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Abstract. Cross-contrast image translation is an important task for
completing missing contrasts in clinical diagnosis. However, most exist-
ing methods learn separate translator for each pair of contrasts, which is
inefficient due to many possible contrast pairs in real scenarios. In this
work, we propose a unified Hyper-GAN model for effectively and effi-
ciently translating between different contrast pairs. Hyper-GAN consists
of a pair of hyper-encoder and hyper-decoder to first map from the source
contrast to a common feature space, and then further map to the target
contrast image. To facilitate the translation between different contrast
pairs, contrast-modulators are designed to tune the hyper-encoder and
hyper-decoder adaptive to different contrasts. We also design a common
space loss to enforce that multi-contrast images of a subject share a com-
mon feature space, implicitly modeling the shared underlying anatomical
structures. Experiments on two datasets of IXI and BraTS 2019 show
that our Hyper-GAN achieves state-of-the-art results in both accuracy
and efficiency, e.g., improving more than 1.47 and 1.15 dB in PSNR on
two datasets with less than half the amount of parameters.

Keywords: Multi-contrast MR · Unpaired image translation · Unified
hyper-GAN.

1 Introduction

Magnetic resonance (MR) imaging has been widely utilized in clinical diagnosis,
as it has a range of imaging contrasts and largely increases the diversity of
diagnostic information. However, due to practical limits, e.g., long scan time [22],
image corruption [26], etc., it is often hard to collect all multi-contrast MR images
of one subject. To solve this problem, a large variety of synthesis methods [4,
6, 12, 13, 17, 18, 20, 23, 24] try to synthesize missing contrast from the available
contrast, and most of them are one-to-one cross-contrast synthesis methods, i.e.,
one model is trained for each specific pair of contrasts. For example, Dar et al. [6]
proposed a conditional generative adversarial network to translate between T1w
and T2w images. However, it is impractical to train each network for each pair of
contrasts due to a range of commonly used MR contrasts in real scenarios. In this
work, we focus on tackling the multi-contrast MR image translation problem by a
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more efficient and effective way in an unpaired training setting, i.e., the training
multi-contrast MR images are not required to be captured from same subjects.

There are already several unpaired multi-contrast image translation meth-
ods in literature, e.g., [2, 5, 14, 21], in recent years. Firstly, CycleGAN [28],
as a one-to-one cross-contrast synthesis method, could be extended to learn
multi-contrast mappings and require N × (N − 1) generators for N contrasts,
which is impractical in real scenarios. Furthermore, ComboGAN [2] and Domain-
Bank [14] decouple generator into encoder/decoder and reduce the requirement
to N contrast-specific encoders/decoders for N contrasts, while the parameter
size and training time of them scale linearly with the contrast number. In addi-
tion, StarGAN [5] and SUGAN [21] share a generator and discriminator for all
contrasts, and rely on a contrast indicator to specify the desired output contrast.
However, since the contrast indicator is simply concatenated with input image,
it might be insufficient to control the translation process [1, 15]. In summary,
existing methods either depend on multiple encoders/decoders, or insufficiently
control/modulate the generator to be adaptive to contrast.

In this work, we aim to design a unified deep network for unpaired multi-
contrast MR image translation in an efficient and effective way. We design shared
encoder and decoder to translate between different contrast pairs based on a
common feature space constraint, and the encoding and decoding processes are
respectively modulated by the source and target contrast codes. This is inspired
by MR imaging [3] that multi-contrast MR images are determined by human
intrinsic tissue and scanner imaging parameters. The common feature space im-
plicitly models the intrinsic tissue parameters, and the scanner imaging param-
eters are encoded to modulate the encoder and decoder in our network design.

Specifically, we first define contrast-specific information as one-hot code indi-
cating MR contrast, and construct two contrast modulators as hyper-network [11]
to respectively modulate the encoder and decoder to be adaptive to different MR
contrasts. To enforce the common feature space shared by different contrasts, we
further design a common space loss to enforce extracted deep features from dif-
ferent contrasts within a common feature space, implicitly modeling the shared
underlying anatomical structures, besides traditional adversarial [10] and cycle-
consistency [28] losses. This unified multi-contrast MR image translation model,
dubbed Hyper-GAN, can effectively and efficiently translate between different
contrast pairs using a single network. Experiments on two multi-contrast brain
MR datasets of IXI and BraTS 2019 show that Hyper-GAN achieves start-of-the-
art results in both accuracy and efficiency, e.g., improving more than 1.47 and
1.15 dB in PSNR on two datasets with less than half the amount of parameters.

2 Method

As shown in Fig. 1, our Hyper-GAN utilizes a shared pair of hyper-encoder and
hyper-decoder to translate between different contrast pairs. The source and tar-
get contrasts are each represented by a one-hot code, dubbed contrast code, with
the value of 1 representing the corresponding contrast in a given list of multiple
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Fig. 1. Hyper-GAN utilizes shared hyper-encoder and hyper-decoder to translate be-
tween different contrast pairs, and the encoding and decoding processes are respectively
modulated by the source and target contrast codes. Multi-contrast images of a subject
are constrained to be within a common feature space after encoding.

contrasts. These codes are further utilized to adaptively tune the encoding and
decoding processes in our hyper-encoder and hyper-decoder. Specifically, our
hyper-encoder/hyper-decoder is respectively an encoder/decoder with parame-
ters modulated by a contrast modulator with contrast code as input, in order
to make the hyper-encoder/hyper-decoder adaptive to different contrasts. The
extracted deep features by hyper-encoder are constrained to be within a com-
mon feature space shared by different contrast images of a subject. In this way,
our Hyper-GAN is an encoder-decoder network adaptive to different source and
target contrast pairs. We next introduce the details.

2.1 Network Architecture

As shown in Fig. 2(a) and (b), hyper-encoder E and hyper-decoderG respectively
consist of two subnets, i.e., a backbone encoder/decoder and a contrast modula-
tor. The encoder extracts deep features from a source contrast image, while the
decoder estimates the target contrast image from the extracted features. The
encoder and decoder are respectively paired with a contrast modulator, achiev-
ing contrast-adaptive tuning of parameters of encoder and decoder based on the
source and target contrast codes. With the contrast code as input, the contrast
modulator tunes the parameters using the following two different strategies, i.e.,
filter scaling or conditional instance normalization.
Filter scaling (FS) [1]. For each convolutional filter f in encoder/decoder, the
modulator produces a corresponding scalar α based on the contrast code and
modifies this filter as f ′ ≜ α ∗ f , where ∗ is scalar multiplication operation.
Conditional instance normalization (CIN) [8]. For each instance normaliza-
tion (IN) layer in encoder/decoder, the modulator estimates its affine parameters
γ′ and β′ based on contrast code, and then IN layer becomes y = γ′ x−µ(x)

σ(x) + β′,
where µ(x) and σ(x) are mean and standard deviation of the input features x.

Network architecture. Encoder and decoder are respectively taken as the
first five and the remaining four residual blocks of the generator in [28], and con-
trast modulators are set to multilayer perceptrons. Please refer to Fig. 2(a) and
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Fig. 2. The illustration of the detailed network architecture in Hyper-GAN.

(b) for the detailed definitions of hyper-encoder and hyper-decoder. As shown in
Fig. 2(c), discriminators, as in [28], are fully convolutional networks [19] with five
4× 4 convolutional layers to classify whether 70× 70 overlapping image patches
are real or synthetic. The contrast-classifier is composed of a gradient reversal
layer [9] and four 1×1 convolutional layers to classify which contrast the features
extracted by hyper-encoder belong to and outputs contrast probabilities.

2.2 Training Loss

For a N -contrast translation task with contrasts {mk}Nk=1 and one-hot contrast
codes {ck ∈ {0, 1}N}Nk=1, our Hyper-GAN consists of a pair of hyper-encoder E
and hyper-decoder G, a contrast-classifier C and contrast-specific discriminators
{Dk}Nk=1. Note that C and {Dk}Nk=1 are only utilized in training.

Our Hyper-GAN is trained on unpaired multi-contrast MR images, i.e., dif-
ferent contrasts are acquired from different subjects without requiring accurate
registration. When training the network, two random training images Imi

, Imj
in

distinct contrasts mi,mj(i ̸= j) are fed into Hyper-GAN as the source and tar-
get contrasts for updating network parameters. For simplicity, we next present
the training loss for the translation from contrast mi to mj .
Adversarial loss [10]. The hyper-encoder E and hyper-decoder G are required
to generate a synthetic image G(E(Imi

, ci), cj) close to a real image, while the
discriminator Dj is to distinguish between this synthetic image G(E(Imi

, ci), cj)
and a real image Imj . The adversarial loss is defined as

Ladv(E,G,Dj) = Dj(G(E(Imi
, ci), cj))

2 + (1−Dj(Imj
))2 , (1)

where E(·, ci) and G(·, cj) respectively denote the outputs of hyper-encoder E
and hyper-decoder G tuned by contrast codes ci and cj . G(E(Imi

, ci), cj) repre-
sents the synthetic mj contrast image translated from an mi contrast input.
Cycle-consistency loss [28]. A cycle-consistency loss for E and G is to force
the reconstructed image G(E(G(E(Imi

, ci), cj), cj), ci) (mapping from contrast
mi to mj and back) to be identical to the input Imi , which is written as

Lcyc(E,G) = ∥G(E(G(E(Imi
, ci), cj), cj), ci)− Imi

∥1 . (2)
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Common space loss. The hyper-encoder is adaptive to the contrast of input
image, and we expect that the extracted features by hyper-encoder should be
in a common space shared by multi-contrast images for each subject, implicitly
modeling the intrinsic tissue parameters of the subject. As paired training multi-
contrast images are not given, we design the following common space constraints.
(i) Identical loss. As the images Imi

and G(E(Imi
, ci), cj) are of the same subject

but different contrasts, an identical loss is designed to enforce their extracted
features by hyper-encoder E to be identical, which is written as

Lid(E,G) = ∥E(G(E(Imi , ci), cj), cj)− E(Imi , ci)∥1 . (3)

(ii) Reconstruction loss. A reconstruction loss constrains that image Imi
could

reconstruct itself by hyper-encoder and hyper-decoder, which is defined as

Lrec(E,G) = ∥G(E(Imi
, ci), ci)− Imi

∥1 . (4)

(iii) Contrast-classification loss. Contrast-classification loss is to force classifier C
to predict the contrast of extracted features by hyper-encoder E. We adversari-
ally train the classifier to make deep features of multiple contrasts extracted by
E to be same distributed, i.e., within a common feature space, using a gradient
reversal layer [9] in C, which flips gradient sign during backpropagation to force
extracted deep features unable to be classified by C. This loss is defined as

Lcla(E,G,C) =LCE(C(E(G(E(Imi , ci), cj), cj)), cj)

+ LCE(C(E(Imi
, ci)), ci) ,

(5)

where LCE computes the cross entropy between estimated contrast probability
by C and real contrast code. Then the common space loss is defined as

Lcom(E,G,C) = λidLid + λrecLrec + λclaLcla . (6)

We heuristically set λid, λrec and λcla to 0.5, 10 and 0.2 to make each term in a
similar range of loss values as adversarial loss.
Total loss. The total training loss of Hyper-GAN is summation of above training
losses over all training image pairs in distinct contrasts, which is defined as

L(E,G,C,Dj) = Ladv + λcycLcyc + Lcom , (7)

where λcyc is set to 10 as per [28]. To optimize L, the networks are divided into
two groups, i.e., {Dj}Nj=1 and {E,G,C}, which are alternately updated, and the
networks are totally optimized in 100 epochs. As in [28], the learning rate is set
to 0.0002 with a batch size of 1. Our source code will be released on GitHub.

3 Experiments

3.1 Data Sets
IXI dataset1. We utilize all 319 subjects from Guy’s Hospital, and randomly
split them into 150, 5 and 164 subjects for training, validation and testing. Each
1 https://brain-development.org/ixi-dataset/
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Table 1. Accuracies of different methods for arbitrary cross-contrast MR image trans-
lation on IXI dataset, which are averaged over test set and all 6 translation tasks. Each
cell is formatted as “mean (standard deviation)”.

Method Ablated version MAE PSNR SSIM
CycleGAN 0.0175 (0.0045) 27.18 (2.17) 0.857 (0.055)
StarGAN 0.0174 (0.0052) 27.77 (2.81) 0.856 (0.068)
SUGAN 0.0182 (0.0055) 27.30 (2.88) 0.845 (0.068)
ComboGAN 0.0163 (0.0040) 28.17 (2.34) 0.876 (0.045)

Ours (CIN)

Ladv + cyc 0.0145 (0.0039) 28.89 (2.45) 0.897 (0.044)
Ladv + cyc+ id 0.0141 (0.0037) 29.12 (2.46) 0.906 (0.040)
Ladv + cyc+ rec 0.0144 (0.0043) 29.09 (2.76) 0.900 (0.046)
Ladv + cyc+ cla 0.0145 (0.0037) 28.86 (2.32) 0.902 (0.038)
Ladv + cyc+ id+ cla 0.0138 (0.0037) 29.36 (2.54) 0.909 (0.037)
Ladv + cyc+ id+ rec+ cla 0.0138 (0.0043) 29.45 (3.03) 0.910 (0.042)

Ours (FS)

Ladv + cyc 0.0154 (0.0032) 28.28 (1.74) 0.897 (0.030)
Ladv + cyc+ id 0.0141 (0.0040) 29.24 (2.73) 0.904 (0.041)
Ladv + cyc+ rec 0.0140 (0.0047) 29.39 (3.22) 0.908 (0.045)
Ladv + cyc+ cla 0.0141 (0.0036) 29.04 (2.47) 0.903 (0.041)
Ladv + cyc+ id+ cla 0.0135 (0.0033) 29.49 (2.27) 0.910 (0.034)
Ladv + cyc+ id+ rec+ cla 0.0133 (0.0038) 29.64 (2.70) 0.910 (0.040)

subject contains three contrasts (T1w, T2w and PDw), and only one of three
contrasts per subject is used for training to generate unpaired data.
BraTS 2019 dataset2. We use all 150 subjects from CBICA institution, and
split them into 100, 5 and 45 subjects for training, validation and testing. Each
subject contains four contrasts (T1w, T1Gd, T2w, FLAIR), and only one of four
contrasts per subject is used for training. All volumes of both datasets are N4
corrected and peak normalized, and the intensities are linearly scaled to [0, 1].

3.2 Experimental Results

We compare our Hyper-GAN with the state-of-the-art unpaired multi-contrast
image translation methods, including StarGAN [5], SUGAN [21] and Combo-
GAN [2], for arbitrary cross-contrast MR image translation. Our Hyper-GAN
includes two versions, i.e., the contrast modulator using filter scaling (FS) or
conditional instance normalization (CIN). All the experiments are performed on
2D saggital slices. Quantitatively, we compute the mean absolute error (MAE),
peak signal-to-noise ratio (PSNR), and structural similarity (SSIM) between 3D
volumes of ground truth and image translation results. The final accuracy is aver-
aged over the test set and all translation tasks between all possible source/target

2 https://www.med.upenn.edu/cbica/brats2019.html
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Fig. 3. Visual comparison of cross-contrast MR image translation results on IXI
dataset. Top to bottom: T1w-to-T2w, T2w-to-PDw and PDw-to-T1w translation re-
sults on a test subject. The values under each sub-image are PSNR and SSIM scores.

contrast pairs, i.e., 6 tasks for IXI and 12 tasks for BraTS 2019. A paired two-
sided Wilcoxon signed-rank test is conducted to compare the performance.
Results on IXI dataset. Table 1 reports the results on IXI dataset of three
contrasts. It shows that, compared with StarGAN, SUGAN and ComboGAN,
our Hyper-GAN (i.e., Ladv+ cyc+ id+ rec+ cla) achieves significantly better per-
formance in all metrics (p < .001) and produces 29.45/29.64 (using CIN/FS
respectively) in PSNR, comparing favorably with 27.77 of StarGAN, 27.30 of
SUGAN and 28.17 of ComboGAN.
Effectiveness of training losses. In Table 1, we also compare Hyper-GAN
trained with different losses defined in Sect. 2.2. Interestingly, even our baseline
(i.e., Ladv+ cyc) performs better than compared methods (p < .005) and obtains
28.89/28.28 in PSNR, justifying effectiveness of our network design with hyper-
encoder/hyper-decoder using contrast modulators. Starting from this baseline,
each extra loss enforcing common feature space constraint improves results in all
metrics except that contrast-classification loss in CIN version produces higher
SSIM but comparable MAE and PSNR scores. Specifically, the identical and
reconstruction losses respectively improve PSNR from 28.89/28.28 of baseline to
29.12/29.24 and 29.09/29.39. In addition, the PSNR scores are further improved
to 29.36/29.49 when both identical and contrast-classification losses are utilized
and our whole model performs best. This indicates the effectiveness of our de-
fined common space loss implicitly modeling the shared underlying anatomical
structures of each subject. Both FS and CIN versions achieve good performance
while FS works generally better. Figure 3 shows visual comparison results.
Results on BraTS 2019 dataset. Table 2 reports the results on BraTS 2019
dataset of four contrasts. Our Hyper-GAN obtains significantly higher accuracies
than compared methods in all metrics (p < .001) and achieves 31.66/31.90 (using
CIN/FS respectively) in PSNR, comparing favorably with 30.75 of StarGAN,
30.37 of SUGAN and 30.55 of ComboGAN. Figure 4 shows the T1Gd-to-FLAIR
image translation results, and our method performs best even with lesions.
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Table 2. Accuracies of different methods for arbitrary cross-contrast MR image trans-
lation on BraTS 2019 dataset, which are averaged over test set and all 12 translation
tasks. Each cell is formatted as “mean (standard deviation)”.

Method MAE PSNR SSIM # of parameters
StarGAN 0.0083 (0.0029) 30.75 (2.64) 0.905 (0.028) 50.72M
SUGAN 0.0087 (0.0021) 30.37 (1.97) 0.909 (0.013) 82.63M
ComboGAN 0.0081 (0.0025) 30.55 (2.17) 0.913 (0.015) 71.02M
Ours (CIN) 0.0072 (0.0022) 31.66 (2.46) 0.922 (0.018) 23.71M
Ours (FS) 0.0070 (0.0026) 31.90 (2.74) 0.930 (0.018) 22.57M

(a) Input (b) Ground truth       (c) StarGAN (d) SUGAN
(33.74, 0.925) (33.08, 0.918) (34.79, 0.934) (34.13, 0.928)

(e) ComboGAN     (f) Ours (CIN) (g) Ours (FS)
(33.52, 0.924)

Fig. 4. Visual comparison of T1Gd-to-FLAIR image translation results on BraTS 2019
dataset. The values under each sub-image are PSNR and SSIM scores.

Comparison with CycleGAN. We also compare our Hyper-GAN with Cycle-
GAN [28] in Table 1. Note that concatenation of backbones of hyper-encoder and
hyper-decoder is identical to generator in CycleGAN as discussed in Sect. 2.1.
We train individual CycleGAN for each possible source/target contrast pair and
average the results over all pairs as final accuracy. Hyper-GAN significantly out-
performs CycleGAN (p < .005), demonstrating the effectiveness of our network
design based on contrast modulator and common feature space constraint.
Computational Efficiency. As shown in Table 2, our parameter size is 2
and 3 times smaller than StarGAN and SUGAN/ComboGAN respectively. Also
for BraTS 2019 dataset, CycleGAN requires 169.56M parameters that is 7 times
larger than ours. This is because Hyper-GAN utilizes only a single pair of hyper-
encoder and hyper-decoder, while the number of encoders/decoders in Combo-
GAN or CycleGAN scales linearly or quadratically with contrast number.

4 Conclusion

We have proposed a unified GAN for unpaired multi-contrast MR image transla-
tion. It can flexibly translate between different contrast pairs using a unified net-
work consisting of hyper-encoder/hyper-decoder and common feature space con-
straint. This design enables the network to fully investigate the common anatom-
ical structures by common feature space modeling, and contrast-specific imaging
by hyper-network design of hyper-encoder and hyper-decoder. It achieves state-
of-the-art performance, and outperforms previous GAN-based image translation
models that depend on multiple encoders/decoders for different contrast pairs.
In the future, we are interested in the extension to multi-contrast, multi-institute
setting [7], as well as the combination with segmentation task [16, 25, 27].
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