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Wear particles in lubricants carry valuable information about machine wear status which is useful in
machine condition monitoring. For wear analysis, wear particles are often imaged and their features are
extracted. However, the particle morphology acquired from current 2-dimensional (2-D) images does not
contain thickness information which can be critical in wear mechanism interpretation. In this paper, we
present the development of a video based system to extend the particle information in 3-dimension (3-
D). The proposed method contains three main procedures including: particle extraction using a Gaussian
mixture model, multiple particle tracking with Kalman filter, and 3-D feature reconstruction by the
shape-from-silhouette method. This framework ensures that wear particles are correctly extracted, and
their 3-D morphological features are obtained. It also can be regarded as a potential option for on-line
particle monitoring. The performance of this method was demonstrated by analysing wear particles
generated from a four-ball machine and a spur gear box, and verified by computer simulations. Results
indicated that 3-D features of wear particles were obtained with satisfactory accuracy.

& 2016 Elsevier B.V. All rights reserved.
1. Introduction

Condition monitoring can provide valuable insights regarding
the machine running states, enabling the prediction of operation
lifespan and the formulation of proper maintenance schedules for
economic operation. Since it is an inherent phenomenon that wear
occurs in a machine, wear particles can be used to examine the
cause of a fault or the eventual failure of machine [1]. Among the
various methods of particle monitoring, image based wear particle
analysis is regarded as a promising technique. By investigating
morphological features of wear particle, wear mechanisms can be
inferred [2].

Generally, information observed from the wear particle image
can be grouped into statistical and individual data. The first cate-
gory includes indicators such as the number of particles, their
concentration, and size distribution, fromwhich wear severity and
wear rate can be estimated [3]. Moreover, individual wear particle
can be further characterised using its 2-D morphological features
[2,4,5]. While the morphological data of individual particle pro-
viding insight to wear mechanism information, 2-D features alone
are insufficient for the classification of particle shapes into fatigue
chunk, laminar and sphere [6]. This is because 2-D image only
u (H. Wu).
provide the particle information facing the camera without cap-
turing the particle data in thickness.

To explore particle morphology in higher dimension, three in-
struments including laser scanning confocal microscopy (LSCM),
scanning electron microscope (SEM) and atomic force microscope
(AFM) have been applied to investigate 3-D particle information
[7–9]. The results indicated that 3-D wear particle analysis can
provide more morphological information than conventional 2-D
methods. However, since the particle is fixed on the slide, these
instruments can only capture the particle information on one side,
which means the particle thickness is still partially obtained.
Furthermore, these lab-based facilities can be expensive and not
suitable to be used on site [10].

Video based methods were developed to investigate more de-
tailed particle features in recent years [11,12]. The principle of
these video techniques are similar. The wear particles are collected
by a flow channel, on which a camera is mounted to capture the
video of particle in the flowing lubricant. Features of individual
particle such as colour has been extracted to investigate the par-
ticle oxidation [13]. In addition, this methodology has also been
applied to estimate 3-D particle information, which was a very
promising attempt since it extended particle analysis to two views
[12]. However, as claimed by the developer, the obtained 3-D
model was not a full reflection of the particle because only two
artificially selected images are considered. Furthermore, the need
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for manual operation also limits its efficiency in multiple particle
analysis. As a result, a method for comprehensive 3-D wear par-
ticle image acquisition and description is necessary.

Conducting wear analysis in short time interval is a commonly
preferred approach, to obtain timely indication on machine health
conditions [14–18]. Although the aforementioned developments
have accomplished their individual goals, an efficient 3-D wear
particle characterisation has not been fulfilled. As a result, we
develop a wear particle extraction and reconstruction technique to
further improve 3-D particle analysis. This technique contains
three parts, particle extraction, particle tracking and 3-D particle
reconstruction.

Firstly, as Gaussian mixture modelling has been proved to be an
efficient and robust technique for recognising object from real-
time surveillance videos, it is used to expose wear particle from
the captured video [19]. Next, the particles in the video are tracked
to collect their profiles in multiple views. To ensure the tracking
reliability, the particle motion is estimated with Kalman filter,
which is extensively employed in object tracking area such as
traffic management and robot navigation [20,21]. After success-
fully identified and tracked the particle in multiple views, 3-D
representation of the particle is reconstructed. Based on contour
information, shape-from-silhouette (SFS) is an effective technique
to reconstruct 3-D object without detailed information about ev-
ery pixel [22,23]. As a result, SFS is applied to construct 3-D par-
ticle. Verifications are then conducted to evaluate the effectiveness
of the proposed automatic technique for 3-D wear particle
description.

The rest of the paper is organized as follows. In Section 2, the
extraction of particle is detailed. The Gaussian mixture model is
briefly presented and its implementation is described. In Section 3,
the need for wear particle tracking is highlighted together with
the development outline of the tracking processes employing the
Kalman filter. Section 4 presents the silhouette based 3-D wear
particle reconstruction with an example. Verification and the ex-
perimental results are given in Section 5. Section 7 contains the
conclusions drawn.
2. Particle extraction from on-line wear particle video

The first step of wear particle analysis is extracting the particle
from the captured video. While there are existing segmentation-
based particle extraction methods for static images used in fer-
rograph based analysis, they are not directly applicable to video
streams which are composed of moving objects and variant
background. Therefore, a particle segmentation method for ex-
tracting particle from the on-line particle video needs to be
devised.

Background subtraction was reported to extract wear particle
from on-line particle video [11,24]. This method allows the se-
paration of particles from frames with similar backgrounds.
However, the need of a manually calibrated background and a
fixed differentiate threshold may limit its applicability in variant
particle background, which is commonly observed due to the
oxidation and contamination of lubrication oil. Therefore, an
adaptive particle extraction strategy is preferred.

An adaptive particle extraction method based on Gaussian
Mixture Modelling (GMM) is developed to extract wear particle
from the on-line video. This method estimates the foreground and
background pixel by pixel with a statistical modelling process [19].
Its basic principle is presented as followed.

2.1. Gaussian mixture modelling of pixel intensity

The intensity of a pixel { }x y,p p in on-line particle video can be
considered as a process { … }, , t1 . In addition, the intensity dis-
tribution of a recently observed pixel is modelled by a mixture of
Gaussian functions. The parameters of the Gaussian functions are
highly related to the properties of particle or background. For
example, the pixel value of background is often stable, this results
in a Gaussian function with small variance. While the result of
particle pixel as foreground is versa. Based on the mixture model,
one can tell the probability of a pixel belonging to background or
foreground, and enable the particle to be extracted. A detailed
description of the GMM modelling process is given in Appendix A.

2.2. Wear particle extraction based on gaussian mixture modelling

With the pixel intensity modelled by a combination of 3 Gaus-
sian distributions, the particle segmentation from on-line video
can be achieved by dividing all the pixels into two groups: back-
ground pixels and the particle pixels. To determine which group a
pixel belongs, three main steps will be carried out: (1) estimation
of background Gaussian; (2) pixel matching with Gaussian mod-
els; and (3) update of Gaussian models.

2.2.1. Background model estimation of particle video
The estimation of background model is to determine which

Gaussian distribution is more probably to be produced by the
background process. As observed from on-line wear particle video,
a background pixel generally has a lower intensity variance, s2,
than particle pixel. Furthermore, the weight of the background
distribution, ω, will accumulate by an updating rule given in
Section 2.2.3. Therefore, one can tell which Gaussian is the back-
ground distribution according to the ratio of weight and variance,
ω σ/ 2.

2.2.2. Pixel matching with gaussian models
The extraction of wear particle from on-line video is conducted

by matching the pixel and the background model obtained in
Section 2.2.1. The pixel Xt is called matched with a Gaussian model

j if

μ σ| − | ≤ × ( )2.5 . 1t j t j t, ,

The pixel matched to any background Gaussian is deemed to be an
background pixel. The unmatched will be regarded as a particle
pixel.

2.2.3. Parameters update for mixture gaussian model
The GMM method iterates by updating the parameters with

pixel from new frames. Based on the matching result, the para-
meters of the Gaussian distributions will be updated by adjusting
the model weight, mean value and variance.

2.2.4. Experiment of GMM based particle extraction
The developed GMM wear particle extraction method is tested

against wear particle videos under different illumination
conditions. The oil samples are collected from a four-ball machine
wear test and a spur gear box wear test. The lubrication used is
Magnetic Synthetic Engine Oil ( −SAE W15 40). The test balls used
are bearing steel ball which are manufactured of carbon chromium
bearing steel (GCr15), with a surface roughness of 0.025 mm and a
hardness falling in ∼HRC58 63. The test gears are manufactured of
S C45 carbon steel with a surface hardness less than HB194.
The resolution of the captured video is 800�600 pixels, and its
frame rate is 15 per second. The pseudo code of the particle ex-
traction process is detailed in Appendix A. According to the com-
putation result obtained from a personal computer
( − − )IntelCorei CPU GB RAM Matlab b Windows bit OS5 4750 , 16 , 2015 , 764 ,
the computation time for extracting particle from one frame is
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Fig. 1. GMM based background detection, (a) particle video of four-ball machine lubricant oil; (b) particle video of spur gear box lubricant oil; (c) particle video under
improper illumination; (d) particle video with fixed wear particle; (e) particle detection of video in (a); (f) particle detection of video in (b); (g) particle detection of video in
(c); (h) particle detection of video in (d).
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about 0.035 s, which means that it can provide an immediate re-
sult before the next frame is input. The particle extraction result is
shown in Fig. 1, in which black part indicates background area and
white parts indicate particles detected.

As can be observed from the figure, the wear particles have
been successfully extracted from video under different illumina-
tion scenario. However, one limitation of this method is that par-
ticles remain stationary for a long period(≥ frames50 ) would merge
into background, as shown in Fig. 1(d), and (h). While it is tolerable
since most particle in the video are continuously moving. As can
be concluded, the self adaptivity of this method allows it to
maintain robust performance under different scenarios. This
method is more suitable for on-line wear particle extraction since
dose not require any manually initialized backgrounds.
3. Wear particle tracking

Wear particle video carries particle information with a series of
multi-view images. Because the image of a wear particle in each
frame only display the particle in one view direction, all the
images of particle in different views should be incorporated to
conduct full particle description. Therefore, a particle tracking
method is developed to fulfill multi-view analysis of each wear
particle in the video.

According to the number of tracking object, on-line wear par-
ticle tracking can be defined as a multi-object-tracking (MOT) is-
sue concerned with tracking multiple moving targets [25,26]. This
section will present the construction of a Kalman-filter based
particle tracking method in three stages: (1) particle representa-
tion; (2) particle motion estimation; (3) data association of mul-
tiple particles.

3.1. Wear particle representation

The particle representation is to abstract the particle appear-
ance by defining a parameters space for further tracking. The
tracking target can be represented by points, shapes, contour and
surface features [26]. Generally, the most desirable property of a
parameters space is its uniqueness so that the objects can be easily
distinguished. Because most of the particles in on-line video
merely occupy small regions, a points representation called cen-
troid is applied to identify the particles position.

However, the particle centroid will shift in different frames due
to the particle rotation, making the centroid representation not
able to accurately indicate the particle position. Therefore, more
features should be incorporated. As the longitude axis of a particle
is relative stable when the particle is rotating, it is combined with
the particle centroid to represent wear particle for tracking. Thus,
the wear particle representation model for tracking is defined as

= ( )⎡⎣ ⎤⎦C C, , , 2x y
T

where Cx and Cy is the particle centroid, and is the particle
longitude axis. It should be noted that this representation is de-
fined to help identifying an individual particle, instead of a com-
prehensive morphological description.

3.2. Motion estimation of wear particle

The particle motion estimation is the critical step in particle
tracking, which helps to determine the particle location dynami-
cally by constructing a motion model for each moving particle. In
the fluid channel, the motion of a wear particle is a combination of
several forces, among which viscous drag is the dominate one [17].
As the magnitude of viscous drag is heavily dependent on the area
where the force acts, the motion of wear particles can be quite
diverse due to the wide range of particle dimension. Furthermore,
the motion speed of particles located in the middle of the channel
is higher than those around the channel boundary. All these fac-
tors contribute to the uncertainties in particle motion in the video
an uncertain process. To reliably locate the moving particle, the
motion of each particle will be estimated.

In our system, a Kalman filter based estimation method is de-
veloped to explore the motion of wear particle in the video. The
estimation begins by defining a state space describing the motions of
the particle. We define the state space of moving particle at time t as

= ( )
⎡⎣ ⎤⎦C d C d dx , , , , , , 3
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where dCx
t , dCy

t and d t are differential of the state components over

time t. Based on this state space, the motion estimation of single
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Fig. 2. Kalman filter based motion estimation of single wear debris.
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wear particle will be introduced as: prediction, observation and
correction in a Kalman filter process [21]. With the motion estima-
tion shown in Fig. 2, the motion process is briefly presented as
following.

Prediction step: the position of a particle in frame t can be
predicted by its determined position in time −t 1. Because the
flow rate of the lubricant is constant, we use a constant velocity
model to predict particle position across frames.

Observation step: the observation is performed based on the
segmentation result. Because the video sensor can only obtain the
position and shape of particle, three indicators including Cx

t, Cyt

and t are extracted to form the particle observation at time t.
Correction step: with the prediction and observation obtained,

the position of wear particle in time t can be corrected. By con-
sidering the uncertainty of each item, a more accurate estimation
of particle position in time t can be generated.

Detail description of these three stages are given in Appendix B.
The iteration of the three steps allows one to tell the position of
the moving particle, which will help to extract image of individual
wear particle in different frames. Such motion estimation will be
conducted in parallel for all the particles for multi-view images
extraction.
3.3. Data association of multiple wear particles

In on-line wear particle videos, we are interested in exploring
more than one wear particle in each frame. Data association is a
process that enables the tracking of multiple wear particle si-
multaneously. Different from the tracking of individual particle,
multiple particles tracking will generate more than one prediction
and observation states in each frame. We, therefore, need to as-
sociate each observation to its corresponding prediction to esti-
mate the position of each particle.

3.3.1. Distance based association for multiple wear particles
The data association method used in our system is called

nearest neighbour standard filter (NNSF) [27]. The principle is
briefly illustrated as follows. { }− −x x,c

t
c
t

1
1

2
1 are two corrected wear

particle in time −t 1; { }| − | −x x,p
t t

p
t t

1
1

2
1 are two predicted results from

{ }− −x x,c
t

c
t

1
1

2
1 at time −t 1; { }z z,t t

1 2 are two observed wear particle in
time t. The correspondence relationship between the prediction
{ }| − | −x x,p

t t
p
t t

1
1

2
1 and the observation { }z z,t t

1 2 can be determined by the
distance measured. In particular, a prediction and an observation
share the least distance will be associated.

In the fluid channel, the motion directions of most particles are
consistent with the flow direction, which is parallel to the fluid
channel. Such motion will result in larger uncertainty of prediction
and observation in the direction parallel to the channel.
Mahalanobis distance, M is, therefore, used to describe the dis-
tance to account for the uncertainties of prediction | −xp

t t 1 and ob-

servation zt:
( ) = ( − ) ( + ) ( − ) ( )
| − | − | − − | −x z x z HP H R x z, , 4M p

t t t
p
t t t t t t

p
t t t1 1 T 1 T 1 1

where H is the measurement matrix; | −Pt t 1 is the uncertainty of
prediction; Rt is related to the uncertainty of observation.

According to Eq. (4), the M will compress the space in the
direction of large covariance. Even if the Euclidean distances be-
tween the prediction | −xp

t t 1 and two observations zt
1, zt

2 are similar,
| −xp

t t 1 will be associated with the observation zt
1 with a smaller M .

With the prediction and observation uncertainty taken into ac-
count, the predictions and observations of wear particles in each
video frame can be associated robustly.

3.3.2. Data association in multiple particle tracking
In on-line wear particle monitoring, the data association of

multiple particles will be conducted in each frame as followed. The
information of the particle, with associated prediction and ob-
servation states, will be extracted and stored for further analysis.
The non-associated prediction is regarded as invalid and is dis-
carded. For the non-associated observation, new prediction will be
carried out in next frame.

The tracking result of a particle video captured from the wear
test of four-ball machine is shown in Fig. 3. During the tracking
process, a tracked particle will be marked with an identification
number, as shown in Fig. 3 (a). According to our test, the com-
putation time for tracking particles in each frame is less than
0.040 s. The images series of the tracked wear particle in the video
will be saved. These saved images are regarded as the multi-view
profiles of each particle, as shown in Fig. 3 (b). The images cor-
related to each individual wear particles can therefore be identi-
fied, labeled and separately stored with our proposed on-line
particle tracking processes. Using the obtained image series of
individual particle in different views, the three-dimensional
modeling of the particle can be conducted.
4. 3-D wear particle reconstruction

The tracking of wear particle provides 2-D particle features
from different views. This allows us to characterize the wear par-
ticles in 3-D. The 3-D reconstruction principle used in our method
is Shape-from-Silhouette (SFS) [22,23]. The shape of a wear par-
ticle will be recovered by intersecting the projection from the
particle silhouettes in different views. Generally, two steps are
involved in SFS: (1) camera parameters determination; and
(2) volume intersection.

4.1. Estimation of camera parameters

To reconstruct a 3-D object, the camera information including
intrinsic and extrinsic parameters need to be understood and
determined [28]. These parameters and their determination pro-
cedures are explained below.

The intrinsic properties of a camera is comprised of a set of
physical parameters, including the focal length of the lens, the size
of the pixels, and the position of the principle point on the image
sensor [29]. The intrinsic parameters is represented by a 3�3
matrix which is detailed in Appendix C. As the intrinsic para-
meters remain constant for a given camera, is suitable for
projecting the wear particle rotating in different views. The in-
trinsic matrix allows a sense point C of the particle in the camera
coordinates to be projected as a pixel, , in the image coordinates.

The properties of camera in the world coordinates, such as pose
and orientation are represented as extrinsic parameters. In parti-
cular, the sense point W of wear particle in the world coordinates
can be projected to a point C in camera coordinates. A more
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detailed illustration of the extrinsic parameters and the projection
process is given in Appendix C.

To determine the extrinsic parameters, the geometric re-
lationship between the particle and the camera need to be un-
derstood. For this particle sensor, wear particle is rotating in the
fluid channel while the camera is fixed. Therefore, the motion
relationship between the camera and wear particle can be viewed
as a stationary particle being imaged by a camera cycling around
it. As a result, the relationship of pose and orientation between the
particle and the camera is illustrated as Fig. 4.

Since the distance between the camera and fluid channel is
fixed and is much larger than the channel thickness, the distance
between the particle and camera can also be approximated as
constant. Therefore, the orientation of each profile is required to
determine the extrinsic parameters. As shown in Fig. 4, by as-
suming the orientation of camera c0 as the initial orientation, the
orientation of camera ci can be obtained according to the rotation
angle θ. The calculation of extrinsic parameters with rotation angle
θ is detailed in Appendix C. As a result, to obtain the extrinsic
parameters, the rotation steps between of all profiles should be
known.

4.2. Determination of rotation step

In the fluid channel, wear particle rotates due to the viscous
drag of the lubricant. According to the observation of 192 wear
particles from six videos, 169 (88%) particles are rotating in the
channel, while the rest are not. This result agreed with those re-
ported in [12]. Since the lubrication flowing speed is constant, the
particle rotation is consequently stable. In particular, among the
rotating particles, 66% are rotating with approximately constant
speed, while the rest particles rotate with random speed. Fig. 3
(b) presents the tracked profile sequences of a rotating particle. To
determine the rotation of each particle profile, the frame series
corresponding to one rotation cycle will be extracted first; the
rotation angles of those extracted profiles then will be estimated.

As the wear particles are rotating in the channel, the features of
the wear particles in the frame would vary periodically. Frames
with similar morphological features to the first captured frame are
identified as the initial frame of each subsequent rotations. Based
on the tracking results shown in Fig. 3(b), the process to identify
the image series of one rotation cycle is presented as follows:

a. The first frame of the tracked result shown in Fig. 3(b) is
regarded as the initial frame of the first rotation cycle.

b. The subsequent frames are compared with the initial frame by
differentiating the invariant moments (IM) of the image, which
is a commonly applied imaging matching approach [30]. The
frame with the closest IM value to that of the first frame is
regarded as the matched one and is set as the initial frame for
the next rotation cycle. The differential result of the tracking
series to the initial frame is shown in Fig. 5 (a). As observed,
the 17th frame is matched.

c. Finally, any frames before the matched frame will be labelled
as the frames in the first rotation cycle, as shown in Fig. 5 (b).

After the particle profiles within one rotation cycle are ob-
tained, we can estimate the rotation step size. As the wear particle
is rotating, it will display different profiles in the video. The
morphological discrepancy between two neighbouring frames
therefore is used to approximate the rotation angle. To char-
acterise the profile information carried by a frame fi, six mor-
phological features including area, minor axis, aspect ratio, ec-
centricity, perimeter, equivalent diameter are incorporated to
formulate a morphological vector, mfi. The rotation angle θ̄i
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Table 1
Rotation angle of image series in Fig. 5(b).

Frame 1 2 3 4 5 6 7 8

θ̄ °/ 0 35.4 54.8 81.9 101.3 121.0 129.1 147.6
Frame 9 10 11 12 13 14 15 16
θ̄ °/ 168.2 189.6 212.9 249.2 295.2 308.5 313.6 348.2
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between frame i-1 and frame i is then calculated as

θ̄ ≈
∥ − ∥

∑ ∥ − ∥
× ° = …

( )

−

= +

i N
mf mf

mf mf
360 , 2, 3, , ,

5
i

i i

j
N

j j

1 2

1 1 2

where N is the number of frames in the rotation cycle; and θ̄1 is 0.
The rotation step sizes θ̄ of the frame series shown in Fig. 5 (b) are
listed in Table 1.

With the approximated rotation step size θ̄ , the extrinsic ma-
trix of a particle in different views can be determined. As a result,
the volumetric reconstruction of the 3-D wear particle can then be
performed.

4.3. Particle reconstruction by volume intersection

Volume intersection is the combination of particle cross-sec-
tions from different views. This method is regarded as a reversal
process of the image capturing from an object [23]. By projecting
the inner area of particle profiles to 3-D world, one can determine
the shape of 3-D particle. Detail description of the volume inter-
section can be found in Appendix C. The process of 3-D wear
particle reconstruction is presented in this section.

4.3.1. Configuration of camera and initial volume
The voxel carving of wear particle is based on the frame series

shown in Fig. 5 (b). The carving operation will be conducted with
16 particle silhouettes. The configuration of camera and initial
volume is presented in Fig. 6. In order to conduct the projection
from the initial volume to the silhouette, V is digitalized to a

× ×Q Q Qr r r discrete matrix VD, where Qr denotes the number of
points in each edge. A larger Qr allows for more details in the
carved particles, but the calculations involved would be more
computationally expensive. Therefore, Qr is set as 100 in our al-
gorithm to achieve a balance between particle details and com-
putational efficiency. The initial volume is then represented by
some basic regular tessellation of cube, known as voxels: ν( )x y z, , .

4.3.2. Space carving with one silhouette
The carving process starts from the carving of VD by the first

silhouette and camera, as shown in Fig. 7. Based on the camera
parameters, the voxels ν( )x y z, , in VD are projected back into the
image plane with the geometric relationship detailed in Appendix
C, which will result in a pixel μ υ( )p , . If the projected pixel p lay
outside the silhouette, the corresponding voxel ν is regarded as an
irrelevant part in the volume and will be carved. In contrast, the
relevant voxels will be maintained. By repeating the projection
with the rest of the voxels, the remaining volume is the carved
result under this silhouette, as shown in Fig. 7.

4.3.3. Space carving with the all the silhouettes
Similar carvings are performed based on the rest of silhouettes.

The final carved result is shown in Fig. 8(a). Details of the re-
mained volume in different views are presented in Fig. 8(b). The
remaining volume is the approximation of the wear particle. The
reconstruction results of several different particles collected from
four-ball machine and spur gear box are also given in Fig. 8 (c)–(d).
The 3-D features of the reconstructed particles are extracted and
listed in Table 2. Parameters L, W, H and V represent the length,
width, thickness and volume of a particle separately. AR denotes
the aspect ratio. ( )Height Aspect Ratio HAR is the ratio of the max-
imum dimension to thickness. Compared with traditional 2-D
particle indicators AR, HAR allows us to identify whether the



(a) (b)

(c)
c-1 c-2 c-3 c-4 c-5

(d)
d-1 d-2 d-3 d-4 d-5

Fig. 8. Space carving with 16 silhouettes, (a) camera configuration and final carving result; (b) amplification of the carving result in different views; (c) reconstruction of
particles from four-ball machine test rig; (d) reconstruction of particles from gear test rig.

Table 2
Detail dimension of 3-D reconstructed particle in Fig. 8(b), (c) and (d).

Reconstructed particle in Fig. 8 ( )μL m ( )μW m ( )μH m ( )μV 10 m3 3 AR HAR Computation cost (s)

b 83.65 42.93 31.92 34.26 1.94 2.62 6.182
c-1 31.92 25.70 13.90 4.66 1.24 2.29 4.345
c-2 40.72 19.81 18.71 7.19 2.05 2.17 4.485
c-3 47.32 39.62 20.91 17.74 1.19 2.26 5.732
c-4 46.23 44.03 43.95 41.20 1.04 1.06 6.104
c-5 73.74 52.83 36.32 64.09 1.39 2.03 7.468
d-1 28.62 17.61 15.41 3.03 1.62 1.86 4.583
d-2 29.72 22.01 11.50 3.23 1.35 2.58 7.967
d-3 46.22 28.62 18.71 8.10 1.61 2.47 9.407
d-4 42.93 39.62 27.80 26.30 1.08 1.54 9.389
d-5 57.23 33.02 26.42 21.44 1.73 2.16 8.794
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particle is in chunk or laminar shape with the information of
thickness. As is known, the fatigue particles which are often
generated by crack propagation, are in a chunk shape, while the
laminar particle could be produced by the pressing between
contacting surfaces [31]. Due to their wear mechanisms, the dis-
tinctive feature between them is their thickness. Unfortunately,
the traditional 2-D descriptors such as roundness and aspect ratio
do not contain the thickness information and thus cannot be used
to identify the particles.

As can be observed from Table 2, the proposed method can be
applied to investigate particles in more than one view angle,
which allows us to differentiate particles with distinct features in
thickness. For instance, the two particles shown in Fig. 8(c) can be
identified: c-1 is more similar to a laminar one while c-4
approximates a spherical particle. Merely considering 2-D in-
dicator AR, the difference is 16%, which is not very significant. In
comparison, the difference between their 3-D features, described
using the HAR, is about 54%, which will help us to recognise their
actual difference. A similar result can also be obtained from par-
ticles c-3 versus c-4 and c-5 versus d-5. As a result, together with
AR, the value of HAR allows to estimate the closeness of a particle
to laminar shape. For instance, a smaller HAR may result from a
particle as a chunk instead of a thin platelet.

In addition, according to the computation time needed in the
reconstruction process listed in Table 2, the processing of a particle
cost approximately 10 s. The speed is acceptable, since the video
will generally be processed during the sampling interval, which is
much longer than the length of the video.
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Fig. 9. Verification of wear particle reconstruction.

Table 3
Motion steps of simulated particle.

Direction Cutting particle Laminar particle Sphere particle

Mean Variance Mean Variance Mean Variance

( )T pixelx 10 5 16 8 6 3

( )T pixely 2 2 1 2 1 2

( )T pixelz 0 0 0 0 0 0

(°)Rx 0 5 0 5 0 5

(°)Ry 20 5 10 5 15 5

(°)Rz 0 5 0 5 0 5
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5. Verification of the method

In this section, we describe a set of experiments performed to
verify the performance of the proposed method. First, typical vir-
tual particles are generated as benchmark. In addition, a particle
video is simulated by controlling the motion parameters of particle
in fluid channel. Finally, the proposed method is applied to obtain
3-D reconstruction of virtual particles. The method is evaluated by
comparing the reconstruction result and their corresponding vir-
tual particle. The procedures of the verification are illustrated in
Fig. 9.

5.1. Generation of virtual wear particles

An suitable process to evaluate the reconstruction is to com-
pare a reconstructed particle with their respective references,
when the 3-D morphologies of the references are known. How-
ever, as opposed to measuring the morphology of natural objects,
measuring the wear particles in fluid channel could be very
challenging. This prevents the relevant information on the re-
ference particles to be obtained. Virtual particles are used to
overcome this challenge. For our experiment, three virtual parti-
cles are generated by referring 2-D features of typical particles, as
shown in Fig. 9. These simulated wear particles are then used as
the reference in the verification process.

5.2. Video simulation with multiple moving particles

With the 3-D wear particle simulated, the next step is to gen-
erate a video simulating the particle motion in a fluid channel. In
particular, the motions are simulated by controlling the motion
parameters of particles in six degrees of freedom, including Tx, Ty,
Tz, Rx, Ry and Rz, where x is the direction of flow, z is the direction
towards the camera, y is the direction perpendicular to both x and
z, T denotes translation of the particle and R denote rotation of the
particle. Because the distance between the particle and the camera
is much larger than the channel thickness, Tz is approximately zero
through out the video. Therefore, the translation motion is applied
only in the directions of x and y. Since most of the wear particles
are observed rotating along the y direction, the mean value of the
particle rotation along x and z direction are both set as zero. Three
different rotation step in y direction are applied to each particle
separately. In addition, noise is also added to each motion para-
meter to simulate the unknown disturbance. The motion para-
meters are detailed in Table 3. Finally, a simulated video of wear
particles flowing in a fluid channel is synthesized according to the
given motion parameters. A frame of the simulated video with
three particles is shown in Fig. 9.

5.3. 3-D reconstruction based on the simulated video

The simulated video is regarded as the input to the re-
construction of 3-D wear particles. The particles in the simulated
video are detected and tracked to obtain the frame series of each
particle in different views. Then the 3-D reconstruction of each
particle is conducted based on the frame series. The reconstruction
results are shown in Fig. 9. As shown in the figure, typical particle
features have been recovered. The difference between the final
reconstruction results and the original simulated particles are
recorded in Table 4.

As shown in the reconstruction results of the simulated parti-
cle, most of the morphological information, including length,
width, thickness and aspect ratio are recovered with good accu-
racy. As a result, the extraction of 3-D indicator, HAR is acceptable.
However, it can be observed that the feature V indicates relative
larger difference compared with the rest features, especially for
cutting particle and laminar particle (16%). The main reason of
these distinct discrepancies can be understood with the fact that
the error in computing V is an accumulation of measuring the



Table 4
A comparison between the simulated particles and the reconstructions .

Features Cutting particle Laminar particle Sphere particle

Error Error Error

( )μL m 136.58 135.38 0.88% 102.36 94.66 7.52% 95.76 92.45 3.46%

( )μW m 48.43 44.03 9.09% 68.24 61.64 9.67% 70.44 68.24 3.12%

( )μH m 26.42 24.20 8.40% 19.81 20.52 3.58% 63.83 62.74 1.71%

( )μV 10 m3 3 5.14 4.29 16.54% 10.26 8.61 16.08% 33.04 31.16 5.69%

AR 2.82 3.07 8.87% 1.50 1.53 2.00% 1.36 1.35 0.74%
HAR 5.21 5.59 7.29% 5.17 4.61 10.83% 1.50 1.47 2.00%
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other three features including L, W and H. As a result, the accuracy
of wear rate estimation will be affected. Nonetheless, the identi-
fication of laminar particle, chunk particle and sphere particle can
be accomplished.
6. Discussion

A strategy for 3-D wear particle characterisation is presented.
By incorporating particle profiles in multiple views, we can in-
vestigate the thickness and volume information, which are not
available by current particle examination approaches based on 3-D
images. In particular, this system is composed of three automatic
methods including particle extracting, particle tracking and par-
ticle reconstruction. According to the robust and efficient real-time
performance of those methods in their own area, the developed
system is regarded as a potential option for on-line 3-D wear
particle characterisation. Compared with the conventional 3-D
particle imaging techniques, such as LSCM and SEM, the advantage
of this method is that it can capture particle images in different
views so the contour information such as particle thickness, can be
obtained. However, the on-line image often does not contain
sufficient surface information for surface characterisation.

The application of on-line visual ferrograph has validated the
feasibility of on-line particle investigation with imaging strategies
[17]. According to the analysis results obtained in laboratory using
a four-ball machine and a spur gearbox, this method is also able to
give particle morphology information in a short time. Due to the
limited image resolution, this method allows to examine the
morphology of the particles larger than 30 μm. For the small
particle less than 30 μm, only particle number can be counted.

In addition, its performance will be affected by image with low
quality (normally caused by oil contamination and particle motion),
which can be commonly found in some industrial scenario such as
the gear box of wind-turbine and marine engine. Therefore, future
work will be carried out in on-line wear particle image restoration
and enhancement. Although these issues have been rarely addressed
in particle image analysis, numerous image processing techniques are
available to restore the lost information caused by motion blurring,
defocus blurring and contamination [32]. As a result, image restora-
tion and improvement, which have succeeded in related areas, will be
conducted to improve the particle image quality.
7. Conclusions

We have presented a video based system for fast 3-D re-
construction of wear particle from 2-D profiles. The objective of this
method is to improve the performance of wear particle analysis in
on-line condition monitoring by offering more comprehensive wear
particle information. The input to our system is wear particle images
from multiple views. The main system processes are: 1) dynamical
particle extraction with Gaussian mixture modeling; 2) multiple
particle tracking for information extraction from individual particle;
3) volumetric reconstruction of wear particle from multiple views.
Firstly, the GMM particle extraction method overcame the challenges
from illumination variations caused by the deterioration and con-
tamination of lubricant oil. With the adaptability, this method well
suited for different cases. Furthermore, image information of in-
dividual particle can be automatically extracted by the particle
tracking method developed. Finally, wear particle information is ex-
tended to the third dimension by reconstructing the required 3-D
features. Compared with other particle imaging approaches, this
method can provide the thickness information as well as particle
volume which can be used to estimate the material loss and wear
rate. The automatic process allow fast 3-D particle characterisation,
and even make it a potential option for on-line monitoring. However,
since our model was only experimented on simulated data for on-line
monitoring tests, further verification on industrial machinery is ne-
cessary to confirm its capability.
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Appendix A. Detail process of GMM based particle
segmentation

Gaussian mixture modelling of pixel intensity

The intensity of a pixel { }x y,p p in on-line particle video can be
considered as a process { … }, , t1 . At time t, the probability of
observing t at { }x x,p p can be modelled by a mixture of Gaussian
distributions as

( )( ) ∑ μ Σ= ×
( )=

P X w , .
A.1

t
j

j t j t j t j t
1

, , ,

Where wj t, is the weight of the jth Gaussian j in the mixture at
time t; μj t, and Σj t, are the mean and covariance of j in the
mixture at time t; is the number of Gaussian considered, which
is set as 3 in our case.

To guarantee computational efficiency for on-line analysis, the
color components, ∈ { }c R G B, , ,c t, , of each pixel are considered
independent but share the same variance. Therefore, the covar-
iance matrix is defined as



lubricant is constant, the motion velocity of wear particle is also
approximated as constant. Therefore, A is defined as a constant
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Σ σ= ( )I, A.2j t j t, ,
2

where I is a 3�3 unit matrix, σj t,
2 is the unified variance. As a

result, the intensity distribution of a recently observed pixel is
modelled by a mixture of Gaussian functions.

Pseudo code of GMM based wear particle segmentation
Algorithm 1. Pseudo code of GMM based wear particle segmen-
tation.
Input: Pixel intensity at time t, t
Output: Pixel label
1: // Initialization
2: Set model weight: ω = ( = )j0, 1, 2, 3 ;j,0

3: Set model means: μ = × ( = )j j, 1, 2, 3 ;j,0
256

4

4: Set model variance: σ = ( = )j30 , 1, 2, 3 ;j,0
2 2

5: for t¼1; ++t do
6: // Background Gaussian estimation
7: Sort the Gaussian distributions by the ratio ω

σ2

in descending order;
8: The largest B Gaussians are marked as

background distributions b by: = ≥
ω

ω

∑

∑

=

=

⎛
⎝⎜⎜

⎞
⎠⎟⎟B arg min 0.7b

j
b

j t

j j t

1 ,

1
3

,
;

the rest Gaussians are marked as f ;
9: for j¼1; ≤j 3; ++j do
10: // Model matching
11: if μ σ| − | ≤− −2.5t j t j t, 1 , 1

2 then
12: = = +M N N1, 1;j t mg mg,

13: if ∉ { }j b then
14: Pixel label¼1;
15: end if
16: else =M 0j t,

17: end if
18: // Model updating
19: ω α ω α= ( − ) +− M1 ;j t j t j t, , 1 ,

20: μ μ μ ρ= + ( − )− − M ;j t j t t j t j t, , 1 , 1 ,

21: σ σ μ μ= + [( − ) ( − )]− Mj t j t t j t t j t j t,
2

, 1
2

,
T

, ,

22: end for
23: if Nmg¼0 then
24: update the Gaussian with least ω

σ2
by: μ σ= =, 30 ;t

2 2

25: else
26: Nmg¼0
27: end if
28: end for

to be a zero mean multivariate Gaussian distribution with covar-
iance Qt . | −Pt t 1 is the variance associate with the prediction.

Measurement

With the particle segmentation result, three particle indicators
including Cx

t, Cyt and t are extracted to form observation Zt of the
particle at time t. Therefore, the observation step is defined as:

= + ( )z Hx v , B.4t re t t,

where xre t, is the true state of the particle at time t; vt is mea-
surement noise which is assumed to be zero mean Gaussian white
noise with covariance Rt; H is the measurement matrix as:

=
( )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥H

1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0

.
B.5

Correction

The observation of particle state will then be incorporated to
correct the prediction result, by

= + ( ) ( )
| − | − −⎡⎣ ⎤⎦K P H R H P H , B.6

t t t t t t t t1 T 1 T 1

( )= + − ( )
| | − | −x x K z Hx , B.7

t t t t t t t t1 1

( )= − ( )
| | −P I K H P , B.8

t t t t t 1

where Kt is Kalman gain, |xt t is the corrected state, |Pt t is the
corrected variance.
Appendix B. Detail process of wear particle motion estimation
Prediction

The estimation of particle motion is started by predicting the
potential position of a particle in time t with its determined po-
sition in time −t 1, which is known as prediction. The prediction
process is conducted as

= + ( )| − − | −x Ax W . B.1t t t t t1 1 1

= + ( )| − − | −P AP A Q , B.2t t t t T t1 1 1

where A is the state transition matrix which is determined by the
moving features of the particle. As the flow velocity of the
velocity model which is given as

=

( )

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥⎥

A

1 1 0 0 0 0
0 1 0 0 0 0
0 0 1 1 0 0
0 0 0 1 0 0
0 0 0 0 1 1
0 0 0 0 0 1

.

B.3

Wt is the process noise of each parameters in state, it is assumed
Appendix C. Detail information of theory used in 3-D wear
particle reconstruction

Intrinsic parameters

In application, the intrinsic parameters of a camera is re-
presented by a 3�3 matrix :

α α μ

β υ=
− ϑ

ϑ
( )

⎡

⎣
⎢
⎢
⎢

⎤

⎦
⎥
⎥
⎥

cot

0 /sin

0 0 1

,

C.1

0

0

where α, β and ϑ are parameters representing optical properties of
a pixel; μ0 and υ0 are the principle point in the images [29]. After a
calibration process, the intrinsic parameters for the imaging device
used in our study is determined as: α β π= = ϑ =1744, 1862, /2.
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The intrinsic matrix allows a sense point = [ ]x y z, , , 1C c c c T in
the camera coordinates to be projected as a pixel, μ υ= [ ], , 1 T, in
the image coordinates, by:

=
( )

⎡⎣ ⎤⎦
Z

0
1

.
C.2C

C

Extrinsic parameters of camera ci

With the extrinsic parameters, the sense point W in the world
coordinates can be projected to a point C in camera coordinates
by the following transformation:

= =
( )

× ×⎡
⎣⎢

⎤
⎦⎥0 1

,
C.3

C
E
W

W
3 3 3 1

T

where, E is the extrinsic parameter matrix; ×3 3 is a rotational
transformation matrix; and ×3 1 is a translational vector.

As shown in Fig. 4, two groups of coordinate base are included,

the word coordinates = ⎡⎣ ⎤⎦i j k, ,W W W W T
and the camera co-

ordinates = [ ]i j k, ,C C C C T. The position and orientation relation-
ship between the two coordinate systems will be explained as
following. The camera principle point in world coordinates forms
the translational vector in Eq. (C.3). The inner product of the

two coordinates bases, [ · ]W C T
forms the rotational matrix ×3 3 in

Eq. (C.3). For example, The extrinsic parameters of the first camera
c0, as shown in Fig. 4, can be written as:

=
( )

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥0 1
,

C.4
E

C
W

T

0 0
0

where

= [ · ] = [ − ] ( )d, 0 0 . C.5C
W

W C T
0

T0 0

E
0 represents the extrinsic parameters of the camera c0, d is the

distance between the original point of the two coordinates, which
is set as 1 in this system.

As shown in Fig. 4, the extrinsic parameters matrix, E
i of the

ith camera rotating by θ about the kW axis can be achieved by
multiplying θ( )k

( )
( ) ( )
( ) ( )θ
θ θ

θ θ= −

( )

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

cos sin 0

sin cos 0

0 0 1

.

C.6

k

In particular,

( )θ= · ( ), C.7
C

W
C

W k
i 0

( )θ= · ( ). C.8i k 0

As a result, with a known rotation angle θ, the extrinsic matrix of
the ith camera, E

i can be determined.

Principle of space carving

The operation of space carving, is accomplished as a projection
process. The space where the object is known to be contained is
given as initial volume V. For a particular camera ci, any world
point W in V can be projected as a pixel the image plane of ci,
by
=
( )

⎡
⎣⎢

⎤
⎦⎥Z

0
1

,
C.9C i Ei

W

where i and Ei are the intrinsic and extrinsic parameters of
camera ci determined in Section 4.1. If the projected pixel is
located in the inner area of the particle profile in camera ci, then
the corresponding point W is regarded as part of the 3-D particle
and remained. In the contrary, the point W , which projection is
located outside the particle profile in camera ci, is discarded. The
remaining point of volume Vi, is called the carved result under the
camera ci. With new camera cj incorporated, new carved result Vj

can be obtained. The intersection of Vi and Vj is the carved result
under camera ci and camera cj.

As a result, for a carving process with n camera involved, the
final intersection result can be obtained by

= ∩ ∩ ⋯ ∩ ( )V V V V . C.10f n1 2

The final intersection result Vf is regarded as the 3-D approxima-
tion of the original object.
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