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A B S T R A C T   

Reliable operation of machinery is very desirable in engineering. To achieve this objective, the assessment of the 
lubrication oil state is necessary. However, due to the unpredictable variations, uncertainty detection and 
handling in the oil state has been a bottleneck in practice. A solution strategy is proposed in this paper that 
integrates information from the monitoring data and expert knowledge. On the other hand, since insufficient 
data and limited knowledge, two types of uncertainty are present, namely, aleatory and epistemic uncertainty. To 
handle these uncertainties, an integrated model with a three-layer structure is constructed that incorporates both 
expert knowledge and data. First, for the detection of stochastic data variation, the initial connection among the 
layers is assigned by membership probabilities as the characterization evidence. Second, the oil state that pro-
duces a unified output with various pieces of evidence is determined by evidential reasoning with knowledge- 
based rules. Third, to provide consistent monitoring adaptively, a knowledge-integrated neural network is 
established for determining the initial parameters from measurements. The effectiveness of the proposed model is 
demonstrated using both simulated and real-world data from industrial vehicles.    

List of Symbols 
I-A-S Indicator-attribute-state layers 
KINN Knowledge-integrated neural network 
HI Health index 
Hc The c-th oil state 
Ai The i-th oil attribute 
Ak

i The i-th oil attribute in the k-th rule 
aij Monitoring oil data of the j-th indicator in the i-th attribute 
aij Normalized value of aij 

P(Hcaij) State membership probability of monitoring data aij 

P(HcAi) State membership probability of attribute Ai 
μ Mean value of the Gaussian function 
σ Variance of the Gaussian function 
wij Weight of the j-th indicator in the i-th attribute 
βc Belief degree for oil state Hc 

βI
c Integrated belief degree for oil state Hc 

wk Weight of the k-th rule 
θk Activated weight of the k-th rule 

μ(Hc) Utility of state Hc 
y(k) Real value of the k-th oil sample 
ŷ(k) Predicted value of the k-th oil sample 
x(t) Oil indicator data at time t 
g(x(t)) Function of the increment of indicator data 
f(x(t)) Function of the decrement of indicator data 
w(t) Stochastic fluctuation of the degradation process 
RMSE Root mean square error 
MAE Mean absolute error 

1. Introduction 

Oil condition monitoring (OCM) can provide early and comprehen-
sive information for machine reliability and possible component failure 
[1]. Since the lubrication oil continuously circulates in the tribology 
system, the oil state can be used as a feasible indicator [2]. However, 
there are unavoidable uncertainties in the oil state that hinders condi-
tion monitoring and reliability assessment. Limited by the unidentified 
degradation mechanism and measurement difficulties in OCM, the 
existing uncertainties can be categorized as aleatory and epistemic types 
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[3,4]. 
Aleatory uncertainty represents the inherent variability associated 

with the system and environment, which stems from unpredictable and 
natural variations [5]. Epistemic uncertainty, also known as the subject 
or reducible uncertainty, arises from a lack of sufficient data that is 
conceptually resolvable [6]. As a probabilistic method for uncertainty 
characterization, the Dempster-Shafer theory (D-S theory) [4] can 
simultaneously handle and describe these two types of uncertainty. 
First, D-S theory employs multi-attributes decisions addressing the evi-
dence, and the epistemic uncertainty is reducible with more knowledge. 
Second, the basic probability assignment (BPA) can provide a measur-
able determination for evidence combination. 

Multi-attributes decisions, for OCM with D-S theory, can handle 
epistemic uncertainty with accumulated information. However, addi-
tional uncertainty is generated in evidence combination due to the 
inconsistent or conflicting decision. As an intelligent method to resolve 
inconsistent determination, the application of expert systems (ES) makes 
the assessment more systematic and repeatable in treating the uncer-
tainty [7]. For example, Peng et al. [8] adopted ES to interpret oil 
condition data obtained from particle analysis. Liu et al. [9] used the 
“IF-THEN” rule-based method for incipient fault detection with OCM 
and extensively observed multiple uncertain interactions. Besides, to 
solve the main disadvantage of ES, which hardly handled unexpected 
circumstances [10], several integrated probability-based and 
expert-based methods were proposed. Yang et al. [11] integrated the 
"IF-THEN" rule and D-S theory, then proposed a belief-rule-base (BRB) 
model with distributed belief frameworks. Xu et al. [12] applied this 
framework in OCM and verified that it could identify concurrent faults. 
Moreover, Feng et al. [13] developed a new optimization method to 
solve the problem that initial parameters and rules are given by expe-
rience in the BRB. The essence to solve the uncertainty in conflicting 
multi-attributes decisions is the introduction of knowledge concerning 
the real-time monitoring data. Therefore, the above models should have 
the enhanced ability in handling the epistemic uncertainty in OCM. 

The belief degree in D-S theory can provide remedies for aleatory 
uncertainty, and it is critical to establish a suitable probability distri-
bution function. Traditionally, the setting of BPA is based on expert 
experience or off-line samples, which cannot meet the demand for real- 
time updates. Artificial neural networks (ANN) provide real-time 
adaptive acquisition from data, which have been frequently applied in 
OCM, such as the identification of wear debris [14], the prediction of 
wear performance [15,16], and the assessment of system reliability [17, 
18]. Nevertheless, the neural network is regarded as a black-box, which 
is unable to provide interpretable outcomes. Therefore, many improved 
models have been proposed to explain the results in the process of 
handling uncertainty. First, tandem models were developed, in which 
each unit operates independently. For example, Drieschner et al. [19] 
combined fuzzy logic and ANN to overcome the computational cost of 
uncertainty propagations. Valis et al. [17] considered that the oil data is 
uncertain and applied a fuzzy inference system (FIS) and neural net-
works to acquire the condition information. Second, embedded models 
were used to obtain comprehensive and associated outcomes. Zio et al. 
[20] verified a high rate of correct and interpretable classification with a 
neuro-fuzzy approach for pattern classification. Kari et al. [21] pre-
sented an incipient fault diagnosis based on an integrated adaptive 
neuro-fuzzy inference system, and further enhance fault diagnosis con-
sistency and accuracy. Besides, Xu et al. [22] fused multiple data-driven 
models, including an ANN model, a BRB model, and an ER rule model, 
for oil fault diagnosis at the decision level. The drawback of the above 
studies is that the knowledge essentially stems from the data, which is 
insufficient to provide a traceable description of the oil degradation 
mechanism. 

Correspondingly, this work aims to develop a quantitative charac-
terization model that addresses uncertainty by integrating both data and 
expert knowledge. Specifically, a three-layer structure is constructed for 
modelling the oil state. To deal with the aleatory and epistemic 

uncertainties aforementioned, the distributed probabilities between 
each layer are computed by the membership function. With the D-S 
theory, knowledge-based rules are combined to infer the oil state. 
Considering adaptive continual monitoring, a knowledge-integrated 
neural network (KINN) is designed. Finally, the well-trained intelli-
gent model is examined with both simulated and real-world data sets. 
The main contributions of the work are as follows.  

1) To deal with the epistemic uncertainty of choosing indicators, the 
indicators with representative attributes are used to characterize oil 
state quantitatively. The introduction of expert knowledge solves the 
problem of conflicting results. This strategy provides a multi- 
attributes decision to assure the accurate oil assessment.  

2) To detect the aleatory uncertainty from dynamic data mining, a 
probability-based model is proposed. It adaptively extracts the pa-
rameters from the real-time data. The model adapts to the stochastic 
volatility of the monitoring data and makes the characterization 
outcomes interpretable. 

The rest of the paper is organized as follows. Section 2 gives a 
mechanism-based model for oil state characterization. Section 3 pre-
sents a knowledge-integrated neural network for the initial parameter 
optimization. In Section 4, the proposed model is verified through two 
groups of data. Section 5 contains the conclusion. 

2. Mechanism-based model for oil state characterization 

The degradation of the lubrication oil can be treated as the changes 
in its physicochemical property. It is a gradual process and can be 
assessed as a series of grades. Accordingly, the grades can be arranged as 
the sequence for the full lifecycle monitoring samples. Then the 
sequence is used as the evaluation metric of the oil with a description of 
the degradation extent. 

Before describing the model structure, some terminologies are 
defined as follows:  

1) Grade set: H = {Hc}, c = 1, ⋯, N, where N is the numbers of oil 
grades.  

2) Attribute set: A = {Ai}, i = 1, ⋯r, where r is the numbers of 
attributes.  

3) Indicator set of the i-th attribute: Ai = {aij}, j = 1,⋯g, where g is the 
numbers of indicators of the i-th attribute. 

The grades can qualitatively describe the degradation of oil. Mean-
while, mechanisms for oil degradation can provide a mapping between 
the monitoring data and oil state. The oil attributes is the bridge con-
necting the monitoring data and oil state. Furthermore, the oil state can 
be the integration of all attributes regarding the oil properties. The oil 
indicator can also be grouped as the same attribute to be evaluated. It 
should be noticed that characterization is influenced by complicated oil 
degradation mechanisms. Although the monitoring data contains 
randomness the latent mechanism at a particular stage is relatively 
stable. 

A three-layer modelling structure is constructed with probabilistic 
inferences. It includes the indicator layer, the attribute layer, and the 
state layer, denoted as I-A-S and is illustrated in Fig. 1. In the indicator 
layer, the data of the corresponding indicators are used to match the pre- 
defined grades. In the attribute layer, the attributes describe the oil 
property by combining the inclusive indicators. In the state layer, the oil 
state is synergistically determined based on knowledge and data. 

There are two processes in the initialization stage: probability 
assignment of evidence and knowledge-based state inference. First, the 
corresponding indicators are transformed into the probabilistic 
description with membership functions. Then the indicators of the same 
attribute are evaluated to obtain the weighted probabilities. Second, the 
inference integration rules are constructed by the knowledge and data, 
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and is further combined by D-S theory. The comprehensive oil state is 
hence characterized. 

2.1. Probability assignment of evidence 

For the indicators with positive effects on the oil, e.g., total alkali 
value and additive content, they are defined as the value-type indicators 
I1. For others with negative effects, e.g., viscosity change rate, wear 
metal content, they are defined as cost-type indicators I2. Furthermore, 
to bound indicators in the same magnitude range, the oil data is 
normalized. The normalization of oil data is given by Eq. (1), 

aij= {

aMax − aij

aMax − aMin
, aij ∈ I1

aij − aMin

aMax − aMin
, aij ∈ I2,

(1)  

where aMin is the minimum value representing the initial state of oil, 
aMax is the maximum value representing the failure state of the oil. These 
two bounding values can be obtained from the full-range dataset. The 
variable aij is the normalized value of the oil indicator. 

The evaluation of the indicator adopts the fuzzy approach [23], then 
the membership probabilities are calculated. The Gaussian function [24] 
is selected as the membership function, as shown in Eq. (2), 

P
(
Hcaij

)
= exp

⎛

⎝ −

⎛

⎝aij − μ
σ

⎞

⎠

2⎞

⎠, (2)  

where μ and σ are respectively the mean and variance of the Gaussian 
function, P(Hcaij) is the state membership probability of data aij; spe-
cifically, μ and σ are the parameters to be optimized. 

The attribute is composed of indicators that reflect the same property 
of the oil. In order to quantify the probability of the attribute associated 
with the corresponding grade, the membership probability is obtained 
from Eq. (3), 

P(HcAi) =
∑g

j=1
wijP

(
Hcaij

)
(3)  

where P(HcAi) denotes the membership probability that Ai belongs to 
Hc; wij is the weight of the indicator, which is also the parameter to be 
optimized. 

2.2. Knowledge-based state inference 

The membership probability provides the quantitative assessment of 
the oil, which is also used to handle the aleatory uncertainty. Then 
knowledge-based rules are formed to resolve the epistemic uncertainty 
of the oil state. To aggregate the activation rules, the evidential 
reasoning (ER) algorithm is applied to generate the final decision. 

2.2.1. Rule formulation 
Based on expert knowledge, the “IF-THEN” rule database is adopted 

to formulate n inference rules. The “IF” part is the antecedent of oil at-
tributes. The “THEN” part, the consequent, generates the inference of 
the rule. The k-th rule takes formulate as: 

IF: Ak
1 is H1 and … Ak

i is Hc and … and Ak
r is HN, 

THEN: {(H1, βk
1),⋯, (Hc, βk

c),⋯, (HN, βk
N)}, 

where Ak
i represents the i-th oil attribute in the k-th rule antecedent, βk

c 
denotes the belief degree of inference, which indicates the probability 
that the oil state belongs to Hc. Moreover, βc in the activated rules are the 
parameters to be optimized. 

The rule database includes n rules, and the activated rules should be 
measured. The activated weight of the k-th rule, which represents the 
importance of activated rules, is calculated as follows, 

θk =
wk
∏N

i=1P(HcAi)
i
k

∑n
l=1wl

∏N
i=1P(HcAi)

i
l

, (4)  

where θk denotes the activated weight of the k-th rule, N is the numbers 
of oil grades, n is the numbers of rule, wk is the weight of the k-th rule, 
which is the parameter to be optimized. 

2.2.2. Rule aggregation 
The ER algorithm [25] is applied to the aggregation of the activated 

Fig. 1. The three-layer structure of oil state characterization, where ⊗ denotes the of evidence combination operator.  
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rules. Consequently, the belief degree, the measurement of oil state with 
probability, can be obtained based on the D-S theory, specified in Eq. 
(5), 

βI
c =

K
[∏n

k=1

(
θkβk

c + 1 − θk
∑N

j=1βk
j

)
−
∏n

k=1

(
1 − θk

∑N
j=1βk

j

)]

1 − K
[∏n

k=1(1 − θk)
] , (5)  

K − 1 =
∏n

k=1

(

θkβk
c + 1 − θk

∑N

j=1
βk

j

)

− (N − 1)
∏n

k=1

(

1 − θk

∑N

j=1
βk

j

)

, (6)  

where βI
c represents the integrated belief degree of oil state; K is the 

normalization coefficient and is calculated by Eq. (6). The final deter-
mination of oil state H can be expressed as follows, 

H =
{(

Hc, βI
c

)
, c= 1,⋯,N

}
, (7) 

So far, the oil state is expressed by the belief degree combining the 
grade interval. To describe the gradual degradation, it is desirable to 
produce a continuous health index (abbreviated as HI) for the training of 
the model, so the concept of expected utility is introduced [26]. Assume 
that μ(Hc), c = 1,⋯,N are the utilities of the states. Because the 
distributed assessments of oil state are all complete, whose corre-
sponding utility values are equal, the quantified output HI can be 
simplified, as shown in Eq. (8), 

HI =
∑N

c=1
βI

cμ(Hc). (8) 

Finally, HI is formed from the combination of knowledge and data. 
However, the initial parameters of the model are traditionally set 
depending on experience, which is not suitable for the intelligently 
updated data. 

3. KINN for initial parameter optimization 

Parameter initialization of the I-A-S model is infeasible for gradual 
oil degradation due to limited knowledge. The adaptive learning from 
continuously updated data can provide a solution. Moreover, with more 
updated information, epistemic uncertainty of the oil state can be 
reducible. Therefore, an adaptive optimization strategy is proposed. 

3.1. Network architecture 

According to the I-A-S model, a 7-layer knowledge-integrated neural 
network (KINN) is proposed, as shown in Fig. 2. The main components of 
the model include 1) data structure with indicator-attribute-state layers; 
2) knowledge structure with inference rules and weights. 

The critical elements of KINN are neurons and parameters, which are 
summarized in Table 1. The neurons in KINN are set by referring to the 
numbers of indicators, attributes, states, and rules. And the parameters 
of the neural network are selected referring to the parameters in I-A-S. 
Seven parameters, which traditionally rely on empirical settings, need to 
be optimized. The connection relationship of the network is shown in 
Fig. 3. 

Furthermore, the KINN is trained with the back-propagation algo-
rithm, with the mean square error (MSE) as the loss function, as shown 
in Eq. (9). 

ε(P) = 1
s
∑s

k=1
(y(k) − ŷ(k))2

, (9)  

where y(k) represents the real value as labelled data, ŷ(k) represents the 
predicted value, s is the number of samples, P is the parameter vector to 
be optimized. 

3.2. Optimization strategy 

The optimization in the KINN is for two types of parameters, 1) the 
data-related parameters including μ, σ, wij and μ(Hc), and 2) the 
knowledge-related parameters of wk and βc. 

3.2.1. Data-related parameter optimization 
In the optimization of data-related parameters, y(k) denotes the real 

value of the oil state, which has been labelled based on expert recog-

Fig. 2. The structure of KINN characterization and quantization of oil state.  

Table 1 
Optimization parameters and neurons of KINN layer.  

Layer Indicator Attribute Grade Rule Belief State 

Number of neurons r × g r N n 1 1 
Parameters μ, σ  wij  - wk, βc  - μ(Hc)
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nition. The predicted value ŷ(k), the output of the I-A-S model, is iter-
atively updated through the comparison with the real value y(k). When 
the minimum loss function ε(P) in Eq. (9) is searched by the gradient 
descent optimization algorithm (GDA) [27], the optimization of the 
model parameter vector (μ, σ, wij, μ(Hc)) is then obtained. The sche-
matic diagram is detailed in Fig. 4. 

Moreover, the constraints of the parameters in I-A-S are constructed 
for indicator weight wij: 

0 ≤ wij ≤ 1, i = 1,…, r, j = 1,…, g,
∑g

j=1
wij = 1. (10) 

For utility (Hc): 

μ(Hc) ≥ 0, c = 1,…,N,

μ
(
Hj
)
> μ(Hi), j > i. (11)  

3.2.2. Knowledge-related parameter optimization 
In the optimization of knowledge-related parameters, it is difficult to 

obtain global convergence due to the interaction between parameters. In 
traditional methods, the setting depends on limited expert experience. 
To this end, the particle swarm optimization (PSO) algorithm is used to 
optimize the knowledge-related parameters from the data. As a member 
of metaheuristic algorithms, PSO searches for the optimal solution by 
iteratively refining the intermediate solutions [28]. 

3.2.3. Stepwise parameter optimization strategy 
To prevent redundancy and over-fitting in the iteration process, a 

stepwise optimization strategy is proposed, in which two types of pa-
rameters are separately optimized step-by-step. First, the parameter set 
{μ, σ, wij, μ(Hc)} is obtained based on the data-related parameter 
optimization. Second, the knowledge-related parameters with the data- 
related parameters are searched by the PSO algorithm for global 
convergence. Finally, the parameters ( wk, βc) are generated. The spe-
cific process is shown in Fig. 5. The summarization of optimization in-
formation for different methods is shown in Table 2. 

4. Model verification 

To verify the performance of the proposed model, simulated data and 
real-world data are used. The simulated data is originated from the state- 
space model based on the degradation mechanism of lubricating oil, and 
the real-world data is collected from the real machines. Especially, the 
real-world data has been acquired from moving construction vehicles. 
Besides, the possible application objects beyond the presented case 
include large equipment with circulating lubrication systems, such as 
wind turbine, ship, nuclear power, mining equipment, etc. 

4.1. Verification with simulation data 

To simulate the lubricating oil degradation processes, the degrada-
tion tendency of viscosity [29], TBN [30], Fe content, Cu content [31], 
and Zn content [32] are developed. The mechanism model of oil indi-
cator degradation is constructed according to the solution of the 
state-space model [33] shown in Eq. (12), 

d(x(t))
dt

= g(x(t)) − f (x(t)) + w(t), (12)  

Fig. 3. The connect relationship of the layers in KINN.  

Fig. 4. Schematic diagram of parameter optimization for the I-A-S.  
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where x(t) is the oil indicator data at time t, g(x(t)) is the function rep-
resenting increment of indicator data, f(x(t)) is the function as the 
decrement of indicator data, and w(t) is the random noise in the data 
acquisition process. 

After integrating Eq. (12), we have 

x(t) = aexp(ct) − bexp(dt) + w(t), (13)  

where a, b, c, and d are unknown parameters of model, w(t) denotes the 
stochastic variation of the degradation process that is subject to the 
Gaussian distribution N(μ,σ2). 

The parameters of degradation models need to be determined to 
obtain simulation data. Then the interpolation least-squares method 
[34] is applied for parameter estimation based on the simulated data, 
and the estimation result is shown in Table 3. 

In the training data simulation, it is assumed that oil degradation 
time is 2000 hr, and the sampling period is 10 hr. Consequently, 201 
groups of oil data are simulated. These data are grouped as a training set, 
then the state of each sample is labelled. In the test data simulation, the 

oil running time is configured as 2000 hr and the sampling period is 16 
hr. Totally 122 sets of oil simulation data within the 2000 hr operating 
cycles are produced, and all the simulation data are labelled with 
existing expert knowledge. 

4.1.1. Verification of the optimization strategy 
Different optimization algorithms are examined by using the training 

data. The particle initialization of PSO is generated randomly, so the 

Fig. 5. Flowchart of the KINN training process.  

Table 2 
Key parameters of the optimization methods.  

Method Algorithm Optimize parameters Default parameters Default parameter source 

GDA GDA μ,σ,wij,μ(Hc),wk, βc  − −

KINN-1p PSO wk  μ,σ,wij, βc,μ(Hc) Expertise 
KINN-2p PSO wk,βc  μ,σ,wij,μ(Hc) Expertise 
KINN-overall PSO μ,σ,wij,μ(Hc),wk, βc  − −

KINN-stepwise PSO and GDA wk, βc  μ,σ,wij,μ(Hc) Data-related parameter optimization  

Table 3 
Parameter estimation in the oil indicator degradation model.   

a b c d μ σ 

Viscosity -0.1265 0 0.4407 0 2.7910 × 10-4 0.0116 
TBN 2.6914 2.6536 0.1916 0 6.9523 × 10-7 0.0358 
Zn -9.5193 16.769 0.5091 0 4.9500 4.5977 
Fe 25.067 0.6752 21.666 0.6869 0.0089 0.3368 
Cu 0.1665 -0.7399 -1.0484 0.6373 3.5412 × 10-6 5.1607  
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training data are trained six times repeatedly. The resultant (mean 
square error) MSE is shown in Fig. 6, where the thick line represents the 
mean value of several optimizations. 

The GDA algorithm and PSO algorithm are compared for training all 
parameters in KINN. Their resultant MSE shows that the PSO algorithm 
presents much better performance. Furthermore, considering the PSO 
algorithm, the KINN-1p, KINN-2p, and KINN-overall methods with 
different parameters are compared. The KINN-2p algorithm has the 
minimum MSE. Finally, Comparing to the KINN-2p with the best per-
formance, the KINN-stepwise presents improved performance and is 
selected as the optimization strategy. 

4.1.2. State Characterization 
The continuous value HI, which describes the degradation of the oil 

state, is obtained by training and testing the simulation data. The spe-
cific steps are shown in Algorithm 1 below. 

The results using the test data set are shown in Fig. 7. It can be seen 
that the HI calculated by KINN can effectively represent oil degradation 
and the maximum absolute error is 0.05. The oil degradation tendency is 
accompanied by the increase of time, which proves that the oil is in a 
state of gradual evolution. 

4.2. Verification with real-world data 

As a comparison, the proposed method is verified by real-world data 
collected from 20 industrial vehicles for more than 1.5 years of moni-
toring. The target objects include engine oil, hydraulic oil, and gear oil 
flowing in the transmission system. Oil samples are periodically 
collected once a month, then the data from 5 indicators are selected from 
multiple indicators of off-line testing. 

4.2.1. State Characterization 
The indicator set I = {I11, I12, I21, I22, I31} and attribute set A = {A1,

A2,A3} are constructed from multi-attribute oil data. Oil indicators 
including viscosity, TBN, Fe element content, Cu element content, and 
Zn element content, are used to construct the corresponding indicator 
set I. Oil attributes including physicochemical attribute, wear attribute, 
and additive attribute, are related to elements in the attribute set A. The 
collecting of some monitoring data is shown in Fig. 8. 

In order to verify the robustness of the model, the training set is 
randomly selected from 425 sets of real-world data, which consists of 
295 sets of training data, and the rest is used for validation. The results of 
the test data calculated by KINN are shown in Fig. 9. The predicted 
values of 130 sets of test data return high accuracy as compare to the real 
label. It illustrates that the KINN can accurately predict the uncertain oil 
state and obtain quantified HI for oil state characterization. 

4.2.2. Performance evaluation 
For the comparison of state modelling methods, performance indexes 

are used according to Eqs. (14) and (15). i.e., the root mean square error 
(RMSE) of the training set and the mean absolute error (MAE) of the test 
set. 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
s
∑s

i=1
(y(k) − ŷ(k))2

√

, (14)  

MAE =
1
s

∑s

i=1
|y(k) − ŷ(k)|. (15) 

Different methods of state characterization, including the dynamic 
evidential reasoning method (DER) [26], fuzzy inference system (FIS) 
[17], Adaptive Network-based Fuzzy Inference System (ANFIS) [21], 
and KINN with different strategies, are used for comparison. In the 
training process, the parameter optimization of DER, ANFIS, and KINN 
uses the same real-world data. Due to the inability to optimize, the 
setting of parameters in FIS is referred to KINN-stepwise instead of 
expertise. The evaluations of the comparison are shown in Table 4. 

It can be seen that the proposed model presents the minimum RMSE 
after the training process. The weakness of the DER method is mainly 
caused by the negligence of conflicting judgments. In the traditional 
ANFIS, the rule database is formulated based on expert knowledge, so 
the result is better than DER. However, the RMSE result from its training 
set is larger than the KINN method due to the lack of enough information 
from the small oil sample set. Comparing the KINN methods with 
different optimization parameters, the KINN-stepwise method obtained 
the minimum RMSE as shown in Table 4. 

The MAE of the test set presents a consistent tendency as the RSME in 
training. The KINN-stepwise and DER methods respectively obtain the 
minimum and the maximum MAE. The FIS method obtains the best 
optimization result except for the KINN-stepwise methods due to the 
suitable parameters, indicating that the trained parameters possess 
universality. To visualize all sample test errors, the absolute error is 

Fig. 6. The results of different optimization strategies.  

Algorithm 1 
The procedures of KINN of data training and testing.  

Input:Ai = {aij}, i = 1,⋯, r, j = 1,⋯, g, y(k), ŷ(k), k = 1,2,⋯, s.  
1) Normalize the data according to Eq. (1), and the threshold value is selected 

according to the oil change standard. 
2) Label each sample data based on expertise. 
3) Train sample data with I-A-S parameter optimization, then obtain data-related 

parameters μ, σ, wij, μ(Hc).  
4) Assign the trained parameters to the KINN, then optimize knowledge-related 

parameter vector wk, βc with the PSO algorithm.  

5) End training if |Lt − Lt− 1| ≤ ε, where ε = 10− 6.  
6) Compute the test data in the trained model to obtain the prediction value. 
7) Compare the error between the predicted value and the real value.  

Fig. 7. The validation results of simulation data.  

Y. Pan et al.                                                                                                                                                                                                                                     



Reliability Engineering and System Safety 210 (2021) 107546

8

defined as |y(k) − ŷ(k)|, and the comparison of errors is shown in 
Fig. 10. The maximum errors are coloured in dark blue. It is observed 
that the KINN-stepwise method presents the best consistency and the 
strongest robustness. 

5. Conclusions 

Due to the lack of sufficient data and their prior knowledge, the 

uncertainty in lubrication oil severely constrains the application of OCM 
in reliability assessment. Addressing the aleatory and epistemic un-
certainties in oil state characterization, a new model is developed that 
integrates both the data and knowledge, which realized the mechanism- 
based state modelling and the dynamic data evolution detection. To 
handle the uncertainty of multi-attribute decision making, expert 
knowledge and mechanism knowledge were introduced to characterize 
the oil state. To be adaptive for continuous monitoring, the parameters 
of the model were optimized by the KINN model. Consequently, the 
proposed method was evaluated with various oil data sets. The main 
conclusions are as follows. 1) A mechanism-based three-layer structure 
model including indicator, attribute, and the state is proposed with the 
assigned probability distribution and knowledge-based rule inference. 
2) To be adaptive to oil monitoring, a knowledge-integrated neural 
network is adopted for optimizing the model parameter. 3) The pro-
posed model shows high performance in the experiment with both the 
simulated and real-world data. 

There are still some limitations in the proposed method, and whether 

Fig. 8. The original data of hydraulic oil with five indicators.  

Fig. 9. The comparison of real data and predicted data, where a represents the results of the test data and b represents the error.  

Table 4 
The comparison of the training and test results of different methods.  

Methods Input RMSE MAE 

DER Viscosity, TBN, Fe, Cu, Zn 0.0354 0.1170 
FIS Viscosity, TBN, Fe, Cu, Zn - 0.0481 
ANFIS Viscosity, TBN, Fe, Cu, Zn 0.0226 0.0756 
KINN-overall Viscosity, TBN, Fe, Cu, Zn 0.0153 0.0618 
KINN-stepwise Viscosity, TBN, Fe, Cu, Zn 0.0073 0.0460  
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the model works effectively relies on the detection of data tendency. 
Decision-making based on the laws of big data is plausible, but there are 
two challenges in practice. 1) It is difficult to obtain a large number of 
samples, especially the failure samples. 2) The accumulation of data is 
accompanied by the increase of uncertainty, which hinders accurate 
assessment. Therefore, in the future, we will conduct research on the 
generation of simulated data based on the oil degradation mechanism 
and real-world data. It is vital to explore the hidden information from 
the data and can provide the basis for reliability assessment. 
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