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Abstract: As one of the most wear monitoring indicator, dimensional feature of individual particles has been studied mostly focusing on 

off-line analytical ferrograph. Recent development in on-line wear monitoring with wear debris images shows that merely wear debris 

concentration has been extracted from on-line ferrograph images. It remains a bottleneck of obtaining the dimension of on-line particles 

due to the low resolution, high contamination and particle’s chain pattern of an on-line image sample. In this work, statistical dimension 

of wear debris in on-line ferrograph images is investigated. A two-step procedure is proposed as follows. First, an on-line ferrograph 

image is decomposed into four component images with different frequencies. By doing this, the size of each component image is 

reduced by one fourth, which will increase the efficiency of subsequent processing. The low-frequency image is used for extracting the 

area of wear debris, and the high-frequency image is adopted for extracting contour. Second, a statistical equivalent circle dimension is 

constructed by equaling the overall wear debris in the image into equivalent circles referring to the extracted total area and premeter of 

overall wear debris. The equivalent circle dimension, reflecting the statistical dimension of larger wear debris in an on-line image, is 

verified by manual measurement. Consequently, two preliminary applications are carried out in gasoline engine bench tests of durability 

and running-in. Evidently, the equivalent circle dimension, together with the previously developed concentration index, index of particle 

coverage area (IPCA), show good performances in characterizing engine wear conditions. The proposed dimensional indicator provides 

a new statistical feature of on-line wear particles for on-line wear monitoring. The new dimensional feature conveys profound 

information about wear severity.  
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1  Introduction 
 

Wear characterization by ferrographic analysis provides 
comprehensive insights in diagnosing the wear condition of 
mechanical system[1–2]. Evidently, direct reading and 
analytical ferrography, widely adopted off-line analysis 
methods, have played important roles in the early detection 
of machine faults[3–6]. Although the morphological features 
of wear debris via ferrograph images provided profound 
understanding of wear mechanism, the real-time wear 
report for condition-based maintenance remains a challenge 
for traditional ferrographic analysis[7]. Recently, an on-line 
visual ferrograph (OLVF) sensor presents a feasible 
approach by providing on-line ferrograph images[8–9]. 
However, the feature extraction from an on-line ferrograph 
images for wear characterization has been limited due to 
low resolution and high contamination. Feature extraction 
has becomes the bottleneck of on-line wear characterization 
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via the wear debris images. 
Wear characterization by quantitative indexes is the 

foundation for wear analysis. The indexes were categorized 
into two groups: wear degree and wear mechanism[10]. 
Generally, wear degree was reflected by wear rate, and 
wear mechanism was reflected by the dimension, color and 
morphology of wear debris. Many advanced algorithms 
were investigated for extracting the fine features, such as 
topography, contour, and color from magnified images of 
characteristic wear debris[11–13]. These algorithms had 
promoted the intelligent recognition of wear mechanism. 
However, most algorithms focused on the features of 
characteristic wear debris selected manually, and the 
intelligent acquirement of characteristic wear debris was 
scarcely reported. The difficulty lies in the segmentation of 
single wear debris from intersecting and overlapping wear 
debris chains. On the other hand, most algorithms are 
confined in off-line analysis, and they are not applicable in 
on-line analysis for two specialties: 

First, on-line images have unsatisfied features, such as 
low magnification, high pollution and wear debris 
chains[14–15]. It was difficult to obtain single wear debris 
image with high resolution. 
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Second, on-line monitoring goes beyond normal 
protection and it predicts life tendency with consistent and 
sequence information. The fine features of some specific 
wear debris contained only the transient information of 
running process. Hence, the features were effective in fault 
diagnosis other than monitoring and predication. 

In previous works, a new wear characterization has been 
developed for on-line applications[10]. Wear rate was 
denoted by a statistical concentration index, IPCA (Index of 
Particle Coverage Area), which was based on the area ratio 
of wear debris to the whole image[16–17]. An equivalent 
dimensional index of wear debris with on-line images has 
been constructed[10]. Although the equivalent dimensional 
index performed well in some engineering applications, it 
was still limited for further applications because its 
parameters were experience-determined in different 
situations. 

Aiming at on-line wear characterization, a statistical 
dimension of wear debris was investigated for 
characterizing the wear mechanism with on-line ferrograph 
images. The images were processed to extract different 
geometric information of wear debris efficiently. An 
equivalent dimensional index was constructed for on-line 
description. Meanwhile, the validation and the application 
effect of the developed indexes were examined for on-line 
wear characterization. 

 
2  Decomposition of On-line Ferrograph 

Image Based on Wavelet 
 

2.1  Principle of on-line ferrograph images 
The on-line ferrograph system has been applied in many 

industries with the typical principle as shown in Fig. 1[9]. 
The sensor is fixed on the oil out pipe. The lubricant flows 
from the oil out pipe into the flow channel. The wear debris 
carried by the lubricant is deposited under the activated 
magnetic force. The images of the transmitted light are 
sequentially captured by the CMOS unit and then 
transmitted to the computer. Afterwards, the magnetic force 
is released and the wear debris in the flow channel is 
flushed away through the oil return pipe. This process is 
repeated periodically according to the above sequence by 
instructions. In this way, an automatic on-line oil 
monitoring is realized. 

 

 
Fig. 1.  Schematic diagram of on-line visual ferrograph system 

A typical on-line ferrograph image and its gray result are 
shown in Fig. 2. The bright zone in the image is the 
objective zone, and the dark strips are wear debris chains. 
In contrast, off-line image shows the magnified details of 
single wear debris, and the on-line image shows the coarse 
contour and shape of wear debris chains. Furthermore, the 
off-line analysis reports the past wear by manually 
identifying the magnified images experimentally[18], 
whereas the on-line analysis identifies the real-time wear 
by processing the on-line images with rapid and efficient 
algorithms. In general, the analysis of on-line images 
should have some particularities[19]:  

(1) It is difficult and time-consuming to isolate single 
wear debris from chains. Therefore, a rapid algorithm with 
focus on overall wear debris is necessary.  

(2) The dimension of wear debris distributes in a wide 
range. A statistical description is more feasible than an 
accurate one.  

(3) On-line monitoring can acquire larger samples in a 
time span, which is suitable for trend analysis. 

 

 
Fig. 2.  On-line wear debris image under transmitting       

light condition 
 
 

2.2  Wavelet-based decomposition 
For a gray image, as shown in Fig. 2(b), the boundary of 

wear debris can be clearly identified from the background 
by the striking contrast of their gray values. In view of 
signal processing, a transient variation of the gray values is 
high frequency information and the similar parts are low 
frequency information. The decomposition of different 
frequency information would facilitate the feature 
extraction.  

Wavelets are widely used in image decomposition by 
frequency analysis. It could extract not only the overall 
information but also transient details. Time-frequency 
characteristic of wavelet has been widely adopted in the 
image identification of faces, flowers, and mountains. A 
Daubechies wavelet has good orthogonality which ensures 
complete information about object data. Compared with the 
Haar wavelet[20–21], the second Daubechies is more suitable 
for image decomposition[22].  

A second Daubechies wavelet was used to decompose 
the on-line ferrograph image in Fig. 2. The decomposition 
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results with four component images are illustrated in Fig. 3. 
The components of low and high frequency are in Fig. 3(a) 
and Fig. 3(d), and the horizontal and vertical components in 
Fig. 3(b) and Fig. 3(c), respectively.  

 

 
Fig. 3.  Wavelet decomposition results of the image in Fig. 2 
 
By comparing the initial image, it was found that most of 

the boundary pixels of wear debris were well kept in high 
frequency component, as shown in Fig. 3(d) and residual 
information of wear debris was kept in the low frequency 
component, as shown in Fig. 3(a). The area of wear debris 
could be extracted from a low frequency component image 
and the contour information from a high frequency one. In 
addition, the data size of the object image (BMP format) for 
processing was dramatically reduced by 1/4, which greatly 
reduced the storage space and transfer rate in the long-term 
oil monitoring. Moreover, high efficiency could be 
achieved by using component images.  

 
3  Equivalent Dimension of Wear Debris 

 

 The dimension of single wear debris has been acquired 
by identifying the exact contours with high resolution 
images[23–25]. The statistical dimension of wear debris in an 
on-line ferrograph image was the focus of this work. 

 
3.1  Constructing equivalent dimensional factor 

As shown in Fig. 3(d), the contour of each wear debris 
can be identified by bright pixels from the background. The 
sum of the bright pixels is equal to the sum of the 
circumference of overall wear debris which is determined 
by each circumference and the number of wear debris.  

Suppose that a high frequency component image, which 
is extracted from an m×n (m and n are the pixels number in 
the length and width of an image, respectively) on-line gray 
ferrograph image, is denoted by h(x, y), where x=1, 2, , 
m; y=1, 2, , n; h(x, y)>0. There are only background and 
wear debris in a gray image, so a binary image is more 

suitable for the following process. The binary image can be 
denoted as 

 
0 , ( , ) 0,

( , )
1 , ( , ) 0,

ì >ïï=íï =ïî

h x y
g x y

h x y
            (1) 

 
where g(x, y) is the high frequency component of the binary 
image; 0 denotes the black pixel of the binary image, and 1 
denotes the white pixel of the binary image.  

As described above, the sum of circumference of overall 
wear debris, M, can be defined as 

 

1 1

( , ).
= =

=åå
m n

x y

M g x y              (2) 

 
To simplify, every wear debris or chain is equivalent to a 

circle with the same radius, R. The equivalent circle 
provides the variables of N and I, which are the number and 
the area of overall wear debris and can be calculated 
respectively as: 

 
2π ,M R N= ´                (3) 

 
2π .= ´I R N                (4) 

 
Combining Eqs. (3) and (4), we can get the radius of an 

equivalent circle denoted by: 
 

2
.=

I
R

M
                  (5) 

 
Therefore, radius of the equivalent circle is correlated 

with the area and the circumference of overall wear debris. 
Additionally, the area of overall wear debris can be 
calculated with the method discussed in Ref. [9]. 

The dimensional variable R, calculated by Eqs. (3)–(5), 
represents the number of pixels. To correlated image pixels 
with physical dimension, a scale factor λ, is introduced. 
Thus R can be rewritten into 

 
2

.
I

R
M

=


                   (6) 

 
3.2  Principle of the equivalent dimension factor 

Consider an on-line image with n wear debris. Each wear 
debris chain is equivalent to a circle. The radii of the 
equivalent circles, R1, R2, , Rn, satisfy the following 
condition as 

 

1 20 . nR R R≤ ≤ ≤ ≤              (7) 

 
Suppose that the sum of circumferences of overall wear 

debris is M, and the sum of areas of overall wear debris is I. 
There are two equivalents as 
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1 22π( ),= + + + nM R R R           (8) 

 
2 2 2
1 2π( ).= + + + nI R R R            (9) 

 
Assume that each radius of the equivalent circles is equal. 

Then, Eqs. (8) and (9) is rewritten as follows: 
 

2π ,M R n= ´                (10) 

 
2π .= ´I R n                 (11) 

 
Obtaining the equivalents by considering Eqs. (8)–(11), 

R is expressed as 
 

2 2 2
1 2

1 2

.
+ + +

=
+ + +




n

n

R R R
R

R R R
            (12) 

 
Let R be the average radius of different equivalent circles 

and it is denoted by 
 

1 2 .
+ + +

=
 nR R R

R
n

            (13) 

 
The radii, R1, R2, , Rn, of the equivalent circles is 

denoted as 
 

1, 2, ,  = + = i iR R i n          (14) 

 
where i is the deviation of the radii of different equivalent 
circles and meets the condition of 

 

1

0.
=

=å
n

i
i

                 (15) 

 
Take Eq. (14) into Eq. (12), Eq. (12) can be rewritten as 
 

2 2 2
1 2

1 2

+ + +
= =

+ + +



n

n

R R R
R

R R R
 

2 2 2
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
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The variance of deviations is defined as 2 and denoted 

by: 
 

2 2 2
2 1 2 .

+ + +
=

 n

n

  
            (17) 

 
Take Eq. (17) into Eq. (16), the Eq. (16) can be rewritten as 

 
2

.= +R R
R


                (18) 

 
Then we get 

 
.R R≥                    (19) 

 
Considering 2 2 2

1 2 1 2+ + + ( + + + ) , n n nR R R R R R R≤ we 
get 

 
2 2 2

1 2

1 2

+ + +
.

+ + +




n
n

n

R R R
R

R R R
≥             (20) 

 
Combining Eqs. (16), (19) and (20), we get 
 

.nR R R≤ ≤                 (21) 

 
The radius of an equivalent circle R is between the 

average dimension R  and the largest dimension Rn. It can 
be drawn from Eq. (18), R approaches to Rn as σ increasing. 
That means the equivalent circle dimension represents 
larger wear debris when the dimensions of all wear debris 
becomes more disperse. 

 
3.3  Validation of equivalent circle dimension 

Three binary on-line ferrograph images were employed 
for comparison as shown in Fig. 4, respectively. 
Considering the principle of the equivalent dimension 
factor, some larger wear debris was marked with numbers. 
The approximate dimensions of larger wear debris were 
measured by manually counting pixels. Both the measured 
and equivalent circle dimensions are shown in Table 1 for 
validation. 

 

 
Fig. 4.  Binary results of three randomly chosen on-line 

ferrograph images with marked particles 



 
 
 

YWU Tonghai, et al: Dimensional Description of On-line Wear Debris Images for Wear Characterization 

 

·1284· 

Table 1.  Comparison of measured and equivalent dimension 
of selected large wear debris in Fig. 4 

Fig. No. 
Particle 
number 

Measured 
dimension D/μm 

Equivalent 
dimension R/μm

Fig. 4(a) 
① 73.4 

68.0 
② 64.9 

Fig. 4(b) 

① 98.4 

72.1 ② 85.5 

③ 67.5 

Fig. 4(c) 
① 113.8 

109.9 
② 133.3    

 
Compared with the manual measurements, the equivalent 

circle dimensions of the three images were all close to that 
of larger wear debris. That meant the equivalent circle 
dimension reflected the statistical dimension of larger wear 
debris. Accordingly, relative large wear debris often 
represents transformation from one wear state into another, 
thus is often focused in wear evaluations. However, the 
performance of the index in characterizing wear condition 
still needed to be examined with engineering applications. 

 
4  Engine Application 

 

On-line wear monitoring is very important for most 
wear-sensitive machines, e.g., engine. Therefore, the 
method developed in this work was applied in the bench 
tests of a gasoline engine, which was produced by the 
Institute of Automotive Engineering of First Automobile 
Works, commonly known as FAW.  

The bench test rig of a gasoline engine and the 
monitoring system are shown in Fig. 1[9]. The tested 
gasoline engine was mounted on a bench test rig. The 
output shaft was connected to a dynamometer by a coupler. 
The on-line oil monitoring system, including an OLVF 
sensor box and a computer, was placed closely to the test 
rig. The oil was introduced from the engine’s oil tank and 
then passed through the OLVF sensor. Correspondingly, the 
images of wear debris were captured and processed by the 
computer. Then the return oil was send back to the engine 
from the oil filter of the engine. On-line images were 
sampled periodically and automatically during the tests. To 
characterize wear condition comprehensively, equivalent 
circle dimension and concentration index, IPCA were 
calculated from each image.  

Two applications were carried out for two typical 
working conditions. One is the running-in test for about 20 
h continuously and the other is the durability test for about 
200 h. The experiments were performed and the on-line 
images were sampled at 2 h intervals.  

 
4.1  Running-in test 

The images sampled at different running times during the 
experiment are given in Fig. 5. The relative concentration 
of wear debris increased with the running-in process. 
However, further inspection shows that the number of wear 
debris chains contributes more to such an increase than that 

of larger wear debris. The average dimension of wear 
debris imperceptibly increased.  

 

 
Fig. 5.  Images sampled at different running times        

during running-in bench test for about 20 h 

 

The equivalent circle dimension and the IPCA were 
calculated from each image and the results were shown in 
Fig. 6. It was found that the overall trends of the two indexes 
were not same. The equivalent circle dimension shows slight 
variation and maintains relative stable average values. By 
contrast, the IPCA shows an abrupt rate of increase during 
the running time from 4 h to 12 h and goes up with a gentle 
rate. The deviation of the two indexes coincides with the 
intuition fact as can be drawn from Fig. 5. 

 

4.2  Durability test 
Images sampled at different running times during the 

experiment are given in Fig. 7. The relative concentration 
of wear debris increases during the test. The further 
inspection shows that the number of small wear debris 
explicitly increases but the dimension fluctuates slightly.  
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Fig. 6.  Variation of the equivalent circle dimension and the 

IPCA with running time in running-in test of engine  

 

 
Fig. 7.  Part of the images sampled at different running times 

during durability test for about 200 h 

The values of the equivalent circle dimension and IPCA 
for each image are illustrated in Fig. 8. It can be drawn that 
the two indexes show similar variations. Two stages of 
stable wear and severe wear are explicitly exhibited. 
Absence of the running-in stage in this experiment is 
because it has been carried out before the test. The 
dimension and concentration remains stable at the initial 
stage. A slight fluctuation of the dimension occurred at 
around 80 h, which reflected the stable wear was 
deteriorated and large wear debris was produced. 
Correspondingly, the values of IPCA started a consistent 
increase after about 100 h, and jumped after about 140 h. In 
the stable stage, normal wear produced small wear debris 
and remained a stable wear rate. When the wear station was 
destroyed, severe wear occurred with larger wear debris 
and higher wear rate. In addition, the dimension of wear 
debris remains unvaried in the severe stage but the quantity 
contributed to the increasing concentration. 

 

 
Fig. 8.  Variation of the equivalent circle dimension and the 

IPCA with running time in durability test of engine 

 

As was put forward in the previous study, wear rate and 
wear mechanism are two independent aspects to 
characterize the wear condition. In this study, the wear rate 
represented by the concentration of wear debris and the 
wear mechanisms represented by equivalent circle 
dimension well satisfied the principle of the wear processes 
of engines. 

 

5  Conclusions 
 

For on-line wear characterization, a statistical dimension 
of wear debris was investigated with on-line ferrograph 
images. An on-line image was decomposed to acquire two 
frequency component images with different features of 
wear debris. The statistical features of the two frequency 
component images were investigated to construct a 
quantitative index. The validity and the performance of the 
index were verified by experiments. As a result, some 
conclusions were generalized as follows.  

(1) An equivalent dimension has been constructed to 
characterize wear mechanism by using the decomposed 
on-line ferrograph images. Further analysis shows that the 
index represents the dimension of relative larger wear 
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debris and satisfies the requirement of abnormal wear 
detection.  

(2) The new index of equivalent circle dimension has a 
good consistence with the real dimension. Preliminary 
experiments with the running-in and the durability tests of 
gasoline engine shows the equivalent circle dimension, 
together with the wear concentration index, IPCA, can 
comprehensively characterize wear condition.  
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