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Abstract
A rolling bearing is an essential component of a rotating mechanical transmission system. Its performance and quality directly
affects the life and reliability of machinery. Bearings’ performance and reliability need high requirements because of a more
complex and poor working conditions of bearings. A bearing with high reliability reduces equipment operation accidents and
equipment maintenance costs and achieves condition-based maintenance. First in this paper, the development of technology of
the main individual physical condition monitoring and fault diagnosis of rolling bearings are introduced, then the fault diagnosis
technology of multi-sensors information fusion is introduced, and finally, the advantages, disadvantages, and trends developed in
the future of the detection main individual physics technology and multi-sensors information fusion technology are summarized.
This paper is expected to provide the necessary basis for the follow-up study of the fault diagnosis of rolling bearings and a
foundational knowledge for researchers about rolling bearings.
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1 Introduction

A rolling bearing is an indispensable part of the rotating machin-
ery. It has been widely used in aerospace, navigation, machine
tools, and other fields. The performance and quality of the rolling
bearing directly influence the service life and reliability of the
aviation engine as the key part of the aircraft. With the develop-
ment of rolling bearings in the theoretical research, structural
design, manufacturing process, and other aspects of the bearings,
the performance and reliability of bearings have been greatly
improved. At the same time, with the rapid development of
modern industrial technology, the engine thrust weight ratio
and power are also growing, and the bearing working conditions
are becoming complex. Therefore, the higher requirements are
put on the bearing performance and reliability [1]. According to
statistics, of the around four billion bearings used in the world
every year, about 9.5% are ahead of time to replace in safety
considerations, and about 0.5% fail because the bearing safety
criteria [2]. In the routine maintenance of aircraft, engine main-
tenance and replacement costs are very large. The maintenance
costs account for more than 60% [3], so keeping the higher
reliability of rolling bearings has a significant effect to reduce
equipment accidents and maintenance cost and achieve
condition-based maintenance.

* Tonghai Wu
wt_h@163.com

* Reza Malekian
reza.malekian@ieee.org

Zhihe Duan
duanzh@stu.xjtu.edu.cn

Shuaiwei Guo
1820807893@qq.com

Tao Shao
shaotao9192@stu.xjtu.edu.cn

Zhixiong Li
zhixiong.li@ieee.org

1 Key Laboratory of Education Ministry for Modern Design and
Rotor-Bearing System, School of Mechanical Engineering, Xi’an
Jiaotong University, Xi’an 710001, China

2 Department of Electrical, Electronic & Computer Engineering,
University of Pretoria, Pretoria 0002, South Africa

3 School of Mechatronics Engineering, China University of Mining &
Technology, Xuzhou 221110, China

4 School of Mechanical, Materials, Mechatronic and Biomedical
Engineering, University of Wollongong, 2522 Wollongong, NSW,
Australia

The International Journal of Advanced Manufacturing Technology (2018) 96:803–819
https://doi.org/10.1007/s00170-017-1474-8

http://crossmark.crossref.org/dialog/?doi=10.1007/s00170-017-1474-8&domain=pdf
http://orcid.org/0000-0002-2763-8085
mailto:reza.malekian@ieee.org
mailto:reza.malekian@ieee.org


The higher reliability of a rolling bearing depends on a higher
reliability of the bearing itself and the condition monitoring and
fault diagnosis technology in real time. At present, the technolo-
gy of fault diagnosis has been developed for many years and
achieved many results. In the industrial revolution, the fault di-
agnosis technology appeared. In 1960s, briefly, detection tech-
nology was applied on material properties based on reliability
theory. In 1980s, a mathematical model for fault diagnosis had
been emerged, then artificial intelligent diagnosis technology
was developed. Since the end of 1990s, based on local area
network and Internet network, resource sharing and remote di-
agnosis could be carried out to expand more the monitoring
parameters and describe the more comprehensive equipment op-
eration process [4]. In this paper, the condition monitoring and
fault diagnosis technology of rolling bearings are introduced first
as the main topic of importance, then we look forward to the
current or future development trend of state monitoring and fault
diagnosis technology, so as to provide the necessary basis for the
follow-up study on the fault diagnosis of rolling bearings and a
foundational knowledge for researchers about rolling bearings.

Section 1 of this paper briefly introduces the significance
and necessity of the condition monitoring and fault diagnosis
of rolling bearings. Section 2 discusses the development of the
main individual physical monitoring technology for rolling
bearing condition monitoring. Section 2.5 introduces the cur-
rent development of multi-sensors information fusion and fi-
nally summarizes the shortcomings and development trend of
the main individual physical monitoring technology and
multi-sensors information fusion technology.

2 The development of the main individual
physical monitoring technology

The initial spall-like on the contact surface of the rolling bearing
produces an abnormal signal, which indicates the bearing failed.
In spite of the initial damage on the surface of the bearings,
which means that the wear increases and the operation condition
fluctuates, the bearingsmay be used until the friction-pair contact
surface is completely destroyed. Due to the bearing being stuck
or the excessive dynamic load and broken parts, themachinewill
stop running [5]. These indicate that the potential disaster will
cause the excessive maintenance costs, bad operation, a non-
normal shutdown, and even a threat to life, so the preventive
maintenance (PM) appears. PM can be used to reduce the non-
normal shutdown caused by bearing fatigue. According to the
calculation of rolling bearing fatigue life, the periodic contact
surface wear phenomena, or bearing fatigue data, the cycle of
machine maintenance can be predicted. Therefore, in this period,
the rolling bearings can be inspected and replaced. As known,
except for the cost of replacement equipment, production, and
tax losses, PM will replace the normal working bearings before
the failure of the bearing, so the condition-based maintenance

(CBM) appears. The CBM can be realized by monitoring the
condition of the bearing and obtaining the information of the
possible failure of the bearing, and the knowledge of the predic-
tion time and the effective performance of the bearing [6, 7]. At
present, according to the different mechanism of monitoring
condition and fault diagnosis technology, the technology mainly
includes parameters like vibration, acoustic emission, oil analy-
sis, and temperature detection.

2.1 Vibration

Vibration is the most widely used technology to evaluate the
operation and the bearing condition. Even if the bearing is dete-
riorating and close to end or a new bearing, vibration is an avail-
able way. Vibration can be used to infer the machine part condi-
tion. The processes include data acquisition, feature extraction,
pattern recognition, and decision analysis [8], as shown in Fig. 1.
We will not discuss the data acquisition in this paper.

The vibration signals are obtained from the vibration test
equipment, which is fixed or portable. The sensors are divided
into displacement sensors, speed sensors, and acceleration
sensors. The choice of sensor depends on its application. A
displacement sensor is an electric eddy current sensor, which
is a non-contact measurement and generally used to measure
the orbit or some extreme conditions; the acceleration sensor
is the more general measurement method. The corresponding
frequency can reach 20 kHz; the application of speed sensor is
between the other two kind sensors and limited to the low
frequency response.

The point of the analysis of vibration signals of rolling
bearings in the early stages was to distinguish the characteris-
tics of the time and frequency domain and finally to identify
the fault diagnosis. Kinsky and Sturm [9] had established a
new method named normalized zero condition, which is more
suitable for fault diagnosis than the direct application of the
characteristic of the vibration signal because it does not de-
pend on time. Mechefske and Mathew [10] adopted the pa-
rameter’s autoregressive model to get the frequency spectrum
and obtained parametric spectra index such as arithmetic
mean, geometric mean value, the root mean square of matched
filter, root mean square of difference spectrum, and spectral
difference square. The test results showed that this method can
identify the bearing condition better compared with the tradi-
tional fast Fourier transform spectrum method, especially in
the low speed of the bearing. Then [11], spectrum estimation
based on FFT technology was compared with the
autoregressive model to prove that analysis of short-time sig-
nal based on autoregressive model method is very effective.
Martin and Honarvar [12] carried out the rolling bearing fault
diagnosis based on the time domain normalized skewness and
kurtosis parameters and had significant results. This method is
a low cost method for maintenance and quality control.
Statistical parameters of wave factors and kurtosis were used
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to perform fault diagnosis of rolling bearings byHeng and Nor
[13]. In addition, the results were compared with results af-
fected by parameters which obey the beta distribution. Test
results showed that wave factor and kurtosis have an accurate
judgment with the bearing condition, but the beta distribution
parameters have no optimization effect on the bearings’ fault
diagnosis. Mori et al. [14] adopted discrete wavelet transform
to extract the time-frequency domain characteristic parameters
of ball bearing in the operation process to predict spall-like
damage. The experimental results showed that wavelet coef-
ficients had a good reaction when the ball is through the pre-
palling position, so it can be used to predict the ball bearing
fault. Li and Wu [15] had developed a simultaneous segmen-
tation and template learning machine used for on-line identi-
fication of fault-sensitive resonance. The principle sequence
for each burst sequence related to defects is divided into sev-
eral sub-sequences, and then, the autoregressive moving aver-
age model was used to deal with the dynamic sub-sequences
data separately, and the minimum distance classifier based on
the results fed back identified fault diagnosis. The matched
filter was used for calculating signal energy contribution of
fault sensitive resonance to evaluate the damage degree of
bearing. The results show that the method has a good effect.

After the development of time and frequency domain char-
acteristics into a certain stage, the relevant statistical parame-
ters are introduced into the vibration analysis. Dron et al. [16]
compared the performance of the different parametric
autoregressive spectral analysis methods with the traditional
spectral analysis methods’ for bearings’ fault diagnosis. The
autoregressive model along with Bugh algorithm and Akaike
information criterion was retained. Test results showed that
the parametric method has a high resolution and can find the
fault earlier, especially in the similar fault characteristic fre-
quency. However, due to the complexity of the algorithm, the
method cannot completely replace the traditional spectral
ways, but it can enhance the effectiveness of the traditional
methods. Liu et al. [17] proposed a new method named
Matching Pursuit Time Frequency Atoms to analyze and to
extract features of the vibration signal for the fault diagnosis of
rolling bearings. This approach utilized not only the temporal
spectral but also the scale characteristic of the vibration gen-
erated due to the presence of a defect for the fault detection.

The test results showed that this method can provide stronger
signal-noise ratio in early fault period of rolling bearing com-
paring with the continuous wavelet transform and Hilbert
transform envelope technique, which has a higher sensitivity
and reliability. Samanta and AI-Balushi [18] extracted the vi-
bration signal features such as root mean square, variance,
skewness, kurtosis, and normalized sixth center distance as
the input of the neural network to realize rotating machinery
rolling bearing fault diagnosis. High pass/band pass filtration,
envelope detection, and wavelet transform technology for sig-
nal preprocessing showed no difference. Test results demon-
strated that the neural network can realize the fault diagnosis
of the bearing and have a good application prospect in the
bearing of online condition monitoring and fault diagnosis.
Lou and Loparo [19] used wavelet transform and adaptive
neural fuzzy inference system to realize inner race fault diag-
nosis of ball bearings. By comparing with the Euclidean vec-
tor distance method and correlation coefficient method, exper-
imental results showed that the reliability of this method is
higher with respect to identifying the different failure condi-
tions. Mohanty and Kar [20] proposed a new statistical param-
eter D-stat for rolling bearing fault diagnosis, which required
less computation compared to the mature technology, discrete
wavelet transform. Test results showed that the method has a
better effect on rolling bearings’ fault diagnosis. Its main ad-
vantage was that it was affected less by time lag, but in the
Kolmogorov and Smirnov test data loss was found, and the
phenomenon was more obvious in the center than in the tail.
Purushotham et al. [21] adopted Discrete Wavelet Transform
(DWT) to determine the inner ring’s, outer ring’s, roller ele-
ment’s, and their whole system’s fault diagnoses. Test results
showed that DWT for single point and multi-point ball bear-
ing fault diagnosis is effective comparing with the character-
istics extracting and spectrum analysis by wavelet transform.
At the same time, the authors established a hidden Markov
model classifier by inputting theMel frequency complex spec-
trum coefficients. Experimental results showed that the model
training in minutes has a fault identification rate of about 99%,
as Fig. 2 shows.

Randall [22] proposed a new de-noising technique and a
discrete random separation (DRS) technology which was ap-
plied in the fault diagnosis of the gear box in Sea Hawk

Fig. 1 The process of fault
diagnosis
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helicopters of US Navy. The experimental results showed that
the DRS technology is more effective than the adaptive noise
cancelation technique, especially getting the spectrum in the
lower frequency domain. Then Sawalhi and Randall [23, 24]
extended the techniques to the application of rolling bearing’s
inner ring and outer ring fault diagnosis. Cheng et al. [25]
proposed a new feature extraction method to enhance the abil-
ity for the adaptive model to deal with the non-stationary
signal of rolling bearings. Firstly, the non-stationary was bro-
ken into a number of intrinsic mode function components
which are stationary by using the empirical mode decomposi-
tion. Then, the auto regressive model was applied to deal with
each section of the processing. Finally, a condition judgment
was made by the Mahalanobis distance criterion function. The
test results showed that this method can effectively be applied
to the fault diagnosis of rolling bearings. Hao and Chu [26] put
forward a new method of morphological wavelet. This meth-
od made the smoothing about the pulse characteristics and
noise at the same time based onmorphological wavelet theory,
then extracted the features of rolling bearing fault signal. The
experimental results showed that the method is more effective
than the traditional wavelet transform and morphological
wavelet transform, and suitable for the on-line condition mon-
itoring and fault diagnosis of rotating machinery rolling bear-
ings. Zhang et al. [27] proposed a new vibration signal pro-
cessing method based on local optimization wavelet packet.
The optimal basis of this method was determined by the abil-
ity of classification. Feature extraction and local decision were
realized by Bayesian inference and the weighted average of
the data was used for the fault diagnosis. Test results showed
that the method has a high accuracy. Khemili and Chouchane
[28] pointed out that the difficulty in fault diagnosis of rolling
bearings is the noise. Therefore, in order to enhance the vibra-
tion signal-to-noise ratio to effectively judge bearing state, the
authors adopted the adaptive noise cancelation and the adap-
tive self-tuning filter to deal with the vibration signal of the
bearing. The test results showed that the adaptive filter has a
higher signal-to-noise ratio. Abbasion et al. [29] did de-

noising and feature extraction of the vibration signal for
rolling bearing fault classification by utilizing discrete
Mayer wavelet and later the Weibull negative log-likelihood
function, and the features were inputted into the support vector
machine (SVM). Test results showed that the accuracy of
SVM for the fault diagnosis under small samples is 100%.
Yuan et al. [30] set up Geronimo Hardin’s and Masssopust’s
adaptive multi-wavelet library based on similarity scale con-
version for the complex and non-stationary characteristics of
the rolling bearing vibration signal in the early stage, then
realized the fault detection by the optimization of kurtosis
maximization principle. Experimental results showed that
the method is more effective than the original GHM multi
wavelet, Db6scaler wavelet, Fourier transform, spectral kurto-
sis, and other algorithms to detect the excitation characteristics
of vibration signals. Wang et al. [31] presented a method of
dual tree complex wavelet transform to enhance the fault char-
acteristics of some special equipment. This method compared
with the second-generation wavelet transform and empirical
mode decomposition could reduce spectrum aliasing. At the
same time, dual-tree complex wavelet transform with
NeighCoeff shrinkage was used to improve the signal-noise
ratio and had a higher efficiency. Experimental results showed
that this technique is robust, and its performance is better than
second generation wavelet transform and kurtogram fast. And
the method is suitable for on-line condition monitoring and
fault diagnosis because of its robustness and high efficiency.
Wang et al. [32] proposed an adaptive time-frequency algo-
rithm based on Calman’s smoothing method. It obtained the
time-frequency spectrum and a higher time-frequency spec-
trum resolution precisely which was compared with the meth-
od of short-time Fourier transform, non parametric Wigner-
Ville distribution, Choi-Williams distribution, and wavelet
transform. Then the radial basis function neural network was
used to classify the bearing state. The test results showed that
the method can effectively diagnose the bearing fault automat-
ically and accurately. Wang et al. [33] extracted the oscillator
and two-dimensional approximate entropy in a large periodic
signal from a chaotic state of vibration signal using a chaotic
oscillator. The test results showed that the features of the ma-
chine is very sensitive to weak signals, the two-dimensional
approximate entropy can effectively identify faults, and the
method has a high accuracy. Hong and Liang [34] adopted
the Lempel-Ziv complexity value to judge the single point
fault severity of bearing. The method first adopted the contin-
uous wavelet transform to obtain where the best scale of the
fault resides and eliminate the interferences of noise and irrel-
evant signal components, then calculates the Lempel-Ziv
complexity value. The test results showed that the method
can effectively detect the single point failure of rolling bear-
ings, and the change of the normalized Lempel-Ziv complex-
ity value can indicate the increasing trend of the number of
faults. Lei et al. [35] pointed out that krutogram has the

Fig. 2 Pattern recognition curve for various window sizes [21]
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superiority in the monitoring and characterization of transient
signal, but it has a bad precision affected by the noise to
extract transient signal features. The wavelet transform is in-
troduced to improve kurtogram to eliminate noise and match
noise characteristics accurately. Test results show that it has a
higher accuracy compared to the original kurtogram for fault
diagnosis of bearings.

The vibration analysis will provide more reliable parame-
ters to evaluate the rolling bearing state with the improvement
to feature extraction techniques. A part of work in recent years
about vibration feature extraction techniques is multi-
algorithm fusion to improve the efficiency and reliability com-
pared to the original method. Zhou et al. [36] proposed the two
order cycle stability analysis to realize feature extraction of the
fault in the early stage. This method can restrain the noise and
provide higher order statistical parameters and provide more
information compared to the traditional spectrum analysis and
the envelope analysis method. Slices spectrum analysis was
used for fault diagnosis of rolling bearings. Test results
showed that this method has better reliability and stability.
Wang et al. [37] pointed out scalar wavelet thresholding meth-
od can extract the vibration characteristics effectively after
reducing noise, but it may not be able to obtain some param-
eters accurately, and it did not consider the effect of neighbor-
ing coefficients. Therefore, the authors adopted wavelet de-
noising to improve it. The experimental results showed that
the improved method has a better performance compared to
the traditional method, as Fig. 3 shows.

Lei et al. [38] summed up the application of empirical
mode decomposition in the fault diagnosis of key parts of
rotating machinery and equipment, including rolling bearings,
gears, and motors.Wang et al. [39] extended the application of
morphological filter in vibration signal time domain features

extraction. First open close and close open morphological
operator was calculated average weighted to obtain the feature
of the vibration, then the geometric structure was optimized,
and finally, the effectiveness of the method was verified by
using simulation and test. The results showed that it is effec-
tive to extract vibration features. Cui et al. [40] developed a
matching pursuit algorithm based on dictionary step impulse
to detect the rolling bearing spalling size. First, the step re-
sponse into the spalling region and the excitation response out
the spalling region are obtained, then the relationship between
the responses, spalling size, and time interval is calculated.
Test results showed that the method is effective and reliable
when the faults are made on the outer ring of the rolling bear-
ing. Wang et al. [41] pointed out that many techniques cannot
get the correct information under know nothing about the
rotation speed, so the authors developed a method named
adaptive gear interference fault characteristic order and rota-
tional based on order sideband algorithm to detect the faults of
bearing and separate the gear interference to it. Test results
showed that this method is effective. Li et al. [42] introduced
the reduction dimensionality techniques such as independent
component analysis, principal component analysis, and singu-
lar value decomposition, but these methods had some limita-
tions, so the authors proposed a new method based on gener-
alized S transform and two-dimensional non-negative matrix
factorization method. The generalized S transform could ob-
tain the satisfying time frequency characteristics. The two-
dimensional non-negative matrix factorization could reduce
the operation cost and obtain more time frequency character-
istic information. Test results showed that the method has a
good classification ability. Borghesani et al. [43] pointed out
that the signal enhancement and analysis fusion technique of
rolling bearing fault diagnosis were generally divided into
three steps. The first is the order tracking and synchronous
averaging with the shaft, the second is synchronous har-
monics, and the third is to obtain the squared envelope spec-
trum. But due to the heterogeneous vibration source of indus-
try scene, the synchronous averaging was not sufficient. To
solve the problem, the method of cepstrum pre-whitening is
proposed. Experimental results showed that the method per-
forms better compared with the traditional pre-whitening.

Vibration analysis is the most mature technology of rolling
bearing condition monitoring and fault diagnosis technology.
Vibration analysis extracts features such as time and frequen-
cy domain statistical parameters firstly, then contrasts of the
characteristic parameters under fault conditions, to obtain the
state of rolling bearing; with the increasing demand and de-
velopment of industrial technology, different kinds of signal
acquisition, feature extraction, condition evaluation, and deci-
sion classification technologies are emerging [44]. The devel-
opment of vibration analysis is not described overall in this
paper, but the technology involved is a common method for
analyzing vibration fault diagnosis of rolling bearings.

Fig. 3 The results of denoising for bearing signal with different methods:
a D8 wavelet with soft thresholding. b GHM multiwavelet with soft
thresholding. c GHM multiwavelet with NeighCoeff. [37]
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2.2 Acoustic emission analysis

The frequency response of acoustic emission is higher than
vibration’s, which will be hundreds of thousand HZ even
more than 1 MHz. The typical applications of acoustic emis-
sion are composite material spalling, fracture, and delamina-
tion in rolling bearings. It has an advantage to explore the
factors affecting the irregular surface of rolling bearings, so
the available acoustic emission method is used to obtain the
lubricating condition of the bearing and the relative fault
information.

Acoustic emission has been developed for a long time for
the condition monitoring and fault diagnosis of rolling bear-
ings. Balderston [45] believed that the installation of equip-
ment in the natural state did not affect the resonance frequency,
although the installation will cause a damping effect. The se-
verity of the fault was directly linked with amplitude resonant
frequency based on regular monitoring of the rolling bearing’s
inner ring and roller element and continuous monitoring in
lean condition. It was also one of the applications of acoustic
emission technology in early monitoring of the bearing.
Yoshioka et al. [46] found that the acoustic emission technique
could detect some bearing faults which could not be detected
by the vibration analysis. Caltin [47] believed that acoustic
emission mainly applied in unbalance, equipment misalign-
ment, loosening, and deformation. The spreading signal of
acoustic emission was easy to decay, which was mixed with
a large number of instantaneous and random signals, so the
detection of object needed to be very close to the location of
the detection. Holroyd et al. [48] also proved this point and
found that the time to detect the bearing’s fault by acoustic
emission is earlier than vibration. Bagnoli et al. [49] found that
the acoustic emission signal had some obvious characteristics
when the bearing fault occurred, and the signal was weak
when nothing happened. Vibha et al. [50] made the acoustic
emission technology as one of the quality detection tools for
the used bearings, and the load is 3% of rated load of the
operation process. Test results showed that under the load
condition, whether new or used bearings, the peak-peak value
has no change, and the peak value of the used bearing is almost
five times of the new bearing. Shiroishi et al. [51] detected the
bearing condition under 1200 rpm using acoustic emission and
vibration. The test results about different sizes on the fault of
the inner ring showed that the acoustic emission technique is
not sensitive to the inner fault. Yoshioka et al. [52] detected the
fatigue failure of a deep groove ball bearing using vibration
and acoustic emission techniques. There were 16 tests de-
signed which continued for nearly 130 h. Test results showed
that acoustic emission features counting point increased rapid-
ly, and after 5 h, the RMS of vibration changed. Though the
features cannot identify the location of the fault, it can reflect
the lubrication state of the bearing. In order to distinguish the
fault severity, Morhain et al. [53] designed a test to divide the

threshold stage of acoustic emission counts. Test results show
that the acoustic emission signal’s maximum amplitude was
only linked to rotary speed and was irrelevant to load and fault
size. Acoustic emission counts can be used to identify the fault
whose length is less than 15 mm, and width is less than 1 mm.
Choudhury and Tandon [54] researched the application of
acoustic emission technique in the fault diagnosis of rolling
bearings. The electric spark machining was adopted to process
the fault of a bearing’s roller element and inner ring. The test
results showed that ring down counts is sensitive to the rolling
element and the inner ring small fault, but it increases to a
certain extent with the fault size increasing. The peak value
of the AE signal is feasible for fault diagnosis of rolling bear-
ings. Guo and Schwach [55] adopted acoustic emission tech-
nology to monitor two kinds of bearing steel surface (free of
white layer and white layer) to research influence of a white
layer to the service life of mechanical components. Test results
showed that the acoustic emission parameters such as energy,
RMS, and acoustic emission signal amplitude for fatigue-
crack occurrence and development are very sensitive, and
the steel without a white layer has a significantly longer life.
AI-Ghamd and Mba [56] utilized the vibration and acoustic
emission for the fault of rolling bearings. Test results showed
that the acoustic emission can obtain the fault information
earlier than vibration and identify the fault size to use to mon-
itor the bearing performance. Li et al. [57] carried out the
accelerated fatigue test of an electric park machine bearing
under 1600 rpm and 167% of the radial rated load. Vibration
and acoustic emission technology are used to monitor the pro-
cess. Test results showed that the RMS which is dealt with by
an adaptive algorithm is directly linked with the severity of
fault. Elforjani and Mba [58] adopted acoustic emission to
monitor the fatigue damage of low-speed rotating machinery.
Test speed is 72 rpm and loads were 4 and 8 kN. The test
results showed that the acoustic emission’s reliability, robust-
ness, and sensitivity to detect fatigue damage of the low-speed
shaft, and its energy level has obvious relationship with the
crack expansion. The authors consider that acoustic emission
is the first time to apply to the low-speed shaft for monitoring.
Babak et al. [59] utilized vibration and acoustic emission to
monitor the state of the helical gear under different working
conditions. The tests proved that the acoustic emission tech-
nique is effective for fault detection of the helical gear, and
more sensitive in the detection of the gear fault comparing
with the vibration. It is the first time to propose that the AE
RMS has a direct relationship with wear characteristics of the
helical gear. Kliundu et al. [60] proposed a newmethod named
cyclic spectral correlation to deal with cyclostationary signal
for acoustic emission. Test results showed that the method by
using the same traditional evaluation parameters such as RMS,
kurtosis, and peak factors compared with the traditional enve-
lope spectrum analysis technology has a higher efficiency,
especially in identifying the small fault, as Fig. 4 shows.
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Gu Et al. [61] used the envelope analysis and discrete
wavelet analysis to deal with the acoustic emission signal of
the gearbox fault. Test results showed it has a higher accuracy
compared to the traditional envelope analysis. M.Elforjani
et al. [62] utilized vibration and acoustic emission to monitor
the state of the worm gear. Experimental results showed that
acoustic emission signal has a higher reliability, robustness,
and sensitivity than vibration signal. Lu et al. [63] adopted the
acoustic emission base on near-filed acoustic holography and
gray level co-occurrence matrix for rolling bearing fault diag-
nosis. The method used Fourier transform of the near-filed
acoustic holography to obtain sound field and acoustic re-
spond spectrum under different conditions firstly, then gained
fault pattern based on gray level co-occurrence matrix, and
finally, identified the fault state by a multi-class support vector
machine based on F score optimization. Experimental results
showed that this method has a higher reliability compared
with the traditional acoustic emission signal processing tech-
nology, and the validity of the method reached 97.5%. Wang
et al. [64] used an acoustic emission fault detector to detect the
fault of railway bearing. Usually, acoustic emission signal
processing has three problems: the acoustic emission signal
demodulation, Doppler effect elimination, and characteristic
frequency and amplitude enhancement. The authors adopted
the fusion algorithms to solve the above problems, such as a
variable-resolution ridge demodulation to extract the charac-
teristic, the dynamic signal resampling method to eliminate
the Doppler effect, and the average conversion algorithm
and piecewise linear trend of separation method to enhance
the characteristic frequency and amplitude. Test results
showed that it gets the ideal effect. Faris [65] adopted vibra-
tion and acoustic emission to analyze the helicopter main gear
box bearing. Test load was divided into 110%maximum take-
off power and 100 and 80% of maximum continuous power;
the fault state was divided into the state of nature and the
primary and serious simulation fault of inner and outer rings.
Test results showed that the acoustic emission technology is
effective to identify the bearing fault and has advantages

compared to vibration on the fault recognition in primary vi-
bration. Sadegh et al. [66] utilized acoustic emission to iden-
tify the lubrication state of radial bearing. Ten characteristics
of AE signal values were used to characterize the lubrication
based on the Stribeck curve, and five values of them were
chosen as the input of neural network and genetic algorithm.
Experimental results showed that it can effectively distinguish
the lubrication state of radial bearing. Hase [67] researched
radial bearing wear identification by acoustic emission.
Acoustic emission is sensitive to the initial crack under high
frequency sampling (more than 1 MHz); it has a reaction un-
der intermediate frequency sampling (0.5 MHz) when steel
friction pair contact directly; and bearing has experienced
70% of a life cycle when the deformation and wear are found
under the low frequency (less than or equal to 0.3MHzwhen).
In the process of identification, characteristics of frequency
and amplitude of acoustic emission will change, thus can be
used to distinguish the abrasion and wear severity.

Acoustic emission has a higher response frequency com-
pared with vibration, so the acoustic emission can detect weak
signals more effectively, but also because of this, the acoustic
emission is more susceptible to noise interference, and the
development of acoustic emission and vibration methods are
similar, such as noise reduction, elimination dimension, fea-
ture extraction, classification and decision, etc.

2.3 Oil analysis

Oil analysis as an effective way to monitor the wear condition
of the machine has entered the field of industrial application. It
can effectively monitor the wear state and lubrication state of
the friction pairs [68]. At present, the technology of
ferrography, [69], spectrum, [70] and related physical and
chemical analysis [71, 72] are used. Some off-line methods
that are inefficient and inevitable delays cannot meet the de-
mand of real-time online detection, and online analysis is the
inevitable trend of state analysis.

Fig. 4 a ICS indicator for varying outer race defect size. b Comparison of normalized values from the envelope signals [60]
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There are two main functions for lubrication oil used in the
equipment: one is to reduce the friction between the friction
pairs and the other is to take away the heat caused by the
movement between the friction pairs. In the operation process
of the equipment, lubricating oil will gradually lead to the
decay properties because of oxidation, thermal, and shear ef-
fects, so the online oil monitoring sensor technology has been
studied. Viscosity is the most important parameter of the oil’s
physical properties, which directly determines the perfor-
mance of lubrication oil. Lubricating oil viscosity online mea-
surements are mainly divided into capillary measurement
[73], micro vibration measurement [74], quartz resonant
acoustic shock measurement [75, 76] and magnetic measure-
ment. Chemical properties of the lubricating oil will change as
the physical properties change, such as conductive properties,
etc. The physical and chemical properties of the lubricating oil
may be caused by contaminants or transfer of the material
itself. Themain contaminant is water pollution, themain water
contaminants measurements are the capacitance measurement
[77, 78], impedance measurement [79, 80], and the transfer of
the material is mainly reflected in the wear of materials. For
wear measurements, in recent years, the development of pho-
toelectric sensors [81], photoelectric and magnetic sensors
[82], mixed image and magnetic sensors [83] (as shown in
Fig. 5.), induction sensor [84], sensors based on capacitance
and impedance [85], sensors based on the energy principle
[86], and sensors based on ultrasonic principle [87].

In view of the development of the online condition moni-
toring sensor technology for lubricating oil, in addition to
sensors of the physical and chemical properties of the

lubricating oil and the sensors of wear debris, sensors also
include infrared (IR) and Fourier transform infrared (FTIR)
spectrometry [88], XRF (X-ray fluorescence) sensors [89],
photo-acoustic spectroscopy (PAS) [90], fluorescence spec-
troscopy [91], etc.

The wear state of the equipment, especially the key tribo-
logical system such as gear, engine, and bearing are very im-
portant. A study from NASA that reported [92] about oil anal-
ysis and vibration fusion systems to monitor the state showed
that oil analysis is earlier to identify the wear compared with
vibration and can monitor the evolution of the wear process,
which is also the oil analysis different with vibration and
acoustic emission. Based on the consideration of the accuracy
and reliability of online oil analysis monitoring technology,
the development of it is expounded mainly from the view of
wear particle analysis in this paper.

Studies have shown that the severity, wear rate, wear type,
and wear position of the fault have a certain relationship with
wear particle characteristics. For example, particle size distri-
bution and size can characterize the severity and form of wear,
but the size and features cannot describe the wear mechanism
and the reason why wear particle generates; therefore, it is
necessary to study other particle characteristics to describe
the wear state roundly. Wear particle shape or contour recog-
nition is more efficient to know about the wear mechanism,
because they have their own typical characteristics, such as
abrasive wear which is flake, cutting wear particles which is
curled, and so on. The formation of wear particles has a very
close relationship with wear severity. For example, in the
running-in wear stage, abrasive wear particles are more, and
in the severe wear stage, the fatigue pitting wear particles are
more. The wear debris features also include surface texture,
edge features, and color for condition monitoring and fault
diagnosis of equipment [93]. And there are some achieve-
ments in fault diagnosis by using these features. Peng [94]
used focused scanning electron microscopy of particles to
extract wear particle surface morphology and topological
structure features of six types particles, and the neural net-
work, fuzzy and multilayer perceptron with the reverse learn-
ing rules are used for type identification. Test results showed
that the neural network has a satisfying ability of classifica-
tion. Chiou et al. [95] developed an online sensor to monitor
the wear debris based on electromagnetic flow. The operation
principle of the sensor is that wear particle induces magnetic
current density to change, and the changes can lead the Holzer
sensor output voltage changes. Test results showed that the
voltage is a power function of wear debris counts. Therefore,
this sensor has a certain application potential in the online
wear particle analysis. Yan [96] introduced a kind of online
wear monitoring system for marine diesel engine. The test
results showed that the online detection system which is used
to evaluate the working state of the diesel engine system is
effective, the ferromagnetic particles only influenced by theFig. 5 Principle of online wear debris imaging sensor [83]
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magnetic field, gravity and other factors are negligible, and
while low capacitance oil quality detector can better distin-
guish capacitance change due to moisture, metal particles
etc. And with the help of the ferromagnetic particle detector
and the lubricating oil quality detector, it can bemore effective
to distinguish the difference between ferromagnetic and non-
ferromagnetic particles. Miller [97] adopted the online wear
particle monitoring method to study status of aero engine. Test
results showed that the online wear particle analysis is very
effective for monitoring condition of rolling bearings, and the
quality of wear debris or debris counts can effectively charac-
terize the wear state, and found that it has large wear particles
in bearing operation even in the early stage. The application of
the aero engine proved the feasibility and application potential
of the online wear particle analysis. Wu et al. [69] utilized the
online ferrography for radial bearings for wear condition mon-
itoring in different conditions and used ICPA to evaluate the
wear condition. Test results showed that the IPCA value ac-
cords with bathtub curve, and the main wear mechanisms are
micro cutting and plow. Raadnui [77] developed a low cost oil
condition monitoring sensor. The sensor is sensitive to wear
particles, contaminants, and so on. Experiments showed that
when there is one of the magnetic particles, moisture, and dust
pollution, the output of the sensor is affected to 99%; the
output of the sensor changes to 75% when there are three
kinds of pollution. Levi et al. [98] utilized direct reading
ferrography analysis, atomic microscope, and scanning elec-
tron microscope image analysis to research theWankel engine
failure. Test results showed that the analytical ferrography has
a good effect in monitoring: the fault occurred in the early
stage of six engines, and contact fatigue was found after
disassembling of the engine needle bearing. The study is also
applied to monitor the state of the Wankel engine, which has
obtained a good result. Wu [99] used online ferrography to
extract the IPCA and large wear particle proportion, and vec-
tor data description supported was used to classify the wear
condition of the engine. Test results showed that the two pa-
rameters and the algorithm can effectively identify the wear
state, and it has a good application potential in online wear
condition evaluation, especially in the whole life condition
monitoring, as shown in Fig. 6.

2.4 Other analytical techniques

For the industrial field, different detection techniques have de-
veloped to ensure the device operating safety. Except vibration,
acoustic emission, oil analysis, and the online condition mon-
itoring technology also include temperature detection, ultra-
sonic detection, current signature motor detection, etc.
Temperature detection is to measure whether the temperature
is beyond the previous experience value to determine whether
the bearing is defective. Temperature detection is not sensitive
in the early stage of fault bearing, but it changed significantly in

extreme conditions or failure, so temperature detection is less
used alone of rolling bearing condition monitoring and fault
diagnosis [100–102]. The bearing internal temperature field is
complex, so the more current research is how to obtain the
internal temperature field and how the temperature field affects
the bearing performance [103–106]. Ultrasonic detection can
also be used in bearing condition monitoring [107, 108]. In
recent years the ultrasonic detection applied to measure the
oil film thickness of rolling bearing lubrication [109–111], in
order to obtain the state of rolling bearing [112]. Current sig-
nature motor detection in recent years has begun to apply to
fault diagnosis of rolling bearings, which is mainly used in the
deep buried of the centrifugal pump [113, 114], nuclear reactor
[115], asynchronous motor drive [116, 117], etc.

2.5 summary

The above monitoring technologies are currently the most
widely used technology of rolling bearing monitoring technol-
ogy. The characteristics of production equipment in modern
industry are upsizing, complex, continuous, speedup, and au-
tomation. The process of mechanical equipment fault diagno-
sis includes signal acquisition, signal processing, feature ex-
traction, inference, and conclusions. In the process, a sensor
can just provide local information, whichmeans we can obtain
a one-sided information about the machinery and equipment,
so the machinery and equipment need more comprehensive
consideration to different parts to make the fault diagnosis
accurate and effective; the single sensor signal will encounter
noise and signal distortion. When the single sensor fails, the
normal system will not work accurately, so the sensor signal
uncertainty requires the use of the redundant and complemen-
tary information of multiple sensors to conduct a comprehen-
sive analysis, then to reduce the inherent uncertainty of the
single sensor system. The feature extracted from a single sen-
sor signal also has the characteristics of a single sensor signal
which is local, one-sided, and characteristic value error easily,
which leads decision error. The inference will be provided
based on the features extracted from the sensors signal, and
each inference method has its own advantages, it also has its
inherent shortcomings. To reduce and eliminate the uncertain-
ty of each link of the fault diagnosis process which occurred
by the shortcoming of inference mechanism, the multi-sensor
fusion technology has been developed.

3 Multi-sensors fusion technology

Multi-sensors fusion is a multi-source information fusion, also
called information fusion. It was first proposed in 1970s, and
military application gave birth to this technology. At present,
most researchers accept the definition of information fusion
which is proposed by the Council of the United States armed
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forces laboratory JDL [118]: information fusion is a multi-
stage process, including the multi-source data detection, com-
bination and estimation, so as to improve the estimation pre-
cision of state and identity, and evaluate the importance of
battle situation and threat completeness and in time. The in-
formation fusion technology we are studying is a simulation
function of the human brain to deal with the complex problem.
In the multi-sensor system, various sensors provide different
characteristics which may be time-varying or time invariant,
real-time or non-real-time, deterministic or stochastic, precise
or fuzzy, exclusive or complementary, etc. Multi-sensor infor-
mation fusion systems will make full use of multiple sensor
resources through reasonable controlling and using of all
kinds of observation information in space and time to redun-
dant and complementary information based on a combined
optimization criterion, to obtain the consistency interpretation
and description to observation environment and generate a
new result at the same time. The goal is to separate the obser-
vation information based on a variety of sensors, then a com-
bination of information is optimized to get more effective
information. The ultimate aim is to use multiple sensors or
joint operation advantages to promote the effectiveness of
the whole system [119].

According to the abstraction level of data fusion, the infor-
mation fusion can be divided into three levels: data fusion,
feature fusion, and decision fusion.

(1) Data fusion is the lowest fusion, which is directly fusing
the sensor data. The feature extraction and the inference are
done based on it. This model has an advantage with less loss
of data that can provide a high precision, as shown Fig. 7.

Hansen et al. [120] used multi-sensor information fusion to
monitor the gear and related system, and obtained the state of
the mechanical parts and environment by filtering and signal

processing of the data. Fang et al. [121] used a single sensor to
evaluate the performance of the whole life of the mechanical
equipment by using the multiple characteristic data of a single
sensor in time series. Chen et al. [122] acquired and analyzed
the data of the 11 types of failure of large rotating machinery.
The phase and trajectory map of X and Y direction data were
integrated to promote the development of fault diagnosis.
Khan et al. [123] optimized the sensor’s location to study
how to reduce the redundant information of the fixture
multi-sensor fusion fault diagnosis system and got accurate
diagnosis results by using the least sensor’s data. Heger et al.
[124] used eight IEEE1394 standard cameras to obtain the
surface structure information of the same texture in different
directions, and the image fusion greatly enhanced the effective
information compared with the original image, but the data
fusion process has a large amount of data and does not have
error correction ability, and the sensors used need to belong to
the same, so data fusion is not suitable for rolling bearing fault
diagnosis system of online application.

(2) Feature fusion belongs to the middle level. The features
are extracted from each sensor signal first; then, the fusion is
completed with the features. The advantages of the model are
realizing considerable data compression to reduce the require-
ments of communication bandwidth, and the model is suitable

Fig. 6 The stage evolution of
wear states [99]

Fig. 7 Structure of data fusion
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for real-time processing, although it lost some useful informa-
tion to make fusion decrease, as shown in Fig. 8.

Feature fusion can be divided into two categories: target
state fusion and target feature fusion. Target state fusion is
mainly used in the field of multi-target tracking. The common
mathematical algorithms include Calman filter theory, joint
probabilistic data association, multiple hypothesis method, in-
teractive multi model method and sequential processing theo-
ry, etc. Target feature fusion belongs to the pattern recognition
problem, and the common mathematical algorithms include
parameter template method, feature compression and cluster-
ing method, artificial neural network, K order nearest neigh-
bor method, and so on.

(3) Decision fusion requires a high level of integration.
Decisions are made by each sensor data first, then the local
decisions finish fusion at the fusion center. The decision fu-
sion is directed against the decision of specific objective; the
fusion results directly affect the accuracy of decision-making.
This approach lost the largest amount of data in the three kinds
of approaches, but it uses the smallest amount of communica-
tion, has a strong anti-interference ability, an advantage of low
cost, and is depending least on sensors, as shown in Fig. 9.

The common algorithms are Bayesian inference, expert
system, D-S evidence theory, fuzzy theory, etc.

The information fusion technology in this paper will be
introduced mainly from two aspects: the feature fusion tech-
nology and the decision fusion technology.

To obtain the relationship of cutting tool surface finish and
the size deviation, Azouzi et al. [125] carried out the different
cutting feed rate and cutting depth tests, and used neural net-
work technology to analyze the statistics parameters which
showed that the surface finish can evaluate the machining
error under different processing conditions. Quan et al. [126]
utilized the neural network to fuse the acoustic emission signal
and the force signal to identify the machine tool online wear
state. Results showed that it is an effective method for the real-
time online monitoring tool. Peng et al. [127] utilized the
vibration and wear debris analysis to monitor the state of the
gearbox; the test results showed that single sensor technology
has its own advantages. For example, wear debris analysis has
an advantage in analyzing the wear trend and can obtain the
wear mechanism earlier compared with vibration; vibration
has a better performance in real-time and reliable response

characteristics of bearing state, and the combination of the
two methods can make the diagnosis more accurate. Then,
Peng et al. [128] also used the two methods to monitor the
state of spur gear under overload and cyclic loading, the test
results showed that the vibration analysis has advantages in
the characterization of gear fault, and the wear debris analysis
has advantages in the identification of wear form. Akagaki
et al. [129] did the wear test caused by oil pollution of the
deep groove ball bearing (6002P5) and utilized wear debris
analysis, spectral analysis, and vibration to monitor the pro-
cess. At the same time, the friction pair surface was observed
by scanning electron microscope. Test results showed that
wear debris analysis and vibration are effective technologies
to monitor the wear of the bearings. Dan et al. [130] adopted
the reliability analysis based on the fault tree which is the
extension of the fault tree analysis to improve the reliability
of the system. In 2009, Feng et al. [131] adopted the
ferrography technology and vibration to characterize the fa-
tigue pitting of gear process in time and frequency domain.
Experimental results showed that when the crack initiated,
crack expansion and pitting occurred; characteristic parame-
ters of vibration had obvious change in time and frequency
domain, size, and the number of wear debris also showed an
increasing trend; and wear debris analysis is more effective in
analysis of wear mechanism compared with vibration. Gao
et al. [132] used EMD and intrinsic mode functions to extract
the vibration signal features to output the state of high-
pressure cylinder in the thermal power generation units. Test
results showed that the comprehensive method has a higher
accuracy of the feature extraction and identification of the
fault. Chee Keong Tan [133] explored multi-sensor technolo-
gy for the gearbox condition monitoring and fault diagnosis
and found that acoustic emission had a difficulty of applica-
tion. Test results showed that acoustic emission is sensitive
with the temperature of the lubrication oil and the surface
finish of the friction pair. Then, Chee Keong Tan et al. [134]
carried out the test of fatigue wear of spur gears and used
acoustic emission, vibration, and oil spectrum analysis to an-
alyze the state. Results showed that the features extracted from
acoustic emission signals have a linear relationship with the
test time and test torque, and they have a higher sensitivity
under a high torque compared to the other two kinds of detec-
tion technology. T.H.Loutas [135] adopted the vibration,Fig. 8 Structure of feature fusion

Fig. 9 Structure of decision fusion
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acoustic emission, and oil particle counting to monitor the
state of gear. Test results showed that the acoustic emission
technique does not have advantages in normal wear period,
but it is more sensitive than others when a crack initiated, as
Fig. 10 shows.

Li et al. [136] utilized time and frequency domain ampli-
tude of the vibration signal and geometric features of the on-
line wear debris image to characterize the state of marine
diesel engine. Test results showed that the accuracy of the
online wear debris image analysis is not high under the current
experimental conditions, but it can significantly improve the
rate of correct diagnosis with the fusing of the vibration signal.
Also, online wear debris images can provide more information
about the state of the marine diesel engine. In 2007, Gao et al.
[137] used oil analysis and vibration to realize the condition
monitoring and fault diagnosis of gear box. First, signal fea-
tures were extracted from single detection technology, then D-
S evidence theory was used to fuse features. Experimental
results showed that the fusion technology has a higher reliabil-
ity and applicability compared to the single detection technol-
ogy. Ebersbach et al. [138] combined vibration with oil anal-
ysis and wear debris analysis to establish an expert system to
realize the condition monitoring of rotating machinery. Test
results showed that the expert system has a higher reliability
and universality compared to manual experience to judge the
operation status of the machine. Yan et al. [139] developed a
new remote online monitoring and fault diagnosis system for
marine diesel engines. The online monitoring system is set up
in the ship which used nine wear characteristics such as wear
debris surface roughness, oil viscosity, moisture, and IPCA,
and the fault diagnosis system is set up in the laboratory. The
test on the No. 2 of the Yangtze River ship shows that the
remote fault diagnosis system has a good validity and reliabil-
ity. Gabrijel et al. [140] used oil analysis and vibration to
analyze the gear sliding wear state. The time series analysis
method was used to reduce redundancy of oil information; K-
mean clustering and k-nearest neighbors classification were
used to reduce the impact to results by the amplitude modula-
tion of vibration in fault diagnosis. The results showed that the
multi-sensors information fusion whose features is optimized

based on oil characteristic and vibration characteristics of
rolling bearing’s inner race fault information is better than
the effect of single sensor technology. To solve the problem
of fault classification for bearings, first signal features were
extracted, then principal component analysis methodwas used
to reduce dimensionality of the signal characteristics, and fi-
nally, a fuzzy C-means model was used to realize fault diag-
nosis. Test results show that the recognition effect is ideal
[141]. Pavle et al. [141] evaluated the residual life of rolling
bearing based on entropy extracted by Gauss model. The
model has some advantages that do not require a priori knowl-
edge, knowing the operating conditions, has no limitation of
statistical characteristics, and is sensitive of the early fault and
so on, but it needs a large amount of calculation. The results
need professional knowledge to determine the fault type, and
the position and extent of failure are not clear. Zhang et al.
[142] used the local projection method and hidden Markov
model [143–145] to evaluate the performance of the decay
state of bearing. The local projection method [146] was used
to reduce dimensionality of redundant information [147] and
hidden Markov model was used to evaluate the decay state of
the bearing [148]. The data used in the text include a total of
five groups in which three groups are samples and two groups
[149] are applied to the assessment of the case. The result is
not good which is led by fewer samples.

4 Conclusion and Prospect

As the key part of rotating machinery, rolling bearings have
been widely used in aerospace, ship, machine tools, and other
important fields, and its reliability directly restricts the reliabil-
ity of mechanical equipment. In the running time, the reliabil-
ity of the rolling bearing directly determines the status of the
rolling bearing at that time. Therefore, it is necessary to keep
monitoring the condition of the rolling bearing to ensure the
reliable operation of the mechanical equipment. At present
there are a lot of technologies to detect the state of rolling
bearings, such as vibration detection, acoustic emission detec-
tion, oil detection, temperature detection, ultrasonic detection,

Fig. 10. a The lower threshold of
fusion. b The upper threshold of
fusion [135].
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etc. Each physical detection technology has its own advan-
tages and disadvantages because of the different detection
principle, such as vibration monitoring is not easy to detect
early fault of rolling; acoustic emission technology can
overcome this shortcoming but is easy to interfere by back-
ground noise; oil detection can use in the whole life cycle
effective but limited by oil itself; while the temperature
detection and ultrasonic detection only used in specified
conditions or auxiliary use, so multi-sensors information
fusion is the trend of development of mechanical equip-
ment condition monitoring for the future. However, there
is no denying that there are still some deficiencies about
the multi-sensors information fusion:

a) Limitations to the parameter application fusion, such as
data fusion, feature fusion, and decision fusion. It reflects the
status of the rolling bearing in the time sequence. Although it
can increase the accuracy of fault diagnosis, it will do nothing
to improve the reliability of the rolling bearing itself. Multi-
sensor information should explain the mechanism of the fault
of rolling bearing in the future and feedback in the design
stage to promote the reliability of the bearing.

b) Redundancy of multi-sensing information. The perfor-
mance decay of rolling bearings likes stage, so in a stage, the
performance of one physical detection technology is particu-
larly prominent. Hence, the dimensionality reduction also
needs to use physical detection technologies, not only a detec-
tion technology.

The shortcomings of multi-sensors information fusion are
not only affected by the lack of fusion, it is also affected by the
limitations of the physical detection technology itself. The
challenges of the future analysis of vibration and acoustic
emission are as follows: (1) noise removal; (2) feature resolu-
tion; (3) multi-vibration sources interference; (4) the fault lo-
cation and size; (5) mutation effect on the vibration; (6) the
nonlinear and non-stationary signal processing. The chal-
lenges of oil analysis in the future are as follows: (1) online
lubricating oil physicochemical performance index acquisi-
tion, (2) the non-Newtonian affect of the characteristics for
the online evaluation of lubricant oil, (3) effect of lubricating
oil properties to wear debris characteristics, (4) the three-
dimensional features reconstruction, and (5) the typical parts
wear debris sample database establishment. Also, temperature
detection, ultrasonic detection, and the other detection tech-
nologies because of the limitations of their application will no
longer be analyzed in this paper.

This paper is not a comprehensive review of the advantages
and disadvantages and application of detection technology,
but these advantages and disadvantages are summarized and
challenges in the future are obvious. For the authors, the pur-
pose of the paper is to provide the necessary basis for the
follow-up study of the fault diagnosis of rolling bearing and
a foundational knowledge for researchers about rolling
bearings.
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