testing phase; 2) Regularization-based approaches [17]–[21],
which commonly impose constraints to maintain the model
parameters that are relatively important for previously learned
tasks; 3) Rehearsal-based approaches [22]–[30], which store
a small subset of examples from previously learned tasks in
a memory buffer and replay them during the learning of new
tasks. In this study, we mainly focus on exploring the potential
of rehearsal-based methods, as they have shown relatively
stable and effective performance in addressing the catastrophic
forgetting in continual learning.

Rehearsal-based methods aim to strike an appropriate bal-
ance between learning new information and retaining previous
knowledge, which is referred to as the ‘stability-plasticity’
dilemma [31]. Many rehearsal-based methods, such as Ex-
perience Replay (ER) [22], [23] and DER++ [26], primarily
concentrate on leveraging stored information from previous
tasks to mitigate model forgetting during the training of new
tasks. However, these approaches have paid limited attention
to modeling the intricate relationships between tasks. For
example, the loss function of ER is the sum of the losses
of incoming new task samples and old task ones stored in the
memory buffer: Lnew + λLold, where λ is a hyperparameter
and it is often tuned manually by grid search at the beginning
of the training process to balance the trade-off between sta-

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. XX, NO. X, XXX 2024 2

bility and plasticity. This trade-off hyperparameter generally
necessitates careful pre-specification to ensure a stable training
tendency throughout the entire continual learning process.

Actually, as shown in Fig. 1, under the settings of CL, the
data streaming of new tasks inclines to induce the continual
variation of data distribution. Therefore, the relationship be-
tween old and new tasks dynamically varies throughout the
learning process. Taking image recognition as an example,
the knowledge extracted from previous tasks (e.g., cats) may
be heavily influenced by semantically similar new tasks (e.g.,
dogs), but less affected by unrelated ones (e.g., automobiles).
Obviously, the continual model should be capable of adjusting
its focus in real-time between prioritizing stability in old tasks
and accommodating plasticity to adapt to new tasks as their re-
lationship evolves. However, it is difficult for existing methods
to model such a complicated task-wise relationship by simply
tuning and fixing hyperparameters at the beginning of network
training. Moreover, previous studies do not extensively con-
sider another intrinsic factor, i.e., sample importance within
the same class for feature representation learning. Concretely,
easy-to-learn samples contain more representative knowledge
for each class, while the ‘hard’ ones, located around decision
boundaries for classification, can contribute to the learning of
the classifier [32] (refer to Fig. 1). From this perspective, it is
essential to model the relationship between new and old tasks
and sample importance within the same class.

To this end, we propose Relational Experience Replay
(RER), a bi-level learning framework to couple the afore-
mentioned complicated task relationship and sample impor-
tance. Concretely, the inner-loop optimization problems aim
to address the ‘plasticity’ by leveraging the examples from the
newly coming task, while the outer-loop optimization problem
of RER aims to address ‘stability’ by minimizing the empirical
risk of a batch of balanced data (including samples from
the memory buffer and new tasks). To fully leverage training
samples by considering the inter-task relationship and sample
importance, we design an explicit weighting function parame-
terized by a lightweight neural network (dubbed Relation Re-
play Net, or RRN). RRN maps pairwise abstract information
of samples from new and old tasks to their corresponding loss
weights. We theoretically prove that the RRN is updated based
on the similarity of the average gradient between classes in the
outer-loop optimization, indicating that our proposed RER can
implicitly model task-wise relationships. We conduct extensive
experiments on different benchmark datasets, and the results
consistently demonstrate improvements over various baselines
for rehearsal-based continual learning methods. In summary,
our contributions are mainly four-fold:

1) The proposed method takes two factors, i.e., task relation-
ship across the whole continual learning process and sample
importance within each class, into account for sample weight
assignment. Such a design facilitates the model to deal with
the ‘stability-plasticity’ dilemma that plagues the continual
learning paradigm.

2) We theoretically prove that the proposed method can
implicitly model the task relationship. Specifically, the updat-
ing formulation of the Relation Replay Net depends on the
similarity between the gradient of each training sample and the

averaged gradient of each class stored in the memory buffer.
3) As far as we know, in the continual learning problem, we

are the first to propose an automated sample weighting strategy
to adaptively assign a reasonable weight to each sample from
the new and old tasks, which is more flexible than existing
approaches based on manual tuning.

4) The proposed method can be applied to various
rehearsal-based continual learning baselines and consistently
improves their performance under various settings.

This paper is organized as follows. Section II provides a
review of some related works and Section III briefly introduces
the setting and necessary notations for continual learning.
Section IV presents the proposed RER method in detail.
Section V then provides the experiments and analysis of our
method. The paper is finally concluded in Section VI.

II. RELATED WORK

A. Continual Learning
Rehearsal-based Methods. The primary mechanism under-
lying rehearsal-based methods [22]–[29], [33] is using the
information of data from old tasks to prevent forgetting
while training new tasks. Specifically, these methods typically
involve saving a portion of data samples from old tasks
as a memory buffer, which is subsequently used alongside
new incoming data samples to train the model. For example,
GEM [25] formulates a quadratic programming problem to
enforce orthogonality between the optimization direction for
a new task and those previously stored in the memory buffer
during training. A-GEM [34] relaxes the constraints in GEM
by only restricting the dot product of the new and old
sample gradients to be non-negative, so as to improve the
computational efficiency of the algorithm. iCaRL [24] stores
the most representative samples, i.e., located around the class
center in the latent space as the memory buffer, and uses the
Nearest Class Mean (NCM) classifier to mitigate the impact
of feature representation changes. Rainbow Memory [28]
constructs the memory buffer by sampling more representative
samples, determined based on the prediction confidence of the
data after applying various augmentations. In addition to the
ground truth labels, DER++ [26] also saves data probabilities
yielded by the model from previous epochs in the memory
buffer as soft labels, which are used for distillation to further
prevent forgetting. On the flip side, rehearsal-based methods
commonly lead to class imbalance problems, as they rely
on a small memory buffer to store a limited number of
examples from old tasks. To address this problem, LUCIR [33]
normalizes the predicted logits and imposes constraints on the
features to correct the imbalance problem between new and old
samples. ER-ACE [29] calculates the loss function of the new
and old tasks independently to alleviate the mutual interference
between them.
Other Continual Learning Methods. Model-based ap-
proaches [12]–[16], [35] aim to enhance the model’s adaptabil-
ity to new tasks by automatically modifying its architecture.
Despite their impressive performance in simulation experi-
ments, these methods are known to pose challenges in training
and optimization, often requiring significant computational re-
sources. For example, PNN [12] saves all networks of previous

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. XX, NO. X, XXX 2024 3

tasks to avoid forgetting, which often occupies a large memory
buffer and needs to train another network for the new task.
Regularization-based approaches [17]–[21], [36] design dif-
ferent constraints to prevent changing important parameters of
previous tasks during training new tasks. Typically, EWC [17]
limits the updating of important parameters, which are selected
by the Fisher matrix from a Bayesian perspective. SI [19]
determines important parameters by evaluating the impact
of parameter changes on the loss function. LwF [18] saves
previous model predictions of new task samples as soft labels
to distill the extracted knowledge. Despite their simplicity
and effectiveness, these approaches also face challenges such
as hyper-parameter tuning and sensitivity to the choice of
regularization parameters. Besides, continual learning is also
applicable to various realistic problems, such as semantic seg-
mentation [37]–[39], few-shot learning [40]–[42], and emotion
detection [43], [44], etc. For more details, we recommend
referring to the literature provided in [11], [45].

B. Sample Weighting Strategy

In terms of sample weighting, our method is closely related
to L2RW [46] and Meta Weight Net (MW-Net) [47]. These
approaches involve training a classification network on a noisy
label dataset and being optimized through a meta-learning
strategy to mitigate the impact of noisy labels. This meta-
learning process is guided by a small clean dataset, referred
to as the meta set. However, the challenges posed by CL are
different from those of the noisy label problem. Specifically,
the unstable data flow and severe catastrophic forgetting
make it challenging to directly apply these sample weighting
methods to CL. To mitigate this problem, we propose a novel
pairwise sample weighting strategy to model task relationships
and it does not require any additional high-quality data as
the meta set like L2RW or MW-Net due to the limitation of
continual learning settings. To our knowledge, this should be
the first work to use the automatic sample weighting strategy
for continual learning.

III. PRELIMINARIES

In this section, we briefly introduce the settings of the
continual learning problem and two main rehearsal-based
baselines. In continual learning, the model f is required to
learn a stream of tasks T = {D1,D2, · · · } and for each task
Dt, only a few samples can be stored in a memory bufferM,
where the buffer size is denoted as M . Typically, the model
f : X → RCt is a classification neural network parameterized
by θ, where Ct denotes the total number of classes across tasks
1 to t. In this study, we mainly focus on the Class Incremental
(Class-IL) and Task Incremental (Task-IL) settings of continual
learning. Specifically, in Task-IL, the task boundary is clear,
i.e., the task ID t is known during both training and testing
phases. Therefore, the model can feed the input data to the
corresponding task-specific classifier using masks [26] based
on its task ID. Conversely, Class-IL is more challenging as the
task ID remains inaccessible.

𝑔𝑔𝑀𝑀

𝑔𝑔𝐷𝐷

𝜆𝜆𝑀𝑀𝑔𝑔𝑀𝑀

𝜆𝜆𝐷𝐷𝑔𝑔𝐷𝐷
𝜃𝜃𝑡𝑡

𝜃𝜃𝑡𝑡+1

�𝜃𝜃𝑡𝑡+1

𝑔𝑔𝑖𝑖

𝑔𝑔𝑗𝑗

𝜆𝜆𝑖𝑖𝑔𝑔𝑖𝑖

𝜆𝜆𝑗𝑗𝑔𝑔𝑗𝑗𝜃𝜃𝑡𝑡

𝜃𝜃𝑡𝑡+1

�𝜃𝜃𝑡𝑡+1

𝑔𝑔𝐷𝐷

𝑔𝑔𝑀𝑀

𝜆𝜆𝐷𝐷𝑔𝑔𝐷𝐷

𝜆𝜆𝑀𝑀𝑔𝑔𝑀𝑀𝜃𝜃𝑡𝑡

𝜃𝜃𝑡𝑡+1

�𝜃𝜃𝑡𝑡+1

(a)𝑔𝑔𝑀𝑀

𝑔𝑔𝐷𝐷

𝜆𝜆𝑀𝑀𝑔𝑔𝑀𝑀

𝜆𝜆𝐷𝐷𝑔𝑔𝐷𝐷
𝜃𝜃𝑡𝑡

𝜃𝜃𝑡𝑡+1

�𝜃𝜃𝑡𝑡+1

𝑔𝑔𝑖𝑖

𝑔𝑔𝑗𝑗

𝜆𝜆𝑖𝑖𝑔𝑔𝑖𝑖

𝜆𝜆𝑗𝑗𝑔𝑔𝑗𝑗𝜃𝜃𝑡𝑡

𝜃𝜃𝑡𝑡+1

�𝜃𝜃𝑡𝑡+1

𝑔𝑔𝐷𝐷

𝑔𝑔𝑀𝑀

𝜆𝜆𝐷𝐷𝑔𝑔𝐷𝐷

𝜆𝜆𝑀𝑀𝑔𝑔𝑀𝑀𝜃𝜃𝑡𝑡

𝜃𝜃𝑡𝑡+1

�𝜃𝜃𝑡𝑡+1
(b)

Fig. 2. Illustration of sample weights modeling (a) task relationships and (b)
sample importance during training. Here, gD and gM represent gradients of
new and old tasks, with λD and λM denoting their corresponding weights.
Similarly, gi and gj are gradients of xi and xj , with λi and λj denoting
their corresponding weights.

A. Experience Replay (ER)

ER is a fundamental rehearsal-based approach that aims
to mitigate the forgetting of previously learned tasks while
learning new ones by replying to samples stored in the memory
buffer. Specifically, during each task training, it samples a
batch of data BD = {(xDi , yDi)}Bi=1 from the current t-th task
Dt and another batch of data BM = {(xMi , yMi)}Bi=1 from
the memory buffer M with the same batch size B, where
xi and yi represent an example and its corresponding label,
respectively. The loss function of ER can be formulated as:

Ltr(θ) =
1

B

B∑
i=1

λDi LCE(xDi ; θ) + λMi LCE(xMi ; θ), (1)

where LCE denotes the cross-entropy (CE) loss, and λDi and
λMi represent the sample weights. A prevalent convention is
to set λDi = 1 and λMi = λ. The value of λ is a crucial
hyperparameter that necessitates manual specification before
training in many previous works.

B. Sample Weights in Continual Learning

Considering the stochastic gradient descent (SGD) of
Eq. (1), we can get the updating formulation as

θt+1 = θt − η 1

B

B∑
i=1

λDi g
D
i + λMi g

M
i , (2)

where η is the learning rate, and gDi and gMi are gradients
of xDi and xMi , respectively. From this equation, we can find
that the weights λDi and λMi control the direction of gradient
descent from two aspects. Firstly, as shown in Fig. 2(a), when
the new task weights surpass those of the memory buffer, the
total gradient will tend to descend more along the direction
of old tasks, and vice versa. Moreover, for any different
training samples xi and xj , their sample weights also adjust
the gradient direction as illustrated in Fig. 2(b). Consequently,
proper sample weights can enhance the model training by
effectively capturing the relationship between new and old
tasks, as well as the sample importance within each class.
Therefore, the fixed weights in prior studies might yield sub-
optimal results and need further improvement.

IV. RELATIONAL EXPERIENCE REPLAY

Most existing works alleviate the model forgetting prob-
lem by storing more information about old tasks, potentially

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. XX, NO. X, XXX 2024 4

ℒ𝑡𝑡𝑡𝑡 ℬ𝑡𝑡𝑡𝑡; 𝜃𝜃𝑘𝑘 ,𝜙𝜙𝑘𝑘

ℒ𝑏𝑏𝑏𝑏 ℬ𝑏𝑏𝑏𝑏; 𝜃𝜃 𝜙𝜙

Inner loop

Outer loop

𝜙𝜙𝑘𝑘+1 = 𝜙𝜙𝑘𝑘 − 𝜂𝜂𝜙𝜙𝛻𝛻𝜙𝜙ℒ𝑏𝑏𝑏𝑏 ℬ𝑏𝑏𝑏𝑏; 𝜃𝜃𝑘𝑘+1 𝜙𝜙

𝜃𝜃𝑘𝑘+1 𝜙𝜙 = 𝜃𝜃𝑘𝑘 − 𝜂𝜂𝜃𝜃𝛻𝛻𝜃𝜃ℒ𝑡𝑡𝑡𝑡(ℬ𝑡𝑡𝑡𝑡;𝜃𝜃𝑘𝑘,𝜙𝜙𝑘𝑘)

𝑥𝑥𝑀𝑀

𝑥𝑥𝐷𝐷
𝐿𝐿𝑡𝑡𝑡𝑡(𝑥𝑥𝐷𝐷)

𝐿𝐿𝑡𝑡𝑡𝑡(𝑥𝑥𝑀𝑀)

𝑧𝑧𝐷𝐷

𝑧𝑧𝑀𝑀

𝜆𝜆𝐷𝐷 𝜙𝜙𝑘𝑘

𝜆𝜆𝑀𝑀 𝜙𝜙𝑘𝑘

𝑧𝑧𝑏𝑏𝑏𝑏𝑥𝑥𝑏𝑏𝑏𝑏

backwardforward parameter passing

RRN
ℎ ⋅ ;𝜙𝜙𝑘𝑘

Main illustration

Main Net
𝑓𝑓 ⋅ ; 𝜃𝜃𝑘𝑘

Updated
Main Net
𝑓𝑓 ⋅ ; 𝜃𝜃𝑘𝑘

Fig. 3. The main illustration of the proposed Relational Experience Replay at k-th iteration. In the inner loop, the Main Net is trained on the batch of paired
data Btr . In the inner loop, the Relation Replay Net (RRN) generates the weights of the paired batch of training samples Btr , and the Main Net is updated
by SGD based on the weighted training loss. In the outer loop, given the updated parameters of the Main Net, RRN is trained with the batch of data sampled
from the memory buffer, which is a relatively balanced dataset.

leading to increased storage requirements. In this study, we
propose a novel method to enhance continual learning by fo-
cusing on an alternative perspective—assigning proper weights
to training samples based on two primary factors: 1) task rela-
tionship between new and old tasks, and 2) sample importance
within each task for network training. To account for the first
factor, we consider that a sample from the memory buffer
containing similar or semantically relevant information to the
new task samples is more prone to suffer from disturbance,
potentially leading to more forgetting. In this situation, the
model should probably pay more attention to the memory
buffer sample by assigning larger weights to this old sample or
smaller weights to new task samples to alleviate the forgetting
issue. Conversely, the model should appropriately assign larger
weights to the new task samples to effectively learn new
knowledge without disturbing old tasks too much. As for the
second factor, the data points from the same class also tend to
make different contributions to model training. The easy-to-
learn samples deliver more representative feature information
of their classes, while the ‘hard’ samples are more conducive
to refining the classification boundaries.

As mentioned above, the loss weights Λ, which control
the balance between ‘stability’ and ‘plasticity’ during train-
ing across different continual learning scenarios, should be
dynamically assigned to different samples instead of being
manually tuned and fixed [26]. To this end, we propose
a Relation Replay Net (RRN) that extracts the interaction
knowledge of the new and old samples and generates their
corresponding weights Λ dynamically. It facilitates the main
classification network (dubbed Main Net) to achieve a better
trade-off between ‘stability’ and ‘plasticity’. Intuitively, RRN
depends on the training state of the Main Net, and the sample
weights generated by RRN in turn affect the training of
the Main Net. Therefore, instead of the naive end-to-end
training, we adopt a bi-level learning framework to jointly
optimize both RRN and the Main Net. The effectiveness of
this bi-level optimization will be demonstrated in Sec. V-D.
For simplicity, we initially apply the proposed approach to

ER (termed Relational Experience Replay, or RER), and the
implementation details based on more baselines can be found
in Appendix B-1.

A. Overview

The RER framework, as depicted in Fig. 3, consists of two
key components: Main Net f(·; θ) responsible for continual
learning, which can be any commonly used backbone archi-
tecture, and RRN h(·;φ) utilized for assigning sample weights.

On the one hand, a CL model must be able to adapt to
different new tasks based on the knowledge learned from the
old tasks, i.e., task relationship would affect the ‘plasticity’
as aforementioned. Furthermore, each new task sample has
a varying impact on the model’s plasticity, highlighting the
importance of sample weights in fine-tuning the model’s atten-
tion. To model this dynamic ‘plasticity’, we assign weights for
pairwise training samples from new and old tasks to train the
Main Net, where the weights are generated by the RRN based
on their relationships. Concretely, we combine the new task
batch BD and the memory batch BM to pairwisely construct
training sample batch Btr = {(xDi , xMi)}Bi=1, where we
omit the labels for notation convenience. Then, the weighted
loss function for the Main Net f formulates the inner loop
optimization problem of the bi-level learning framework, that
is:

θ∗(φ) = arg min
θ
Ltr(Btr; θ, φ)

,
1

B

B∑
i=1

λDi (φ)Ltr(xDi ; θ) + λMi (φ)Ltr(xMi ; θ),
(3)

where Ltr is CE loss based on ER, and the sample weights
Λ = {λDi , λMi }Bi=1 of these data pairs are generated by the
RRN automatically.

On the other hand, the model should possibly alleviate the
forgetting issue while learning new tasks. The proposed RRN
should pay more attention to ‘stability’ to prevent the Main
Net from focusing too much on new tasks. We thus formulate

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. XX, NO. X, XXX 2024 5

the outer loop optimization problem over memory buffer data,
making the Main Net returned by optimizing the inner loop
one in Eq. (3) acts as a stable consolidation of knowledge
from the learned tasks 1, i.e.,

φ∗ = arg min
φ

Lbf (Bbf ; θ∗(φ))

,
1

B

B∑
i=1

Lbf (xi; θ
∗(φ)),

(4)

where the Lbf (x; θ) can be simply adopted as CE loss, and
Bbf is another batch of samples from the memory buffer M,
which is different from the inner-loop training data BM . By
dynamically generating specific weights for different samples,
the RRN can help the Main Net to better balance the trade-off
between new and old tasks, thereby facilitating the continual
learning process.

Furthermore, the design of the RRN should consider the
following two factors: 1) the RRN should take the interaction
information between the new and old tasks into account; 2)
the input of the RRN should be ‘information abundant’
to ensure that the RRN could extract useful knowledge to
generate meaningful weights. With this aim, we propose to pair
each new task sample with a corresponding sample from the
memory buffer and use their respective abstract information
as inputs to the RRN. Specifically, for each sample pair xDi
from the new task and xMi from the memory buffer, we take
their losses LD,M =

[
Ltr(xDi), Ltr(xMi)

]
, and logit norm

||zD,M || =
[
‖zDi ‖2, ‖zMi ‖2

]
as the inputs of the RRN, where

z = f(x; θ) is the predicted logits. By taking into account
both label and feature information, the RRN can capture the
semantic and distributional similarities between the paired
samples and generate appropriate weights for the Main Net to
balance the importance of new and old tasks during training.
Thus, the paired sample weights generated by the RRN can
be formulated as:[

λDi (φ), λMi (φ)
]

= h
(
LD,M , ‖zD,M‖2;φ

)
. (5)

In summary, the proposed RER forms a bi-level learning
framework to simultaneously model the ‘plasticity’ and ‘sta-
bility’ in the inner and outer loop optimization problems,
respectively. The RRN, guided by a relatively balanced setM,
automatically generates sample weights to refine the optimiza-
tion direction of the Main Net, thereby facilitating enhanced
Main Net optimization and achieving a more favorable balance
between the new and old tasks. In the inference stage, we can
directly predict the testing images by the Main Net without
involving the RRN. Note that our method can be easily adapted
to other rehearsal-based baselines, such as ER-ACE [29] and
DER++ [26] by some simple modification (please refer to
Section V-C and Appendix B-1).

B. Optimization Procedure

Since it is difficult to find closed-form solutions, the opti-
mization of θ and φ as shown in Eq. (3) and Eq. (4) depends

1Note that the parameter φ of the Relation Replay Net is regarded as a
hyper-parameter of that of the Main Net.

Algorithm 1 Relational Experience Replay training algorithm
Input: new task data Dt, memory buffer M
Output: Main Net and Relation Replay Net (RRN) parameters
{θ, φ}

1: while Dt 6= ∅ do
2: while k < Itermax do
3: Sample a new task batch BD ∈ Dt and a buffer batch

BM ∈M
4: Construct a paired training batch Btr ← BD and BM
5: Calculate the inner-loop loss by Eq. (3)
6: Update θk by Eq. (6)
7: Sample another buffer batch Bbf ∈M
8: Calculate the outer-loop loss by Eq. (4)
9: Update φk by Eq. (7)

10: k + +.
11: end while
12: end while

on two nested loops, which is computationally expensive.
Considering computational efficiency and the large scale of
data to be processed, we adopt an alternative online gradient-
based optimization strategy to solve the proposed bi-level
learning framework.

Updating θ: Referring to Eq (3), given the parameter φk of
RRN at iteration step k, we optimize the parameter θ of Main
Net by one-step gradient descent:

θk+1(φ) = θk − ηθOθLtr(Btr; θk, φk), (6)

where ηθ is the inner-loop learning rate. Note that the updated
parameter θk+1(φ) is actually a function of φ.

Updating φ: With Main Net parameter θ, we can optimize
RRN parameter φ by Eq. (4) given θk+1(φ) by the following
formulation:

φk+1 = φk − ηφOφLbf (Bbf ; θk+1(φk)), (7)

where ηφ is the outer-loop learning rate. More details of the
gradient calculation can be found in Appendix A.

C. Theoretical Analysis

According to Eqs. (6) and (7), we have the following
proposition to further reveal how the proposed method models
the task-wise relationship.

Proposition 1. Let gbf (x) = ∂Lbf (x;θ)
∂θ

∣∣∣
θk

and gtr(x) =

∂Ltr(x;θ)
∂θ

∣∣∣
θk

denote the gradients of the buffer sample and the
training sample with respect to the parameter θ, respectively.
Then the updating formulation of φ presented in Eq. (7) can
be reformulated as

φk+1 = φk +
ηθηφ
B

B∑
j=1

G(j) · ∂hj(φ)

∂φ

∣∣∣∣
φk

, (8)

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. XX, NO. X, XXX 2024 6

⋮

⋮

⋮

𝑧𝑧𝐷𝐷

𝑧𝑧𝑀𝑀

𝐿𝐿𝑡𝑡𝑡𝑡(𝑥𝑥𝐷𝐷)

𝐿𝐿𝑡𝑡𝑡𝑡(𝑥𝑥𝑀𝑀)

𝑧𝑧𝐷𝐷 2

𝑧𝑧𝑀𝑀 2

𝜆𝜆𝐷𝐷

𝜆𝜆𝑀𝑀

RRN
ℎ ⋅ ;𝜙𝜙

Relation replay net (RRN)

𝜆𝜆𝐷𝐷

𝜆𝜆𝑀𝑀

RRN
ℎ ⋅ ;𝜙𝜙

⋮

⋮

⋮

𝐿𝐿𝑡𝑡𝑡𝑡(𝑥𝑥𝐷𝐷)

𝐿𝐿𝑡𝑡𝑡𝑡(𝑥𝑥𝑀𝑀)

𝑧𝑧𝐷𝐷 2

𝑧𝑧𝑀𝑀 2

𝜆𝜆𝐷𝐷

𝜆𝜆𝑀𝑀

RRN
ℎ ⋅ ;𝜙𝜙

⋮

⋮

⋮

𝐿𝐿𝑡𝑡𝑡𝑡(𝑥𝑥𝐷𝐷)

𝐿𝐿𝑡𝑡𝑡𝑡(𝑥𝑥𝑀𝑀)

𝑧𝑧𝐷𝐷 2

𝑧𝑧𝑀𝑀 2

Fig. 4. The architecture of the Relation Replay Net (RRN).

where the gradient ∂hj(φ)
∂φ =

[
∂λD

j (φ)

∂φ ,
∂λM

j (φ)

∂φ

]T
, and the

coefficient G(j) is

G(j) =
1

B

Ct∑
c=1

(
Bc∑
i=1

gbf (xi)

)[
gtr(xDj), gtr(xMj)

]
. (9)

In Proposition 1, we demonstrate that the task-wise re-
lationship in RRN can be implicitly modeled through the
SGD updating process. This is achieved by computing the
coefficient G(j), which represents the mean dot product
similarity between the gradient of buffer samples and that of
training samples within each class. This measure effectively
captures the relationship between new tasks and previously
seen classes from a gradient perspective. The proof can be
found in Appendix A.

D. Implementation Details

The Architecture of the Relation Replay Net. We propose
a two-hidden-layer neural network as the RRN. Intuitively,
the first layer comprises two distinct linear layers designed to
extract interaction information from paired training samples:
one focuses on loss values, while the other attends to logit
norms. Subsequently, the second layer is also a linear layer
that merges the extracted information to automatically generate
weights for the sample pairs. Fig. 4 illustrates the architecture
of RRN where we set the number of hidden units as 16 for
computation efficiency.

Training Details. When training a new task, the RRN aims to
generate reasonable sample weights for both new task samples
and buffer samples to improve the trade-off between ‘stability’
and ‘plasticity’, which needs a warm-up stage to explore the
relationship between the new and old tasks. Specifically, in the
warm-up stage (stage length denoted as Iterwarm), we update
the RRN by Eq. (7) and update the Main Net via preset fixed
weights like the previous methods. After the warm-up stage,
we turn to use the sample weights generated by the RRN to
guide the training of Main Net rather than prefixed weights.
In addition, to reduce the calculation burden, we only update
the RRN once while updating the Main Net for multiple steps
(step number denoted as Interval). The specific choices of
Iterwarm and Interval are presented in Section V-E.

V. EXPERIMENTAL RESULTS

To validate the effectiveness of our method, we conduct
extensive experiments on various publicly available benchmark

datasets for both image and text recognition tasks, including
three image datasets, i.e., CIFAR-10, CIFAR-100 [48] and
Tiny ImageNet [49], and two text datasets, i.e., 20News [50]
and DBpedia [51]. Additionally, we present a thorough abla-
tion analysis in this section to gain insight into our method.

A. Experimental Settings
For the three image datasets, we divide them into task

sequences of different lengths. Specifically, CIFAR-10 is di-
vided into five tasks with each task constituting a binary
classification problem. Both CIFAR-100 and Tiny ImageNet
datasets are divided into 10 tasks, where each task is a 1-of-
10 and 1-of-20 classification problem, respectively. To ensure
robust and reliable evaluation, the framework was trained for
50 epochs on each task across these three datasets following
DER++ [26].

For the two text datasets, we follow the basic settings
in [52]. Then we split 20News into 5 tasks, with each task
consists of 4 classes. Utilizing a two-hidden-layer MLP as
the classification model, we train each task for 200 epochs.
Additionally, for DBpedia, we partition it into 7 tasks and
each of them is a binary classification problem. We leverage
a fixed pretrained BERT model to extract text embeddings,
followed by training a linear classifier on these embeddings,
and we train each task for 50 epochs.

As aforementioned, this study mainly focuses on the con-
figurations of Class-IL and Task-IL. The detailed experimental
settings are consistent with DER++ [26] for a fair comparison.
In our experiments, we evaluate the model by two common-
used metrics, i.e., Average Accuracy (ACC) and Backward
Transfer (BWT) [25], [26]. We repeat each experiment five
times to reduce the randomness of network training. Similar
to [26], the total size of the memory buffer remains constant
throughout the entire training process.

The proposed method is implemented with PyTorch [53].
The backbone of Main Net is the widely-used ResNet-18 [2].
In the inner loop, the Main Net is optimized by SGD with an
initial learning rate of 0.03 for all datasets, and in the outer
loop, Adam [54] is adopted to optimize RRN, where the initial
learning rate is set as 0.001 with a weight decay of 10−4.

B. Comparison with State-of-the-art Methods on Image Clas-
sification

As previously mentioned, our proposed method aims to en-
hance general rehearsal-based baselines by taking into account
the ‘stability-plasticity’ dilemma, which involves the relation-
ship between new and old tasks, and the specific importance
of different samples. We integrate this approach into three
representative baselines: ER, ER-ACE [29], and DER++ [26],
which are termed Relational-ER (RER), Relational-ER-ACE
(RER-ACE), and Relational-DER (RDER), respectively. Im-
plementation details can be found in Appendix B-1.

Table I presents the comparison results between our pro-
posed algorithm applied on the three baselines and various
state-of-the-art methods over ACC and BWT metrics. These
comparison methods include three regularization-based meth-
ods: oEWC [20], SI [19], and LwF [18], and four rehearsal-
based methods: GEM [25], A-GEM [34], iCaRL [24], and

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. XX, NO. X, XXX 2024 7

TABLE I
COMPARISON WITH THREE DIFFERENT BASELINES AND OTHER STATE-OF-THE-ART METHODS ON THE CIFAR-10 AND TINY-IMAGENET. THE RESULTS

OF OUR METHOD ARE SHOWN IN GRAY CELLS AND THE BETTER RESULTS ARE PRESENTED IN BOLD.

Buffer Size Method
CIFAR-10 Tiny-ImageNet

Class-IL Task-IL Class-IL Task-IL
ACC BWT ACC BWT ACC BWT ACC BWT

- Upper bound 92.20 ±0.15 - 98.31 ±0.12 - 59.99 ±0.19 - 82.04 ±0.10 -
- Lower bound 19.62 ±0.05 -96.39 ±0.12 61.02 ±3.33 -46.24 ±2.12 7.92 ±0.26 -76.73 ±0.08 18.31 ±0.68 -64.97 ±1.70
- oEWC 19.49 ±0.12 -91.64 ±3.07 68.29 ±3.92 -29.13 ±4.11 7.58 ±0.10 -73.91 ±0.79 19.20 ±0.31 -59.86 ±0.42
- SI 19.48 ±0.17 -95.78 ±0.64 68.05 ±5.91 -38.76 ±0.89 6.58 ±0.31 -67.91 ±0.96 36.32 ±0.13 -53.26 ±0.75
- LwF 19.61 ±0.05 -96.69 ±0.25 63.29 ±2.35 -32.56 ±0.56 8.46 ±0.22 -76.74 ±0.44 15.85 ±0.58 -67.79 ±0.23

200

GEM 25.54 ±0.76 -82.61 ±1.60 90.44 ±0.94 - 9.27 ±2.07 - - - -
A-GEM 20.04 ±0.34 -95.73 ±0.20 83.88 ±1.49 -16.39 ±0.80 8.07 ±0.08 -77.02 ±0.22 22.77 ±0.03 -56.61 ±0.32
iCaRL 49.02 ±3.20 -28.72 ±0.49 88.99 ±2.13 - 1.01 ±4.15 7.53 ±0.79 -22.70 ±0.44 28.19 ±1.47 -10.36 ±0.31
GSS 39.07 ±5.59 -75.25 ±4.07 88.80 ±2.89 - 8.56 ±1.78 - - - -
ER 55.84 ±0.71 -47.77 ±1.39 92.41 ±0.59 - 5.73 ±0.38 8.67 ±0.25 -77.29 ±0.26 39.28 ±0.83 -42.05 ±0.29
RER 58.59 ±0.74 -44.50 ±0.80 92.85 ±0.36 - 5.40 ±0.65 9.35 ±0.21 -76.67 ±0.38 40.83 ±0.58 -41.19 ±0.55

ER-ACE 63.02 ±1.29 -20.35 ±1.76 92.59 ±0.36 - 5.33 ±0.41 11.67 ±0.29 -49.03 ±1.61 42.08 ±0.35 -37.71 ±1.10
RER-ACE 63.52 ±0.71 -20.11 ±5.66 92.63 ±0.58 - 5.43 ±0.67 12.18 ±0.41 -48.91 ±2.59 44.11 ±0.62 -36.62 ±1.17
DER++ 62.30 ±1.07 -35.83 ±1.34 90.74 ±1.01 - 7.45 ±1.07 12.26 ±0.31 -68.37 ±1.38 40.47 ±1.53 -40.41 ±1.29
RDER 65.38 ±0.42 -34.16 ±1.90 91.67 ±0.80 - 6.81 ±1.19 13.96 ±0.64 -67.02 ±1.24 40.87 ±0.92 -39.87 ±1.31

500

GEM 26.20 ±1.26 -74.31 ±4.62 92.16 ±0.69 - 9.12 ±0.21 - - - -
A-GEM 22.67 ±0.57 -94.01 ±1.16 89.48 ±1.45 -14.26 ±4.18 8.06 ±0.04 -77.06 ±0.41 25.33 ±0.49 -55.68 ±1.01
iCaRL 47.55 ±3.95 -25.71 ±1.10 88.22 ±2.62 - 1.06 ±4.21 9.38 ±1.53 -20.89 ±0.23 31.55 ±3.27 - 7.30 ±0.79
GSS 49.73 ±4.78 -62.88 ±2.67 91.02 ±1.57 - 7.73 ±3.99 - - - -
ER 69.01 ±0.37 -33.02 ±2.62 94.28 ±0.27 - 3.09 ±1.61 10.40 ±0.16 -74.36 ±0.58 48.82 ±0.34 -31.06 ±1.53
RER 69.22 ±1.96 -29.79 ±2.87 94.50 ±0.41 - 3.40 ±0.33 11.50 ±0.47 -74.13 ±0.72 51.28 ±0.93 -30.29 ±1.24

ER-ACE 71.26 ±0.66 -13.37 ±1.06 94.31 ±0.23 - 3.19 ±0.39 19.59 ±0.13 -47.56 ±0.68 50.99 ±0.45 -29.32 ±0.46
RER-ACE 71.29 ±1.15 -12.53 ±2.41 94.25 ±0.23 - 3.16 ±0.80 20.41 ±0.66 -42.22 ±1.09 54.62 ±0.87 -25.15 ±0.98
DER++ 72.11 ±1.41 -23.40 ±1.32 94.21 ±0.32 - 3.98 ±0.60 19.29 ±1.14 -60.58 ±0.46 51.39 ±0.91 -26.90 ±0.52
RDER 73.99 ±1.03 -22.86 ±1.76 94.04 ±0.43 - 3.82 ±0.59 20.06 ±1.18 -56.16 ±1.38 52.56 ±0.69 -25.02 ±0.24

5120

GEM 25.26 ±3.46 -75.27 ±4.41 95.55 ±0.02 - 6.91 ±2.33 - - - -
A-GEM 21.99 ±2.29 -84.49 ±3.08 90.10 ±2.09 - 9.89 ±0.40 7.96 ±0.13 -76.01 ±0.52 26.22 ±0.65 -55.61 ±0.84
iCaRL 55.07 ±1.55 -24.94 ±0.14 92.23 ±0.84 - 0.99 ±1.41 14.08 ±1.92 -16.00 ±0.28 40.83 ±3.11 - 2.60 ±0.35
GSS 67.27 ±4.27 -58.11 ±9.12 94.19 ±1.15 - 6.38 ±1.71 - - - -
ER 83.30 ±0.50 -13.79 ±1.40 96.95 ±0.15 - 0.98 ±0.36 28.52 ±0.37 -52.54 ±1.45 68.46 ±0.40 -10.13 ±0.20
RER 83.53 ±0.55 -12.13 ±1.29 96.98 ±0.17 - 0.79 ±0.24 33.86 ±0.64 -45.56 ±2.13 69.31 ±0.41 -10.68 ±0.25

ER-ACE 82.98 ±0.38 - 3.99 ±0.61 96.76 ±0.08 - 0.63 ±0.30 37.02 ±0.17 -33.29 ±1.03 68.69 ±0.19 - 9.88 ±0.42
RER-ACE 83.74 ±0.79 - 4.05 ±1.81 96.80 ±0.20 - 0.57 ±0.27 36.97 ±0.94 -33.79 ±3.07 69.05 ±0.73 - 9.51 ±0.79
DER++ 84.50 ±0.63 - 9.79 ±0.34 95.91 ±0.57 - 1.57 ±0.25 37.88 ±0.37 -30.62 ±1.78 68.05 ±0.53 - 8.80 ±0.24
RDER 85.56 ±0.38 - 8.81 ±0.71 96.21 ±0.22 - 1.42 ±0.09 39.67 ±0.96 -29.37 ±1.53 68.82 ±0.54 - 8.03 ±0.46

TABLE II
COMPARISON OF ACC WITH THREE DIFFERENT BASELINES ON THE CIFAR-100. THE RESULTS OF OUR METHOD ARE SHOWN IN GRAY CELLS AND THE

BETTER RESULTS ARE PRESENTED IN BOLD.

Settings Buffer Size ER RER ER-ACE RER-ACE DER++ RDER
100 11.31 ±0.21 13.94 ±0.89 18.59 ±1.08 20.20 ±0.86 14.98 ±0.65 20.79 ±1.05
200 14.78 ±0.40 16.40 ±0.53 25.14 ±1.83 26.64 ±0.29 24.17 ±1.37 30.65 ±0.76
500 23.10 ±0.32 26.97 ±0.75 36.02 ±0.84 36.06 ±1.14 35.19 ±1.30 39.50 ±1.54Class-IL

5120 51.43 ±1.01 54.08 ±0.63 53.93 ±2.04 54.38 ±1.08 55.58 ±1.86 60.07 ±0.23
100 58.64 ±1.31 59.77 ±0.03 59.91 ±1.01 61.10 ±0.93 58.32 ±1.27 59.07 ±0.73
200 66.31 ±0.76 66.83 ±0.97 64.81 ±3.14 67.42 ±0.60 66.47 ±0.57 68.60 ±0.51
500 73.10 ±0.99 73.99 ±0.51 74.13 ±0.84 74.54 ±1.37 74.10 ±1.62 75.59 ±0.85Task-IL

5120 86.16 ±0.47 85.35 ±0.34 84.69 ±1.32 85.15 ±0.41 86.23 ±2.18 86.54 ±0.31

GSS [55]. Besides, we also provide an upper-bound method
and a lower-bound method for better reference, where the
former trained on all data from old and new tasks together
and the latter directly trained on the new task without any
strategies to prevent model forgetting.

For CIFAR-10, it can be observed that our proposed ap-
proach can be adapted to different rehearsal-based baselines
and achieve consistent performance improvement. For exam-
ple, the proposed RDER achieves as much as 3.08% absolute
performance gain compared to the baseline DER++ with a
memory buffer of 200 under Class-IL. Besides, our method
achieves significantly higher classification accuracy than all
comparison state-of-the-art methods under different settings.
On the other hand, our method can also significantly reduce

the BWT of baselines, indicating that the proposed method can
effectively reduce model forgetting while improving classifi-
cation accuracy, i.e., achieving a better balance of ‘stability’
and ‘plasticity’.

For Tiny-ImageNet dataset, our method also consistently
achieves the best results under almost all settings. Although
iCaRL achieves sound BWT metric, it falls short in terms
of ACC, revealing that a model that pays much attention
to avoid forgetting may negatively impact classification per-
formance. In contrast, our method improves both ACC and
BWT compared to the corresponding baselines, highlighting
that our method can achieve a better trade-off between new
and old tasks. Notably, the results of GEM and GSS are not
reported in Table I since the excessive computational overhead

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. XX, NO. X, XXX 2024 8

(a) CIFAR-10 ER/RER (b) CIFAR-10 ER-ACE/RER-ACE (c) CIFAR-10 DER++/RDER (d) Tiny-ImageNet ER/RER

Fig. 5. Classification accuracy (%) of each task during the whole training process. The dot-solid lines represent the comparison methods ER, ER-ACE, or
DER++ and the triangle-dashed lines represent our methods RER, RER-ACE, or RDER.

TABLE III
CLASS-IL RESULTS ON TWO TEXT CLASSIFICATION DATASETS UNDER DIFFERENT BUFFER SIZES.

ER RER ER-ACE RER-ACE DER++ RDERDataset Buffer size ACC BWT ACC BWT ACC BWT ACC BWT ACC BWT ACC BWT
200 22.52 -59.47 23.74 -56.95 33.37 -32.83 34.11 -23.52 33.67 -48.13 40.49 -33.38
500 30.88 -48.07 33.60 -42.99 37.68 -24.88 38.31 -17.65 41.87 -35.82 46.08 -21.5720News

5120 45.70 -24.22 46.68 -22.04 45.53 -13.35 46.03 -5.75 49.35 -23.94 51.37 -9.83
50 66.74 -38.20 68.22 -36.48 79.21 -23.53 80.51 -22.12 88.75 -12.20 89.50 -11.51
100 84.23 -11.79 86.31 -7.74 91.06 -6.08 90.99 -7.56 93.55 -3.87 93.77 -3.81Dbpedia
200 79.81 -22.91 81.33 -21.12 86.29 -15.31 87.80 -13.50 94.81 -5.17 96.10 -2.78

is unacceptable.
Moreover, we validate the effectiveness of our method on

CIFAR-100 in Table II. Obviously, our method can achieve a
significant improvement for all these three baselines across
different buffer sizes. For instance, in the Class-IL setting
with a buffer size of 100, our method applied to ER, ER-
ACE, and DER can improve their ACC by 2.63%, 1.61%,
and 5.81%, respectively. These results further demonstrate the
strong adaptability of our method to multiple datasets and
diverse settings.

C. Comparison on Text Classification

To investigate the scalability of our proposed method across
various data modalities, we conduct experiments in the domain
of text classification on 20News and DBpedia following [52].
The results are shown in Table III. It can be observed that
our method consistently improves the corresponding baseline
under all settings. For 20News, the forgetting is more serious
but our method can largely improve the baselines. Especially
for DER++, our RDER can improve ACC by about 6.8
and increase BWT by about 14.8 with 200 buffer samples.
Additionally, for another dataset DBpedia, our method can also
significantly improve the performance of all three baselines for
both ACC and BWT with various buffer sizes. These results
indicate that our method can handle diverse data types and
consistently improve the corresponding baseline by achieving
better stability and plasticity trade-offs.

D. Discussion

To further explore the proposed method, we conduct more
experiments and analyses in this section.

Does Our Method Mitigate the Model Forgetting? In
order to better analyze the forgetting problem for old tasks,

TABLE IV
ACC OF ER AND RER UNDER SETUP 1 (SEMANTIC-RELEVANT TASK)

AND SETUP 2 (SEMANTIC-IRRELEVANT TASK).

Task 1 Task 2
Setup 1 ship/truck airplane/automobile

ER 97.56 81.38
RER 97.71 84.32

Setup 2 ship/truck cat/horse
ER 97.56 88.29

RER 97.71 89.41

we visualize the accuracy change for each task during the
continual learning process in Fig. 5 and Appendix B-3. The
visualization results show that our method better mitigates
forgetting for previous tasks, i.e., consolidating knowledge for
old tasks better than corresponding baselines. Note that the
performance of RDER is slightly lower than DER++ for some
new tasks (shown in Fig. 5c). This is because our method
aims to improve the generalization of all tasks, rather than
just paying attention to new tasks with more data.

How Task Similarity Affects Continual Learning Models?
In this section, we aim to explore how task similarity affects
model training and how our RRN captures task relationships
to assign sample weights. To this end, we design two distinct
setups using CIFAR-10 to simulate scenarios involving similar
and dissimilar tasks in continual learning, as summarized in
Table. IV. Specifically, in Setup 1 and Setup 2, task 1 contains
the same classes (‘ship’ and ‘truck’), while task 2 varies
between the two setups: in Setup 1, it comprises semantically
relevant classes (‘airplane’ and ‘automobile’) against task 1,
whereas in Setup 2, it consists of semantically irrelevant
classes (‘cat’ and ‘horse’). We then compare the baseline ER
with our RER on these two setups and present the average
accuracy after training each task in Table. IV. We can observe
that: 1) After training task 1, the performance of our method

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. XX, NO. X, XXX 2024 9

0.96 0.97 0.98 0.99 1.00
0

50

100

150

200

250

300

350

400

D
en

si
ty

Setup1
weights of buf samples

[airplane, ship]
[airplane, truck]
[automobile, ship]
[automobile, truck]

(a)
0.0 0.1 0.2 0.3 0.4 0.5 0.6

0

5

10

15

20

D
en

si
ty

Setup1
weights of new samples

[airplane, ship]
[airplane, truck]
[automobile, ship]
[automobile, truck]

(b)
0.0 0.1 0.2 0.3 0.4 0.5 0.6

0

1

2

3

4

5

6

D
en

si
ty

Setup2
weights of buf samples

[cat, ship]
[cat, truck]
[horse, ship]
[horse, truck]

(c)
0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

D
en

si
ty

Setup2
weights of new samples

[cat, ship]
[cat, truck]
[horse, ship]
[horse, truck]

(d)
Fig. 6. Weight distributions at epoch 45 during training for (a) buffer samples and (b) new task samples in Setup 1, and (c) buffer samples and (d) new task
samples in Setup 2.

is comparable to that of the baseline method, as there is no
need to consolidate old knowledge during this training stage.
2) After training task 2, the performance of the baseline model
ER in Setup 1 is significantly lower than that in Setup 2. This
is because the objects of the two tasks in Setup 1 are relatively
easy to confuse, leading to more severe forgetting. Conversely,
in Setup 2, the objects of task 2 differ from task 1, which
may not largely affect the previously learned knowledge. 3)
After training task 2, our method RER consistently improves
the performance of ER across both two setups. Specifically,
RER largely reduces the accuracy gap between the two setups
from 6.91 in ER to 5.09. This indicates that RER effectively
captures the relationship between new and old tasks, resulting
in improved performance.

To investigate the impact of sample weights generated by
our RRN, we further analyze the weight distribution within
Setup 1 and Setup 2 in Fig. 6. Since our method model pair-
wisely assigned sample weights for new and old tasks, we
thus output the weight distribution for all pairs of samples2. As
shown in Fig. 6(a) and Fig. 6(b), the weights assigned to buffer
samples in Setup 1 are close to 1, significantly larger than
those of new task samples. This observation can be attributed
to the inherent similarity of objects between task 1 and task
2, which makes them prone to confusion or misclassification,
thereby increasing the risk of forgetting. Consequently, RRN
prioritizes retaining memory buffer samples to alleviate forget-
ting and assigns them larger weights accordingly. Conversely,
in Setup 2 as shown in Fig. 6(c) and Fig. 6(d), the sample
weights of buffer samples are mainly distributed in the range
of [0, 0.5], notably smaller than those in Setup 1. Meanwhile,
the weights assigned to new samples are relatively larger than
those in Setup 1. This is probably because RRN responds to
the fact that new knowledge may not significantly affect the
model of previously learned knowledge in subsequent epochs.

In summary, task relationships may significantly impact
model training in continual learning, and our proposed RRN
holds great potential to effectively capture such relationships
by generating appropriate sample weights.

Why We Need the Bi-level Optimization? To evaluate the ef-
fectiveness of the bi-level optimization paradigm, we conduct

2For example, in Setup 1, the sample weight pair for new and old tasks are
[ship, airplane], [ship, automobile], [truck, airplane], and [truck, automobile]
as shown in Fig. 6(a) and Fig. 6(b).

TABLE V
ACC ON THE CIFAR-10 DATASET IN SOME DIFFERENT SETTINGS TO

VERIFY THE EFFECTIVENESS OF OUR METHOD DESIGN.

Memory Method Class-IL Task-ILSize

200
DER++ [26] 62.30 ± 1.07 90.74 ± 1.01

Vanilla 62.85 ± 2.90 91.20 ± 1.88
Split RDER 62.53 ± 0.66 91.36 ± 0.77
RDER (ours) 65.38 ± 0.42 91.67 ± 0.80

500
DER++ [26] 72.11 ± 1.41 94.21 ± 0.32

Vanilla 72.28 ± 0.93 93.42 ± 0.75
Split RDER 72.57 ± 0.73 93.77 ± 0.33
RDER (ours) 73.99 ± 1.03 94.04 ± 0.43

5120
DER++ [26] 84.50 ± 0.63 95.91 ± 0.57

Vanilla 82.26 ± 2.45 95.3 ± 0.72
Split RDER 85.35 ± 0.24 96.19 ± 0.46
RDER (ours) 85.56 ± 0.38 96.21 ± 0.22

an ablation study by end-to-end training of the Main Net and
the RRN together based on DER++ (referred to as Vanilla).
Specifically, we employ the same RRN to generate the paired
sample weights and update the Main Net and the RRN by a
single backward step through Ltr + Lbf . In Table V, we ob-
serve that the sample weights generated by the Vanilla method
appear to be uninformative, and even impair the performance
of the baseline approach (DER++), indicating that the end-
to-end training paradigm cannot produce meaningful weights
to enhance the generalization capability of the Main Net. In
contrast, our RDER approach consistently outperforms both
DER++ and the Vanilla method, thereby demonstrating the
effectiveness of the proposed bi-level optimization framework
to achieve a better trade-off between ‘stability’ and ‘plasticity’.

Why Use the Memory Buffer to Train Relation Replay Net
in the Outer Loop? In Eq. (4) of the outer-loop optimization,
we utilize the memory buffer M to train the RRN. However,
there are concerns regarding the risk of overfitting when using
the memory buffer to guide the RRN. To address this issue,
we investigate two approaches for constructing the outer-loop
training set: 1) Splitting the memory buffer M into two sets,
which are utilized for training the Main Net in the inner
loop and the RRN in the outer loop, respectively [56]. 2)
Alternatively, training the RRN in the outer loop using the
entire memory buffer M, as we propose.

We present a comparison between the two approaches
based on DER++ and report the results in Table V, where
the two methods are denoted as ‘Split RDER’ and ‘RDER’,

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. XX, NO. X, XXX 2024 10

TABLE VI
COMPARISON OF ACC ON THE CIFAR-10 WITH SMALL BUFFER SIZES. THE RESULTS OF OUR METHOD ARE SHOWN IN GRAY CELLS AND THE BETTER

RESULTS ARE PRESENTED IN BOLD.

Settings Buffer Size ER RER ER-ACE RER-ACE DER++ RDER
50 36.47 ±2.92 37.43 ±1.27 42.16 ±1.78 41.95 ±1.07 46.70 ±4.14 49.75 ±1.92Class-IL 100 46.75 ±1.58 50.85 ±1.14 56.96 ±2.39 57.98 ±3.02 53.82 ±1.21 56.36 ±1.54
50 88.13 ±1.16 88.07 ±0.80 87.09 ±1.05 86.45 ±1.05 84.00 ±0.84 85.81 ±1.99Task-IL 100 90.27 ±1.05 90.56 ±0.41 90.28 ±0.38 91.01 ±0.04 87.48 ±1.43 89.16 ±1.37

respectively. Split RDER divides the memory buffer into
two sets for outer- and inner-loop training with a ratio of
20%−80%, following [56], whereas the RDER approach does
not involve such a split. The results in Table V indicate that
Split RDER exhibits a slight improvement over the baseline
DER++, but its performance is still lower than our proposed
RDER. These findings suggest that the first approach may lead
to better generalization of the RRN while reducing the number
of memory samples used to train the Main Net. However,
this reduction in training samples may create a more serious
imbalance between the new and old tasks, thereby reducing
the overall performance, particularly for limited buffer size.

E. Ablation Study

In this section, we first validate the effect of the small buffer
sizes on our method based on the three baselines. And then we
conduct a detailed ablation study based on RDER to evaluate
the influence caused by two critical hyperparameters Iterwarm
and Interval on CIFAR-10 with different buffer sizes.

Effect of Small Buffer Size. To further investigate the impact
of small buffer sizes on our method, we evaluate our method
applied to the three baselines on CIFAR-10 in Table VI.
Specifically, RDER enhances DER++ by about +3.05% with a
buffer size of 50 under the Class-IL setting, demonstrating that
our method can further explore the information in the memory
buffer to enhance the Main Net overall performance.

Impact of the Warm-up Stage (Iterwarm). Table VII
presents the evaluation results for the various Iterwarm under
three different settings

[
1
3 ,

1
2 ,

2
3

]
× Itermax. The performance

of RDER deteriorates significantly when a small value of
Iterwarm (i.e., 17) is used, suggesting that the RRN requires
an adequate number of warm-up steps to generate meaningful
sample weights to accurately capture the task-wise relation-
ship and sample importance within each task. On the other
hand, it can be observed a slight drop in performance under
Iterwarm = 33, since the preset weights may mislead the
training in the warm-up stage. An excessively long warm-
up stage also leads to insufficient iterations for the Main
Net training guided by the generated weights. Hence, we
recommend setting Iterwarm to be half of the number of
iteration epochs for each task, which performs the best in
Table VII.

Impact of the Relation Replay Net Updating Interval
(Interval). Here we vary the value of Interval to investi-
gate its impact on our framework. As shown in Table VIII,
the setting Interval = 5 yields the highest classification
accuracy across a range of memory buffer sizes. However,

TABLE VII
ACC ON CIFAR-10 WITH DIFFERENT LENGTH OF WARM-UP STAGE

(Iterwarm).

Memory
Size Iterwarm Class-IL Task-IL

50
17 48.02 ±0.70 85.13 ±1.27
25 49.75 ±1.92 85.81 ±1.99
33 47.41 ±0.91 85.12 ±1.35

200
17 64.53 ±1.13 91.84 ±0.29
25 65.38 ±0.42 91.67 ±0.80
33 64.84 ±1.08 92.88 ±0.42

500
17 72.17 ±1.11 93.57 ±0.17
25 73.99 ±1.03 94.04 ±0.43
33 73.03 ±1.49 93.85 ±0.44

TABLE VIII
ACC ON CIFAR-10 WITH DIFFERENT VALUES OF RELATION REPLAY NET

UPDATING INTERVAL (Interval).

Memory
Size Interval Class-IL Task-IL

50
1 48.12 ±0.51 84.44 ±1.48
5 49.75 ±1.92 85.81 ±1.99
10 46.21 ±1.00 85.18 ±1.65

200
1 64.27 ±1.46 91.57 ±0.59
5 65.38 ±0.42 91.67 ±0.80
10 64.66 ±0.29 91.71 ±0.62

500
1 71.23 ±0.99 93.15 ±0.68
5 73.99 ±1.03 94.04 ±0.43
10 72.11 ±0.46 93.62 ±0.23

small Interval, such as Interval = 1, often results in
decreased performance due to the frequent alternation between
updating the Main Net and the RRN, leading to oscillation
during training. Additionally, frequent updates of the RRN are
computationally expensive, which can impede the convergence
of the overall framework. Conversely, large Interval, such
as Interval = 10, can lead to faster computation, but we
observed a significant drop in performance due to inadequate
training of the RRN, which can result in the generation
of suboptimal sample weights. To strike a balance between
accuracy and computational efficiency, we propose an em-
pirical formulation Interval = #epoch/10, where #epoch
represents the number of iteration epochs for each task.

Inputs of the Relation Replay Net. To further validate the
effectiveness of the paired data and input terms of RRN, we
conduct an ablation study based on RDER on CIFAR-10 with
different memory buffer sizes. The results (final average accu-
racy) are listed in Table IX. We can observe that: 1) RDER-1,
the model using only the loss of samples as input for RRN
without incorporating the paired data structure, consistently
improves baseline performance across diverse buffer sizes; 2)
RDER-2, the model augmenting the RRN inputs of RDER-
1 with the norm of predicted logits, further improves the
performance over both ACC and BWT, indicating the efficacy

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. XX, NO. X, XXX 2024 11

TABLE IX
ABLATION RESULTS OF RRN INPUTS.

method Paired RRN Inputs M=200 M=500 M=5120loss norm
DER++ / / / 62.30 72.11 84.50
RDER-1 X 64.96 73.06 85.12
RDER-2 X X 65.34 73.27 85.35

RDER (ours) X X X 65.38 73.99 85.56

of our proposed RRN input design; 3) RDER (ours), the model
proposed in the main text, achieves the best performance and
shows that the proposed paired data structure plays an essential
role in the proposed RRN.

VI. CONCLUSION

In this paper, we focus on the ‘stability-plasticity’ dilemma
in continual learning and strive to adaptively tune the rela-
tionship across different tasks and samples. To this end, we
propose a novel continual learning framework, Relational Ex-
perience Replay, which pairwisely adjusts the sample weights
of samples from new tasks and the memory buffer. The sample
weights generated by the Relation Replay Net can facilitate
the optimization of the Main Net to achieve a better trade-off
between ‘stability’ and ‘plasticity’. The proposed method can
be easily integrated with multiple rehearsal-based methods
to achieve significant improvements. We theoretically and
experimentally verify that the generated sample weights can
extract the relationship between new and old tasks to automat-
ically adjust the Main Net training and enhance the overall
performance. We expect that our method can provide more
insights into the ‘stability-plasticity’ dilemma and promote the
development of the field of continual learning.

APPENDIX A
CALCULATION DETAILS ABOUT THE RELATION REPLAY

NET UPDATING

In this section, we provide a detailed calculation of the
derivatives of the RRN. Referring back to Section IV-B, the
gradient descent of the RRN parameters is given in Eq. (7)
and repeated here as

φk+1 = φk − ηφOφLbf (Bbf ; θ(φ)), (10)

where the θ(φ) is the one-step updated parameters generated
by Eq. (6).

Here we can use the chain rule to calculate the derivative
of φ as follows.

OφLbf (Bbf ; θk(φ))

=
1

B

B∑
i=1

OφL
bf (xi; θ

k(φ))

=
1

B

B∑
i=1

∂Lbf (xi; θ)

∂θ

∣∣∣∣
θk

∂θ(φ)

∂φ

∣∣∣∣
φk

,

(11)

where the second term can be represented as

∂θ(φ)

∂φ

∣∣∣∣
φk

= −ηθ
B

B∑
j=1

OθL
tr(xDj ; θ

k) ·
∂λDj (φ)

∂φ

∣∣∣∣∣
φk

+ OθL
tr(xMj ; θk) ·

∂λMj (φ)

∂φ

∣∣∣∣∣
φk

 .

(12)

Then substituting Eq. (12) into Eq. (11) and exchanging the
order of the two summations, we can get

OφLbf (Bbf ; θk(φ))

=−ηθ
B

B∑
j=1

 1

B

B∑
i=1

∂Lbf (xi; θ)

∂θ

∣∣∣∣
θk
·
∂Ltr(xDj ; θ)

∂θ

∣∣∣∣∣
θk

·
∂λDj (φ)

∂φ

∣∣∣∣∣
φk

+
1

B

B∑
i=1

∂Lbf (xi; θ)

∂θ

∣∣∣∣
θk
·
∂Ltr(xMj ; θ)

∂θ

∣∣∣∣∣
θk

·
∂λMj (φ)

∂φ

∣∣∣∣∣
φk

= −ηθ

B

B∑
j=1

GD(j) · ∂λDj (φ)
∂φ

∣∣∣∣∣
φk

+GM (j) ·
∂λMj (φ)

∂φ

∣∣∣∣∣
φk

= −ηθ

B

B∑
j=1

G(j)
∂h(φ)

∂φ

∣∣∣∣
φk

,

(13)

where the last term in Eq. (13) is the derivative of the RRN
hj(φ) outputs of the j-th training sample pair with respect to
the network parameters φ, that is

∂h(φ)

∂φ
=

∂λD

j (φ)

∂φ

∣∣∣∣
φk

∂λM
j (φ)

∂φ

∣∣∣∣
φk

 , (14)

and the coefficients G(j) =
[
GD(j) GM (j)

]
, where

GD(j) =
1

B

B∑
i=1

∂Lbf (xi; θ)

∂θ

∣∣∣∣
θk
·
∂Ltr(xDj ; θ)

∂θ

∣∣∣∣∣
θk

,
1

B

B∑
i=1

gbf (xi) · gtr(xDj),

GM (j) =
1

B

B∑
i=1

∂Lbf (xi; θ)

∂θ

∣∣∣∣
θk
·
∂Ltr(xMj ; θ)

∂θ

∣∣∣∣∣
θk

,
1

B

B∑
i=1

gbf (xi) · gtr(xMj),

(15)

respectively. Denote the gradient of the meta loss of the
i-th sample of Dbf as gbf (xi) = ∂Lbf (xi;θ)

∂θ

∣∣∣
θk

, and the
gradient of training loss on the j-th sample pair of Dtr as

gtr(xDj) =
∂Ltr(xD

j ;θ)

∂θ

∣∣∣∣
θk

and gtr(xMj) =
∂Ltr(xM

j ;θ)

∂θ

∣∣∣∣
θk

.

Obviously, the coefficient G(j) represents the similarity be-
tween the gradient of training loss

[
gtr(xMj) gtr(xDj)

]
and

the average of the gradient of meta loss gbf (xi). Furthermore,
we can reformulate the average gradient of the meta loss by
class. The coefficient G(j) can be represented as:

GD(j) =
1

B

Ct∑
c=1

(
Bc∑
i=1

gbf (xi)

)
gtr(xDj),

GM (j) =
1

B

Ct∑
c=1

(
Bc∑
i=1

gbf (xi)

)
gtr(xMj),

(16)

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. XX, NO. X, XXX 2024 12

(a) CIFAR-100 ER/RER (b) CIFAR-100 ER-ACE/RER-ACE (c) CIFAR-100 DER++/RDER

(d) Tiny-ImageNet ER-ACE/RER-ACE (e) Tiny-ImageNet DER++/RDER

Fig. 7. Classification accuracy (%) of each task in the whole training process. The dot-solid lines represent the comparison methods ER, ER-ACE, or DER++
and the triangle-dashed lines represent our methods RER, RER-ACE, or RDER.

where Ct is the number of all seen classes, Bc is the sample
number of each class in a batch, and

∑Ct

c=1Bc = B. This
formulation shows that the coefficients G(j) implicitly model
the relationship between the knowledge extracted from each
training sample of the new task and that from the average
meta samples. Then the first derivative term in Eq. (13) can
be represented as:

OφLbf (Dbf ; θ(φ)) = −
ηθ
B

B∑
i=1

G(j) · ∂h(φ)
∂φ

∣∣∣∣
φk

. (17)

Therefore, the gradient of the RRN parameters φ can be
calculated by Eq. (8), which can be easily done in PyTorch
[53] with the automatic differentiation.

APPENDIX B
MORE EXPERIMENT DETAILS

In this section, we first illustrate some experimental details
and then present some additional results to demonstrate the
effectiveness of our method further.

1) How to Apply Our Method to Other Baselines:

In the main text of the paper, we take ER as an example to
illuminate how our proposed approach helps rehearsal-based
continual learning models deal with the ‘stability-plasticity’
dilemma. Here we present how to apply our proposed method
to other baselines, i.e., ER-ACE [29], and DER++ [26].

a) Relational-ER-ACE (RER-ACE): ER-ACE [29],
which represents ‘Experience Replay with Asymmetric
Cross-Entropy’, combines the losses of the new task samples
and the memory buffer samples as

Ltr(θ) = 1

B

B∑
i=1

λDLCE(x
D
i ; θ, Ccurr)

+λMLCE(x
M
i ; θ, Ccurr ∪ Ccurr),

(18)

where the hyperparameters ΛD and ΛM are preset to 1 in
[29]. The LCE(D;C) is defined as:

LCE(x; θ, C) = − log
zc(x)∑

c′∈C zc′(x)
, (19)

where the sample x belongs to the c-th class and zc(x) is the
c-th element of the main classification network output f(x; θ).

Obviously, it is straightforward to apply our proposed
method to ER-ACE, where the RRN still generates the weights
[ΛD,ΛM] for each training sample pair. The outer-loop op-
timization is the same as Eq. (4) and the generated sample
weights are applied to the inner-loop optimization Eq. (18).

b) Relational-DER (RDER): The loss function of
DER++ is shown in the following

Ltr(θ) = 1

B

B∑
i=1

λDLCE(x
D
i ; θ) + λMLCE(x

M
i ; θ)

+λKDLKD(x
M
i ; θ),

(20)

which involves three hyperparameters [λD, λM , λKD] and
LKD represents the knowledge distillation loss to minimize
the distance between predict logits and the saved previous
logits. Intuitively, the outer-loop loss function for the RRN
in Eq. (4) can be reformulated as:

Lbf (x; θ) = LbfCE(x; θ) + LbfKD(x; θ), (21)

which is the sum of the CE loss and the distillation loss.

2) Other Hyperparameters:

In the warm-up stage (i.e. the epochs before Iterwarm), we
use preset weights in the inner loop optimization like previous
methods. Specifically, for RER and RER-ACE, the weight for
the CE loss of new and old task samples is preset as 1 and
0.5, respectively. And for RDER, the preset weights are 1, 0.5,
and 0.2 for the CE loss of new task samples LCE(Dt), the CE

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. XX, NO. X, XXX 2024 13

0.965 0.970 0.975 0.980 0.985 0.990 0.995 1.000
0

50

100

150

200

250

300

350

400

D
en

si
ty

Setup1
weights of buf samples

[airplane, ship]
[airplane, truck]
[automobile, ship]
[automobile, truck]

(a)
0.000 0.005 0.010 0.015 0.020 0.025 0.030

0

100

200

300

400

500

600

D
en

si
ty

Setup1
weights of new samples

[airplane, ship]
[airplane, truck]
[automobile, ship]
[automobile, truck]

(b)
0.825 0.850 0.875 0.900 0.925 0.950 0.975 1.000

0

5

10

15

20

25

30

35

D
en

si
ty

Setup2
weights of buf samples

[cat, ship]
[cat, truck]
[horse, ship]
[horse, truck]

(c)
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0

2

4

6

8

10

D
en

si
ty

Setup2
weights of new samples

[cat, ship]
[cat, truck]
[horse, ship]
[horse, truck]

(d)

0.70 0.75 0.80 0.85 0.90 0.95 1.00
0

10

20

30

40

50

60

70

80

D
en

si
ty

(e)
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

D
en

si
ty

(f)
0.90 0.92 0.94 0.96 0.98 1.00

0

10

20

30

40

50

60

D
en

si
ty

(g)
0.0 0.2 0.4 0.6 0.8

0

1

2

3

4

5

6

D
en

si
ty

(h)

0.95 0.96 0.97 0.98 0.99 1.00
0

50

100

150

200

250

300

350

400

D
en

si
ty

(i)
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0

2

4

6

8

10

D
en

si
ty

(j)
0.0 0.1 0.2 0.3 0.4 0.5

0

2

4

6

8

10

D
en

si
ty

(k)
0.00 0.05 0.10 0.15 0.20 0.25 0.30

0

5

10

15

20

25

D
en

si
ty

(l)

0.95 0.96 0.97 0.98 0.99 1.00
0

20

40

60

80

100

120

140

160

D
en

si
ty

(m)
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0

2

4

6

8

10

12

D
en

si
ty

(n)
0.0 0.1 0.2 0.3 0.4 0.5 0.6

0

1

2

3

4

5

6

7

D
en

si
ty

(o)
0.0 0.2 0.4 0.6 0.8

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5
D

en
si

ty

(p)
Fig. 8. Weight distributions at multiple epochs during training. The first two columns are weight distributions for buffer samples and new task samples in
Setup 1, while the last two columns are those for buffer samples and new task samples in Setup 2. Each row represents the weight distribution of epochs 5,
15, 25, and 35 of the whole training process of task 2, and the weight distributions of epoch 45 are shown in Fig. 6.

loss of memory buffer samples LCE(Mt), and the distillation
loss of memory buffer samples LKD(Mt), respectively.

3) Other Visualization of Each Task Accuracy:

Here we show the classification accuracy of each task
of ER-ACE/RER-ACE and DER++/RDER on CIFAR-100 in
Fig. 7(a) and Fig. 7(c), and on Tiny ImageNet in Fig. 7(b) and
Fig. 7(d). Similar to Fig. 7, our method obviously improves
the accuracy of the previous tasks. Besides, to balance the
‘stability’ and ‘plasticity’, the RDER achieves an overall
higher performance even though may not outperform DER++
on some new tasks in Fig. 7(c). All of these results further
demonstrate the effectiveness of our method, which can easily

be adapted to multiple rehearsal-based methods.

4) Additional Visualization of Weight Distribution:

Here we show more weight distribution of different stages
in the model training. As shown in Fig. 8, in different stages
of training, weight distributions are dynamically changing,
which also demonstrates that the sample weight should not be
prefixed. In addition, buffer sample weights are usually larger
at the beginning of training. This is because the model has
not yet adapted to new samples, resulting in a greater impact
on old knowledge, so larger weights may be needed to avoid
forgetting. As training proceeds, the impact of task correlation
on weight distribution gradually appears, reflecting the rules

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. XX, NO. X, XXX 2024 14

TABLE X
COMPUTATION RESOURCE BASED ON NVIDIA GEFORCE RTX 2080TI.

Method Memory (Mb) Average Training Time
per Epoch (s)

Average Training Time
per Iteration (s) ACC on CIFAR-10 with M=200

ER 1584 21.82 0.0547 55.84
RER 2080 40.95 0.1156 58.59

FastRER 1712 29.05 0.0805 58.18

Fig. 9. Scatter plot of the average sample weights under Setup 1 and Setup
2. The horizontal and vertical axes represent the sample weight magnitude of
the new and old tasks, respectively.

we analyzed previously in Sec. V-D.
Furthermore, to explore how RRN generates weights for

unseen data samples, we also display the average weight
distribution on the test dataset under Setup 1 and Setup 2.
We use the test samples of task 2 and task 1 to construct the
paired data as the inputs of RRN, and then we calculate the
average of all generated weights. To avoid stochastic factors,
we repeat our experiment 10 times and show their average
weights in Fig. 9. As we can see, the average weights of Setup
1 mainly concentrate on the left upper corner of Fig. 9. That
is, for similar tasks, buffer sample weights are relatively larger
than new weights to prevent forgetting, the same as the trend
of training sample weights in Fig. 8. On the other hand, the
average weights of Setup 2 are relatively separated. These
results further demonstrate that our RRN has extracted task
relationships for generating weights and also works on unseen
test data, rather than simply overfitting on the training data.

5) The Computation Cost and Acceleration Strategy:

The proposed method involves a bi-level optimization that
introduces an additional calculation burden primarily due to
the second-order derivation in the outer loop optimization.
To mitigate this, we employ Interval to regulate the update
frequency of RRN to strike a better trade-off between the
model performance and computation cost, which is a common
way to speed up the bi-level optimization [47]. As shown in
Table X, the memory usage of RER with Interval = 5 is
approximately 500MB higher than that of ER, and the training
time of RER is roughly twice that of ER. Importantly, it’s
worth noting that the proposed RRN and bi-level optimization
procedures are only involved in the training stage, meaning
that no computational overhead is required during testing.

Fortunately, many previous works are trying to accelerate
this bi-level optimization framework, such as some first-order
approximation [57]. We find that reducing the parameters
involved in the second-order derivation of the outer loop

optimization can greatly enhance the efficiency of bi-level
optimization, with little impact on performance [58]–[60]. To
speed up the optimization of RRN, we assume that the param-
eter φ of RRN only correlates to the final linear classification
layer of the main net, rather than the entire network. With this
assumption, the calculating of second-order derivation only
involves a few parameters, which can significantly accelerate
the optimization of our bi-level framework. For example, if we
use ResNet-18 as the main net for the CIFAR-10 dataset, the
final classifier comprises merely 5,120 parameters, whereas
the entire network contains about 11.69M parameters. So the
second-order derivation will be faster and more computation-
friendly. As shown in Table X, we denote this accelerated
method FastRER, which only increases memory usage by
about 200Mb and training time by about 7.2 seconds. Further-
more, FastRER achieves comparable performance to RER.

REFERENCES

[1] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[2] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in IEEE Conference on Computer Vision and Pattern
Recognition, 2016, pp. 770–778.

[3] F. Iandola, M. Moskewicz, S. Karayev, R. Girshick, T. Darrell, and
K. Keutzer, “DenseNet: Implementing efficient ConvNet descriptor
pyramids,” arXiv preprint arXiv:1404.1869, 2014.

[4] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, “Pyramid scene parsing
network,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2017, pp. 2881–2890.

[5] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask R-CNN,” in
Proceedings of the IEEE International Conference on Computer Vision,
2017, pp. 2961–2969.

[6] A. Douillard, Y. Chen, A. Dapogny, and M. Cord, “PLOP: Learning
without forgetting for continual semantic segmentation,” in Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, 2021, pp. 4040–4050.

[7] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards
real-time object detection with region proposal networks,” Advances in
Neural Information Processing Systems, vol. 28, 2015.

[8] J. Redmon and A. Farhadi, “YOLOv3: An incremental improvement,”
arXiv preprint arXiv:1804.02767, 2018.

[9] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “YOLOv4: Op-
timal speed and accuracy of object detection,” arXiv preprint
arXiv:2004.10934, 2020.

[10] M. McCloskey and N. J. Cohen, “Catastrophic interference in connec-
tionist networks: The sequential learning problem,” in Psychology of
Learning and Motivation. Elsevier, 1989, vol. 24, pp. 109–165.

[11] M. Delange, R. Aljundi, M. Masana, S. Parisot, X. Jia, A. Leonardis,
G. Slabaugh, and T. Tuytelaars, “A continual learning survey: Defying
forgetting in classification tasks,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 44, no. 7, pp. 3366–3385, 2021.

[12] A. A. Rusu, N. C. Rabinowitz, G. Desjardins, H. Soyer, J. Kirkpatrick,
K. Kavukcuoglu, R. Pascanu, and R. Hadsell, “Progressive neural
networks,” arXiv preprint arXiv:1606.04671, 2016.

[13] C. Fernando, D. Banarse, C. Blundell, Y. Zwols, D. Ha, A. A. Rusu,
A. Pritzel, and D. Wierstra, “PathNet: Evolution channels gradient
descent in super neural networks,” arXiv preprint arXiv:1701.08734,
2017.

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. XX, NO. X, XXX 2024 15

[14] J. Serra, D. Suris, M. Miron, and A. Karatzoglou, “Overcoming catas-
trophic forgetting with hard attention to the task,” in International
Conference on Machine Learning, 2018, pp. 4548–4557.

[15] D. Abati, J. Tomczak, T. Blankevoort, S. Calderara, R. Cucchiara, and
B. E. Bejnordi, “Conditional channel gated networks for task-aware
continual learning,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2020, pp. 3931–3940.

[16] S. Yan, J. Xie, and X. He, “DER: Dynamically expandable representation
for class incremental learning,” in Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, 2021, pp. 3014–3023.

[17] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins,
A. A. Rusu, K. Milan, J. Quan, T. Ramalho, A. Grabska-Barwinska
et al., “Overcoming catastrophic forgetting in neural networks,” National
Academy of Sciences, vol. 114, no. 13, pp. 3521–3526, 2017.

[18] Z. Li and D. Hoiem, “Learning without forgetting,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 40, no. 12, pp. 2935–
2947, 2017.

[19] F. Zenke, B. Poole, and S. Ganguli, “Continual learning through synaptic
intelligence,” in International Conference on Machine Learning, 2017,
pp. 3987–3995.

[20] J. Schwarz, W. Czarnecki, J. Luketina, A. Grabska-Barwinska, Y. W.
Teh, R. Pascanu, and R. Hadsell, “Progress & compress: A scalable
framework for continual learning,” in International Conference on
Machine Learning, 2018, pp. 4528–4537.

[21] H. Yin, P. Yang, and P. Li, “Mitigating forgetting in online continual
learning with neuron calibration,” Advances in Neural Information
Processing Systems, vol. 34, pp. 10 260–10 272, 2021.

[22] R. Ratcliff, “Connectionist models of recognition memory: Constraints
imposed by learning and forgetting functions.” Psychological Review,
vol. 97, no. 2, pp. 285–308, 1990.

[23] A. Robins, “Catastrophic forgetting, rehearsal and pseudo rehearsal,”
Connection Science, vol. 7, no. 2, pp. 123–146, 1995.

[24] S.-A. Rebuffi, A. Kolesnikov, G. Sperl, and C. H. Lampert, “iCaRL:
Incremental classifier and representation learning,” in IEEE Conference
on Computer Vision and Pattern Recognition, 2017, pp. 2001–2010.

[25] D. Lopez-Paz and M. Ranzato, “Gradient episodic memory for contin-
ual learning,” in Advances in Neural Information Processing Systems,
vol. 30, 2017, pp. 6467–6476.

[26] P. Buzzega, M. Boschini, A. Porrello, D. Abati, and S. Calderara, “Dark
experience for general continual learning: a strong, simple baseline,” in
Advances in Neural Information Processing Systems, vol. 33, 2020, pp.
15 920–15 930.

[27] A. Chaudhry, A. Gordo, P. Dokania, P. Torr, and D. Lopez-Paz, “Using
hindsight to anchor past knowledge in continual learning,” in AAAI
Conference on Artificial Intelligence, vol. 35, no. 8, 2021, pp. 6993–
7001.

[28] J. Bang, H. Kim, Y. Yoo, J.-W. Ha, and J. Choi, “Rainbow memory: Con-
tinual learning with a memory of diverse samples,” in IEEE Conference
on Computer Vision and Pattern Recognition, 2021, pp. 8218–8227.

[29] L. Caccia, R. Aljundi, N. Asadi, T. Tuytelaars, J. Pineau, and
E. Belilovsky, “New insights on reducing abrupt representation change
in online continual learning,” in International Conference on Learning
Representations, 2022.

[30] H. Ahn, J. Kwak, S. Lim, H. Bang, H. Kim, and T. Moon, “SS-IL:
Separated softmax for incremental learning,” in Proceedings of the
IEEE/CVF International Conference on Computer Vision, 2021, pp.
844–853.

[31] G. A. Carpenter and S. Grossberg, “A massively parallel architecture for
a self-organizing neural pattern recognition machine,” Computer Vision,
Graphics, and Image Processing, vol. 37, no. 1, pp. 54–115, 1987.

[32] B. Zhou, Q. Cui, X.-S. Wei, and Z.-M. Chen, “BBN: Bilateral-branch
network with cumulative learning for long-tailed visual recognition,” in
IEEE Conference on Computer Vision and Pattern Recognition, 2020.

[33] S. Hou, X. Pan, C. C. Loy, Z. Wang, and D. Lin, “Learning a
unified classifier incrementally via rebalancing,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2019, pp. 831–839.

[34] A. Chaudhry, M. Ranzato, M. Rohrbach, and M. Elhoseiny, “Efficient
lifelong learning with A-GEM,” arXiv preprint arXiv:1812.00420, 2018.

[35] A. Mallya and S. Lazebnik, “PackNet: Adding multiple tasks to a single
network by iterative pruning,” in IEEE Conference on Computer Vision
and Pattern Recognition, 2018, pp. 7765–7773.

[36] C. V. Nguyen, Y. Li, T. D. Bui, and R. E. Turner, “Variational continual
learning,” in International Conference on Learning Representations,
2018.

[37] A. Maracani, U. Michieli, M. Toldo, and P. Zanuttigh, “Recall: Replay-
based continual learning in semantic segmentation,” in Proceedings of
the IEEE/CVF International Conference on Computer Vision, 2021, pp.
7026–7035.

[38] C.-B. Zhang, J.-W. Xiao, X. Liu, Y.-C. Chen, and M.-M. Cheng, “Repre-
sentation compensation networks for continual semantic segmentation,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2022, pp. 7053–7064.

[39] G. Yang, E. Fini, D. Xu, P. Rota, M. Ding, T. Hao, X. Alameda-Pineda,
and E. Ricci, “Continual attentive fusion for incremental learning in
semantic segmentation,” IEEE Transactions on Multimedia, 2022.

[40] X. Tao, X. Hong, X. Chang, S. Dong, X. Wei, and Y. Gong, “Few-shot
class-incremental learning,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2020, pp. 12 183–12 192.

[41] D.-W. Zhou, F.-Y. Wang, H.-J. Ye, L. Ma, S. Pu, and D.-C. Zhan, “For-
ward compatible few-shot class-incremental learning,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2022, pp. 9046–9056.

[42] Y. Cui, W. Deng, X. Xu, Z. Liu, Z. Liu, M. Pietikäinen, and L. Liu,
“Uncertainty-guided semi-supervised few-shot class-incremental learn-
ing with knowledge distillation,” IEEE Transactions on Multimedia,
2022.

[43] S. Thuseethan, S. Rajasegarar, and J. Yearwood, “Deep continual
learning for emerging emotion recognition,” IEEE Transactions on
Multimedia, vol. 24, pp. 4367–4380, 2021.

[44] W. Nie, R. Chang, M. Ren, Y. Su, and A. Liu, “I-gcn: Incremental
graph convolution network for conversation emotion detection,” IEEE
Transactions on Multimedia, vol. 24, pp. 4471–4481, 2021.

[45] D.-W. Zhou, Q.-W. Wang, Z.-H. Qi, H.-J. Ye, D.-C. Zhan, and
Z. Liu, “Deep class-incremental learning: A survey,” arXiv preprint
arXiv:2302.03648, 2023.

[46] M. Ren, W. Zeng, B. Yang, and R. Urtasun, “Learning to reweight
examples for robust deep learning,” in International Conference on
Machine Learning. PMLR, 2018, pp. 4334–4343.

[47] J. Shu, Q. Xie, L. Yi, Q. Zhao, S. Zhou, Z. Xu, and D. Meng, “Meta-
weight net: Learning an explicit mapping for sample weighting,” arXiv
preprint arXiv:1902.07379, 2019.

[48] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features
from tiny images,” 2009.

[49] Stanford, “Tiny imagenet challenge (CS231n),” http://tiny-imagenet.
herokuapp.com/, 2015.

[50] 20 newsgroups. [Online]. Available: http://qwone.com/∼jason/
20Newsgroups/

[51] C. Bizer, J. Lehmann, G. Kobilarov, S. Auer, C. Becker, R. Cyganiak,
and S. Hellmann, “Dbpedia-a crystallization point for the web of data,”
Journal of web semantics, vol. 7, no. 3, pp. 154–165, 2009.

[52] W. Hu, Q. Qin, M. Wang, J. Ma, and B. Liu, “Continual learning by
using information of each class holistically,” in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 35, no. 9, 2021, pp. 7797–
7805.

[53] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,
A. Desmaison, L. Antiga, and A. Lerer, “Automatic differentiation in
pytorch,” 2017.

[54] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[55] R. Aljundi, M. Lin, B. Goujaud, and Y. Bengio, “Gradient based
sample selection for online continual learning,” in Advances in Neural
Information Processing Systems, vol. 32, 2019, pp. 11 816–11 825.

[56] Q. Pham, C. Liu, D. Sahoo, and H. Steven, “Contextual transformation
networks for online continual learning,” in International Conference on
Learning Representations, 2020.

[57] A. Nichol and J. Schulman, “Reptile: a scalable meta-learning algo-
rithm,” arXiv preprint arXiv:1803.02999, vol. 2, no. 3, p. 4, 2018.

[58] R. Wang, X. Jia, Q. Wang, Y. Wu, and D. Meng, “Imbalanced semi-
supervised learning with bias adaptive classifier,” in 11th International
Conference on Learning Representations (ICLR 2023), 2023.

[59] X. Jia, R. Wang, D. Meng, and X. Feng, “Delving into the hierarchical
structure for efficient large-scale bi-level learning,” 2022.

[60] Q. Wang, R. Wang, Y. Wu, X. Jia, and D. Meng, “Cba: Improving
online continual learning via continual bias adaptor,” in Proceedings of
the IEEE/CVF International Conference on Computer Vision, 2023, pp.
19 082–19 092.

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. XX, NO. X, XXX 2024 16

Quanziang Wang received the B.Sc degree from the
Xi’an Jiaotong University, Xi’an, China, in 2019.
He is currently working toward the Ph.D. degree
with the School of Mathematics and Statistics, Xi’an
Jiaotong University. His research mainly focus on
continual learning and semi-supervised learning.

Renzhen Wang received the B.Sc. degree from
Dalian University of Technology, Dalian, China, in
2016 and Ph.D. degree from Xi’an Jiaotong Uni-
versity, Xi’an, China, in 2022. He is currently an
assistant professor in the School of Mathematics
and Statistics, Xi’an Jiaotong University. His current
research interests include semi-supervised learning,
continual learning and medical image analysis.

Yuexiang Li received Ph.D. degree from the Uni-
versity of Nottingham, United Kingdom. He is the
full Professor in Guangxi Key Laboratory for Ge-
nomic and Personalized Medicine, Guangxi Medical
University (GXMU). He is the academic leader of
the discipline of artificial intelligence, and leads the
Medical AI ReSearch (MARS) group in the univer-
sity. His research interest include intelligent analysis
and processing of medical images (including micro-
scopic images, pathological slices and multimodal
medical images).

Dong Wei received the Ph.D. degree in Computer
Engineering from the University of Singapore, Sin-
gapore, in 2013. Since 2018, he has been a Senior
Researcher at the Tencent Jarvis Lab, Shenzhen,
China. His research interests include medical image
analysis, with a current focus on data and annotation
efficient approaches.

Hong Wang received the Ph.D. degree from School
of Mathematics and Statistics, Xi’an Jiaotong Uni-
versity, Xi’an, China, in 2021, under the supervision
of Prof. Deyu Meng. She was a research intern
with the Tencent Rhino Bird Elite Talent Program
from 2020 to 2021. She is currently a senior re-
searcher at Tencent, Shenzhen. Her current research
interests focus on the design of model-driven and
data-driven deep learning techniques for effective
and interpretable image processing including natural
image restoration and medical image analysis.

Kai Ma received the Ph.D. degree from the Uni-
versity of Illinois at Chicago, Chicago, IL, USA,
in 2014. He was with Siemens Medical Solution,
Princeton, NJ, USA, for more than five years. He
is currently a Principal Researcher with the Jarvis
Lab, Tencent, Shenzhen, China. His research inter-
ests include medical image analysis, deep learning,
computer vision, and brain–computer interface.

Yefeng Zheng (Fellow, IEEE) received the B.E. and
M.E. degrees from Tsinghua University, Beijing, in
1998 and 2001, respectively, and the Ph.D. degree
from the University of Maryland, College Park,
MD, USA, in 2005. After graduation, he joined
Siemens Corporate Research, Princeton, NJ, USA.
He is currently the Director and the Distinguished
Scientist of Tencent Jarvis Lab, Shenzhen, China,
leading the company’s initiative on Medical AI. His
research interests include medical image analysis,
computer vision, natural language processing, and

deep learning. Dr. Zheng is a fellow of the American Institute for Medical
and Biological Engineering (AIMBE).

Deyu Meng (Member, IEEE) received the B.Sc.,
M.Sc., and Ph.D. degrees from Xi’an Jiaotong Uni-
versity, Xi’an, China, in 2001, 2004, and 2008, re-
spectively. He was a Visiting Scholar with Carnegie
Mellon University, Pittsburgh, PA, USA, from 2012
to 2014. He is currently a professor with School
of Mathematics and Statistics, Xi’an Jiaotong Uni-
versity, and adjunct professor with Faculty of In-
formation Technology, The Macau University of
Science and Technology. His current research inter-
ests include model-based deep learning, variational

networks, and meta-learning.

