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A B S T R A C T

Wear debris analysis (WDA) is an effective machine health monitoring technique in which wear debris attributes
can reveal wear mechanisms and particle colours can be used to detect oxidation. However, most of the existing
approaches to WDA are based on analytical ferrography. Online wear debris typing is still difficult to achieve
because of the low resolution of online particle images. In this work, a hybrid search-tree discriminant technique
is described. It permits identification of online wear particles by combining their colour attributes and multi-
view particle features. A multi-class support vector data description multi-SVDD, the K-means and a support
vector machine SVM are integrated to establish a three-level search-tree model to discriminate multivariate wear
debris including red and black oxides, cutting, spherical, fatigue and sliding particles. First, the oxides are
identified based on their special colour information using the multi-SVDD. Second, the K-means is used to look
for the clustering centres of cutting and spherical particles by utilizing their distinct features of aspect ratio and
sphericity. The third level built by SVM is adopted to distinguish fatigue and sliding particles based on their
height aspect ratio and height-to-width aspect ratio. Experiments have demonstrated that the search-tree dis-
crimination model is effective for multivariate wear debris classification. The proposed method provides a so-
lution to the existing problems in online wear particle identification for wear mechanism analysis.

1. Introduction

Condition based maintenance (CBM) is an important research topic
of machine condition monitoring, which has great potential benefits
and savings by reducing maintenance cost, limiting machinery damage
and avoiding production loss [1]. Therefore, various CBM techniques
have been investigated, including vibration analysis, acoustic emission,
oil analysis and (wear debris analysis WDA) [2–5]. In particular, wear
debris carries useful information about machine wear status. This
methodology has been recognised as one of the most effective methods
of CBM [6]. However, to accurately reflect machine health conditions, a
large amount of wear particles need to be collected, examined and
identified based on their morphological and compositional attributes
[7].

The WDA technique has been extensively explored to identify ma-
chine failure modes in terms of wear particle size, shape and material
characteristics. Attempts of wear particle classification using image
processing techniques have been made to assess wear mechanisms [8].

Correspondingly, various automated classifying tools have been de-
veloped for wear debris identification so that a more objective, efficient
and consistent approach can be used to replace the manual classifica-
tion which often relies on experience and can be subjective, labour
intensive and tedious. For example, the computer aided vision en-
gineering CAVE system employs Fourier, curvature and/or fractals
techniques to extract the shape, edge and surface details to characterize
wear particles and classify them using a neural network [9]. However,
the CAVE system was not adopted in practice due to its complexity. In
addition, standard image processing techniques used in the CAVE have
difficulties in separating overlapping particles in poor-quality images.
In order to deal with the above issues, CAVE was further developed as a
new classifier, that is, the systematic classification of oil-wetted parti-
cles SYCLOPS [10]. The system was used in detecting early failure in
helicopter gearboxes. The particle characteristics were manually se-
lected and fed to the SYCLOPS for wear debris classification, in which
process, human input was needed. Also, the CAVE and SYCLOPS sys-
tems both depended on wear debris features extracted from two-
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dimensional images.
It is known that three-dimensional (3D) features, in particular, the

thickness information, are very useful for identifying wear particles
which have similar features on their dominant surfaces but different
heights (thicknesses). Therefore, stereo scanning electron microscopy
SEM, laser scanning con-3 focal microscopy LSCM and atomic force
microscopy AFM are applied to obtain 3D features including high re-
solution surface information and the thickness of wear debris [11–13].
Based on this, cutting, fatigue and spherical wear particles were iden-
tified using a fuzzy grey system or an expert system [14,15]. Moreover,
fatigue and severe sliding wear particles can be distinguished based on
their surface and texture information [16]. Thus, offline WDA is widely
used to infer wear mechanisms through wear particle classification.

For the purpose of wear mechanism assessment, online wear par-
ticle classification methods are investigated. With online oil and wear
debris monitoring, an online visual ferrograph OLVF sensor was de-
veloped to capture wear particles in online condition monitoring [17].
By utilizing the colour information, copper, iron and aluminium par-
ticles were identified [18]. An online wear particle classification model
was also established using a neural network to distinguish normal,
cutting, fatigue and severe sliding wear debris [19]. However, in-
dividual particles were not easily available because images of over-
lapping particles were commonly captured with OLVF. Hence, online
wear debris recognition still remains as a main challenge. To overcome
the drawback of particle overlap, a LaserNet Fines LNF system was
developed [20]. A laser imaging-based flow-free cell was designed to
capture wear particles suspended in lubricating oil, making it possible
to measure the particle size and shape features. A neural network was
then used to classify the types of wear debris. However, black-and-
white laser images captured by the LNF cannot provide colour and have
limited surface information [21]. In addition, as found in other existing
systems, two-dimensional (2D) particle images were captured without
3D morphological information such as thickness, making the identifi-
cation of certain types of wear debris difficult or infeasible.

In order to further develop wear mechanism analysis capability, the
accuracy of online particle classification needs to be improved. To
achieve this goal, an online recognition method is proposed to classify
multivariate wear particles including oxides, cutting, spherical, fatigue
and sliding wear debris. Due to the difficulties in online characteriza-
tion of different types of wear particles, an identification model is es-
tablished based on integrated feature information and a search-tree
multivariate discriminant analysis technique. The target particles are
divided into three groups, that is, red-black oxides, cutting-spherical
particles and fatigue-sliding particles. The colour and 3D morphological
features of wear debris are used for particle classification. A multi-
SVDD, a K-means clustering algorithm and a SVM are integrated into a
three-level search-tree discrimination model for particle classification.
The performance of the proposed identification method is evaluated
using more than 200 wear particle samples.

The rest of this paper is organised as follows. The characteristics of
online wear particles are reviewed in Section 2. The search-tree dis-
crimination technique based particle classification method is detailed in
Section 3. Experiments are described and the discussion of results is
presented in Section 4. Finally, conclusions are drawn in Section 5.

2. Characteristics of online wear particles

Images of six typical wear debris, namely, red and black oxides,
cutting, spherical, fatigue and sliding particles, were captured using an
analytical ferrograph and a dynamic particle imaging system (DPIS)
[22] and they are shown in Fig. 1(a) and (b) respectively. It can be seen
that the ferrograph images are able to show the contour and surface
details of the particles. In contrast, only fuzzy contour and surface in-
formation of the online wear particles are obtained. The poor image
quality may result in low accuracy of online particle identification. For
instance, fatigue and sliding particles are hard to be distinguished when

they have similar size and shape features, as shown in Fig. 1. Offline
ferrograph analysis provides shape and texture features to identify the
two types of wear debris. However, it is not feasible to extract the
surface details of wear debris from fuzzy images, as shown in Fig. 1(b).
This is the reason why detecting faults of fatigue and sliding particles
identification is often conducted in a multi-class classifier established
by a neural network and/or an expert system [23]. Due to the poor
quality of online particle images, it is necessary that appropriate in-
telligent algorithms are developed according to the particle properties
for multivariate debris classification.

Firstly, in terms of the characteristic attributes of the above six wear
particle types, oxides can be detected using their distinctive colour in-
formation. Secondly, compared to other particles, the cutting and
spherical particles have their own characteristic features, aspect ratio
AR( ) and sphericity (S) respectively. The last two particle types, fatigue
and sliding particles, are difficult to be distinguished due to their si-
milar shape features as mentioned above. On the other hand, these two
types of particles have differences in their heights (i.e., thickness), as
shown in Fig. 2.

In general, the height aspect ratio HAR( ) and the height to width
aspect ratio HWAR( ) of sliding particles are higher than those of fatigue
debris [6]. Based on this, online recognition of fatigue and sliding
particles can be achieved. Finally, all five types of particles are divided
into three groups, ‘red-black oxides’, ‘cutting-spherical particles’, and
‘fatigue-sliding particles’, according to the identification sequence. The
colour and the geometric features quantified using
AR S HAR HWAR, , and are employed in this classification process, as
shown in Fig. 3. The development of a wear particle classification
method for identifying six wear debris types into three groups is pre-
sented in the next section.

3. A hybrid search-tree discrimination model for multivariate
debris classification

In order to improve the accuracy of online wear particle recogni-
tion, a three-level search-tree discrimination model for six kinds of wear
particles classification is established by combining three intelligent al-
gorithms of multi-SVDD, K-means and SVM. An illustration of the
search-tree discrimination method is shown in Fig. 4. It can be seen that
all wear debris samples include oxides and non-oxides, which can be
divided into cutting, spherical, fatigue and sliding particles. It also can
be found that the cutting, spherical, fatigue and sliding particles are
recognised using two classification algorithms including K-means and
SVM based on their 2D and 3D shape features. Whereas, the oxides can
be identified only based on their special colour information using the
multi-SVDD classifier. Therefore, the oxides should be firstly identified
to make the search-tree structure be simpler. The multi-SVDD is de-
veloped to discriminate the oxides due to the fact that it is an un-
supervised clustering algorithm and can obtain a satisfactory training
result with only a few samples [24]. The second level of the hybrid
model is to identify cutting particles with a long, curved shape and the
sphere-like particles (spherical particles) using AR and S. A clustering
algorithm of K-means is employed to automatically classify a large
number of wear debris data to look for their cluster centres as their
recognised criteria. Finally, a binary classification algorithm, SVM, is
applied to distinguish fatigue chunks and severe sliding particles using
HAR and HWAR. The principles of above three classification algorithms
are described in the following subsections.

It needs to be mentioned that the HAR and HWAR are numerical
parameters to describe particle features at different views. Therefore,
the proposed classification model is aimed at the analysis of wear debris
whose thickness information is available. However, the contour of on-
line wear debris captured under dynamic particle imaging conditions is
generally fuzzy, making the shape features of small particles indis-
tinguishable. Hence, this work is focused on detecting wear particles
whose major dimensions are larger than 40 μm according to the image
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resolution and pilot experience.

3.1. Multi-class classifier established by support vector data description
(multi-SVDD)

Multi-SVDD is the refinement of support vector data description
SVDD which is a binary classification algorithm. The SVDD aims to look
for a closed space, super-sphere, to contain all the same type of data
[25]. That means a central point (o) and a radius (R) need to be con-
firmed.

Suppose that samples xi, = …i N1, 2, , , N is the sample number, is
contained in a super-sphere. Thus, the following constraint condition is
imposed,

− ≤x o R.i (1)

However, the practical samples are distributed unevenly. The radius

may be too large if all samples are enclosed in the super-sphere. To
avoid this problem, a relaxation factor ξ( ) is applied to adjust the super-
sphere boundary. Then the constraint condition is modified as

− ≤ + ∀ >x o R ξ i ξ, , 0,i i
2 2 2 (2)

and it needs to meet the minimum requirement

∑⎡

⎣
⎢ + ⎤

⎦
⎥R C ξmin ,

i
i

2

(3)

where C is a coefficient. Eq. (2) can be optimized using the Lagrangian
multiplier method, that is,

Fig. 1. Typical wear debris images captured by an analytical ferrography and the DPIS respectively: (a) ferrograph images and (b) online particle images. (For interpretation of the
references to color in this figure, the reader is referred to the web version of this article.)

Fig. 2. Different viewing images of the fatigue and sliding wear
debris: (a) sliding particle #1, (b) sliding particle #2, (c) fatigue
particle #1, and (d) fatigue particle #2.

Fig. 3. Systematic diagram of wear particle classification method
proposed in this work.
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where, α and γ are both Lagrangian coefficients, and ≥α 0i , ≥γ 0i .
In order to acquire the minimum radius, the L R o α ξ( , , , ) should be

minimum. Then we have

∑ ∑= −
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i j

N

i i j
i j

N

i j i j
, 1 , 1 (5)

The samples are regarded as support vectors when they satisfy Eq.
(5) and ≠α 0i . A new captured sample (z) can be regarded as the target
object of a super-sphere if the distance between it and the central point
o is less than the radius R. Hence, an identification model of the target
samples is established as

∑ ∑− + ≤
= =

z α zx α α x x R2 ( ) ( ) .
i

N

i i
i j

N

i j i j
2

1 , 1

2

(6)

In order to separate red and black oxides from other wear debris,
every subclass of the SVDD needs to be further divided to build a multi-
class classifier, that is, multi-SVDD, as shown in Fig. 5. Three different
types of objects are displayed in the figure. Points a a,1 2 and a3 are their
clustering centres; lengths R R,1 2 and R3 are the super-sphere radii.
More details about red-black oxide wear debris identification using
multi-SVDD can be found in [26].

3.2. K-means clustering algorithm

The principle of K-means based recognition modelling can be de-
scribed in the following [27].

(1) The particle data is set as …x x x, , , m1 2 where m is the number of
samples.

(2) The collection of k samples are randomly selected as initial clus-
tering centres, … ∈c c c, , , .k1 2 .

(3) The distances between the debris samples and the k centres are
calculated. If a distance is the minimum, particle-i and the centre
sample-j are regarded as in the same cluster. All the particles are
divided into k groups. The shortest distance D( )i is computed as

= − ≠D x c i j, ,i i j (7)

where = …i m1, 2, , i and = …j m1, 2, , j.
(4) The sample mean values of all clusters are calculated and set as new

centres ′cj , which is

∑′ =
=

c
m

x1 ,j
i

m

i
j

1

j

(8)

where mj and xi
j are the number of samples and the objects in the j-

th cluster respectively.
(5) Steps (3) and (4) are iteratively implemented. The computations

stop when the new centres ′cj are close to the previous cj, which can
be expressed as

│ ′ − │ =c c ϵ,j j (9)

where ϵ is a threshold determined from pilot experiments.

The clustering centres can be obtained after the above iterative
operations, and an example of particle clustering result is shown in
Fig. 6. The centre points of different debris bunch are labelled with
symbol ⊗. An optimal criterion, the shortest distance between a new
captured sample and the centres, is used to decide which class the
particle belongs to.

Fig. 4. A hybrid search-tree discrimination model for multi-variable particles classifica-
tion.

Fig. 5. Clustering results of the multi-SVDD.

Fig. 6. An example of particle clustering using the K-means algorithm.
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3.3. Support vector machine (SVM)

SVM is suitable for non-linear and high dimensional pattern re-
cognition only using small samples, and has been widely employed in
face recognition, gene classification and time series prediction [28–30].
In particular, the SVM has remarkable robust performance and its
simple structure and high calculation speed meet the requirements of
online wear particle classification. Fig. 7 shows two types of particle
samples, and the two particle sets are separated by the line H. Lines H1
and H2 are parallel to line H. The SVM algorithm aims to look for the
optimum line H to make the distance (Margin) between lines H1 and H2
be the maximum [31], which can be described as below.

Assume that the samples are expressed by = …x y h q( , ), 1, 2, ,h h ,
and q is the number of samples. The equation of line H is

+ − ≥y wx b( ) 1 0.h h (10)

where w is a coefficient and b is a constant. Hence, the Margin can be
calculated by

=
∥ ∥w

Margin 2 .
(11)

If a line satisfies Eq. (11) and the value of∥ ∥w is the minimum, the
Margin of the line to its parallel lines is the maximum accordingly [31].

4. Testing results and discussion

In order to evaluate the performance of the development, the hybrid
search-tree classification model was trained using 200 classified parti-
cles. Afterwards, 30 particle samples, as shown in Fig. 8, were used to
verify the effectiveness of the trained model. In order to display the
debris clearer, two views of each particle including front and side views
are provided.

The feature parameters, hue H( ) and intensity I( ) of colour com-
ponents, and AR S HAR, , and HWAR of the particles were extracted
and are shown in Table 1. The colour information was extracted from
the front view images. To verify the effectiveness of the hybrid sear-tree
discrimination model, the features in Table 1 were used as the testing
data, and the classification results are as follows.

The first step was to identify oxide wear debris. As shown in Table 1,
the red and black oxides have their own special properties compared
with other wear debris. The red and black oxides both have small in-
tensity values which are in the range of [20, 90]. Moreover, the H
component [0, 75] of the red oxides is the smallest among the others.
Therefore, the H and I components were used as the input to multi-
SVDD, the red and black oxides were identified sequentially, and the
result is shown in Fig. 9. The testing result shows that 12 particles were
identified as red oxides. However, only 8 samples (particles 4, 6, 17,
26–30) can be sure to be red oxides based on visual observation. In fact,
the error of oxide identification is unavoidable because the particle
colours are in non-uniform distribution. To improve the classification

accuracy, image quality and feature extraction algorithm should be
further developed.

It also can be found in Fig. 9 that all the wear debris samples in-
cluding oxides and non-oxides can be further identified into cutting,
fatigue and sliding particles. That is the reason why the oxides should
be firstly identified. As shown in Fig. 4, cutting and spherical particles
should be detected in the next search-tree level. However, the spherical
particles are not provided to test the proposed classification model. This
is because the spherical particles generated from the rolling bearings in
our experiments are generally less than 40 μm, and thus they cannot be
used as the target objects. Therefore, only cutting particles were clus-
tered by the K-means algorithm. The features of AR and S in Table 1
were the input of K-means, and the sample groups were set to three. The
particle clustering result is shown in Fig. 10, and the clustering centres
were marked with symbol ⊗. It can be seen that the cutting particles
were correctly classified.

It can also be observed in Fig. 10 that some sliding particles were
mis-classified as fatigue debris. Therefore the third search-tree level is
built to differentiate between fatigue and sliding particles. As men-
tioned before, two parameters, HAR and HWAR which are able to de-
scribe multi-view features, are employed to characterize the different
contour features of the two types of wear debris due to the fact that
sliding particles have a smaller thickness. The identification of fatigue
and sliding particles was carried out using the SVM classification al-
gorithm, and the result is shown in Fig. 11. This indicates that the
problem to distinguish fatigue debris from sliding particles can be
solved rapidly by capturing dynamic morphological features.

As a result, the proposed three-level search-tree discrimination
model was tested using particle colour and shape features which were
selected according to their distinctive properties. Three particle groups
including ‘red-black oxides’, ‘cutting-spherical particles’ and ‘fatigue-
sliding particles’ were automatically classified sequentially based on
multi-SVDD, K-means and SVM respectively. However, it should be
mentioned that satisfactory testing results depend on the fact that the
particle samples were manually selected. Hence, a higher error rate
may be caused by inaccurate online feature extraction as compared to
offline analysis. For instance, the problem of fatigue and sliding wear
debris discrimination still remains if the exact thickness cannot be ob-
tained [32]. In addition, laminar particles are not considered as the
target objects of the current hybrid classification model. It seems that
laminar and sliding particles captured in online conditions are similar
in shape and thickness features, and their texture information is hard to
acquire from fuzzy images.

Therefore, more work needs to be done to improve the particle
identification accuracy in the future. First, the particle imaging tech-
nique should be developed to improve the image quality of small wear
debris and the accuracy of feature extraction. In this case, analytical
ferrograph techniques may be adapted for online analysis. Second, the
clustering model should be further refined by combining colour, size,
shape and contour information so that more particle types including
spherical, rubbing and laminar particles can be identified. More clas-
sification algorithms have to be investigated to establish a more sui-
table classifier for online wear debris recognition. Furthermore, more
particle samples need to be captured and trained with the established
recognition model to improve the recognition accuracy.

5. Conclusions

A hybrid search-tree discriminant analysis technique was proposed
for multivariate wear debris identification. The following conclusions
can be drawn.

(1) A hybrid search-tree discrimination model was established by
combining the multi-SVDD, K-means and SVM algorithms to iden-
tify multivariate wear particles including red-black oxides, cutting,
fatigue and sliding debris.

Fig. 7. An example of particle classification result using the SVM algorithm.
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(2) Colour-based automatic classification of oxide wear debris was
achieved by utilizing the multi-SVDD classifier. However, there is a
lower bound on the error due to the fuzzy colour information and
its discrete distribution.

(3) The discrimination property of cutting particles, due to a long thin
shape, had made them easier to be recognised. Thus, aspect ratio

Fig. 8. A portion of wear debris samples for classification tests.

Table 1
Feature extraction results of the wear particles in Fig. 8.

Particle number H I AR S HAR HWAR

1 136.43 57.00 5.41 0.27 9.52 5.41
2 52.66 91.33 4.06 0.35 5.65 4.06
3 43.57 156.33 5.32 0.31 6.35 5.32
4 0.00 51.67 4.62 0.33 5.90 4.62
5 120.00 103.00 3.84 0.40 4.18 3.84
6 12.75 74.33 3.71 0.41 4.00 3.71
7 321.79 58.67 3.39 0.39 5.03 3.39
8 180.00 91.00 4.82 0.34 5.13 4.82
9 50.57 152.67 5.02 0.28 9.36 5.02
10 21.79 87.00 5.19 0.31 6.19 5.19
11 300.00 55.00 1.94 0.47 5.08 1.94
12 139.65 43.33 1.88 0.49 4.53 1.88
13 141.79 104.00 2.37 0.42 5.73 2.37
14 135.18 56.33 1.43 0.55 4.17 1.43
15 180.00 27.00 1.26 0.62 3.38 1.26
16 64.41 56.33 1.71 0.58 2.98 1.71
17 12.75 49.33 1.09 0.67 3.03 1.09
18 52.66 78.67 2.14 0.37 9.27 2.14
19 141.79 56.00 1.25 0.62 3.39 1.25
20 92.20 48.67 1.55 0.55 3.97 1.55
21 209.41 66.33 1.06 0.91 1.23 1.06
22 315.18 66.00 1.13 0.88 1.29 1.13
23 208.78 109.33 1.05 0.87 1.47 1.05
24 170.57 131.67 1.26 0.85 1.28 1.26
25 136.43 108.00 1.13 0.90 1.24 1.13
26 2.58 73.33 1.23 0.81 1.55 1.23
27 36.29 85.67 1.43 0.69 2.16 1.43
28 15.57 42.67 1.62 0.68 1.95 1.62
29 23.03 54.33 1.07 0.87 1.43 1.07
30 13.17 42.00 1.32 0.82 1.37 1.32

Fig. 9. The result of oxide particles identification using SVDD.

Fig. 10. The particle clustering result based on K-means.
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and sphericity were used as the criteria and the K-means, an un-
supervised clustering algorithm, was applied to cluster them from
other types of particles.

(4) It was verified that HAR and HWAR parameters were effective in
distinguishing the sliding particles from the fatigue ones. Based on
this, the SVM was employed to build a binary classifier.

(5) Future work may be directed towards combining more particle
features, collecting more particle samples and optimizing automatic
classification algorithms to address online wear debris identifica-
tion problems like spherical and laminar particles recognition.
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